
Sentiment Analysis on Multilingual Tweets
using Big Data Technologies

Rodrigo Mart́ınez-Castaño, Juan C. Pichel and Pablo Gamallo1

Abstract— In this paper a new parallel system for
sentiment analysis on multilingual tweets based on
Big Data technologies is presented. On the one hand,
our sentiment classifier performs as well as other
state-of-the-art classifiers considering tweets written
in different languages. On the other hand, our system
is capable of processing millions of tweets in short
times taking advantage of Big Data processing and
parallel architectures, showing a good scalability in
all the considered scenarios.

Keywords— Sentiment analysis, Big Data, Perfor-
mance, Twitter, Hadoop.

I. Introduction

Sentiment Analysis consists in finding the opinion
(e.g. positive, negative, or neutral) from text doc-
uments such as movie reviews or product reviews.
Opinions about movies, products, etc. can be found
in web blogs, social networks, discussion forums, and
so on. Companies can improve their products and
services on the basis of the reviews and comments of
their costumers. Recently, many works have stressed
the microblogging service Twitter. As Twitter can
be seen as a large source of short texts (tweets)
containing user opinions, most of these works make
sentiment analysis by identifying user attitudes and
opinions toward a particular topic or product. The
task of making sentiment analysis from tweets is a
hard challenge. On the one hand, as in any senti-
ment analysis framework, we have to deal with hu-
man subjectivity. Even humans often disagree on the
categorization on the positive or negative sentiment
that is supposed to be expressed on a given text. On
the other hand, tweets are too short text to be lin-
guistically analyzed, and it makes the task of finding
relevant information (e.g. opinions) much harder.

Useful conclusions can only be extracted when
huge amounts of text or documents are analyzed.
However, standard solutions cannot handle gigabytes
or terabytes of text data in reasonable time. In this
way, professionals demand scalable solutions to boost
performance of the sentiment analysis process. To
address this challenge we propose to take advantage
of parallel architectures using Big Data technologies.

In this paper a new parallel system for sentiment
analysis on multilingual tweets based on Big Data
technologies is introduced. The goal of our system
is twofold. First, the sentiment classifier should per-
form as well as other state-of-the-art classifiers con-
sidering tweets written in different languages. For
this reason a thorough evaluation was carried out an-

1Centro de Investigación en Tecnolox́ıas da Infor-
mación (CITIUS), Universidade de Santiago de Compostela,
Spain, e-mail: {rodrigo.martinez, juancarlos.pichel,
pablo.gamallo}@usc.es

alyzing Spanish and English tweets. We must high-
light that our classifier took part in two different
sentiment analysis contests showing a good behavior
with respect to other approaches. Second, millions
of tweets should be processed in short times. With
this objective in mind tweets are analyzed in paral-
lel taking advantage of a Hadoop [1] cluster which
decreases the processing times noticeably. Perfor-
mance results demonstrates the benefits in terms of
scalability of our proposal.

II. Background & Related Work

A. Big Data processing

MapReduce [2] is a programming model intro-
duced by Google for processing and generating large
data sets on a huge number of computing nodes. A
MapReduce program execution is divided into two
phases: map and reduce. The input and output of a
MapReduce computation is a list of key-value pairs.
Users only need to focus on implementing map and
reduce functions. In the map phase, map workers
take as input a list of key-value pairs and generate
a set of intermediate output key-value pairs, which
are stored in the intermediate storage (i.e., files or
in-memory buffers). The reduce function processes
each intermediate key and its associated list of values
to produce a final dataset of key-value pairs. In this
way, map workers achieve data parallelism, while re-
duce workers perform parallel reduction. Note that
parallelization, resource management, fault tolerance
and other related issues are handled by the MapRe-
duce runtime.

Apache Hadoop [1] is the most successful open-
source implementation of the MapReduce program-
ming model. Hadoop consists, basically, of three lay-
ers: a data storage layer (HDFS), a resource manager
layer (YARN), and a data processing layer (Hadoop
MapReduce Framework). HDFS is a block-oriented
file system based on the idea that the most effi-
cient data processing pattern is a write-once, read-
many-times pattern. For this reason, Hadoop shows
good performance with embarrassingly parallel ap-
plications requiring a single MapReduce execution
(assuming intermediate results between map and re-
duce phases are not huge), and even for applications
requiring a small number of sequential MapReduce
executions [3]. However, Hadoop performs poorly
when applications do not fit into one of the previous
workflows. For example, an iterative algorithm can
be expressed as a sequence of multiple MapReduce
jobs. Since different MapReduce jobs cannot shared
data directly, intermediate results have to be written



to disk and read again from HDFS at the beginning
of the next iteration, with the consequent reduction
in performance.

B. Sentiment analysis

There exist two types of approaches for sentiment
analysis: Machine learning classification and lexicon-
based strategy. Machine learning methods use sev-
eral learning algorithms to determine the sentiment
by training on a known dataset. Many of them rely
on very basic classifiers, e.g. Naive Bayes [4] or Sup-
port Vector Machines [5]. They are trained on a par-
ticular dataset using features such as bag of words
or bigrams, and with or without part-of-speech (PoS)
tags. It is admited that very basic language models
based just on bag of words perform reasonably well
[6]. The lexicon-based technique involves calculating
sentiment polarity for a text using dictionaries or
lexicons of words. The lexicon entries are annotated
with their semantic orientation: polarity (positive,
negative, or neutral) and strength [7].

To deal with short messages such as tweets and
SMS, the state-of-the-art systems are based on ma-
chine learning techniques using as features polarity
lexicons [8], [9]. Our strategy also makes use of po-
larity lexicons to enrich the set of features of the clas-
sifier. Most recent approaches to sentiment analysis
on short messages and social media are endowed with
rich linguistic information such as shallow syntac-
tic structures [10] or syntactic dependency trees [11].
Following the tendency to use knowledge-rich linguis-
tic features, our approach will be provided with shal-
low syntactic information to detect polarity shifters
(e.g., negation markers).

We can find in the literature several interesting
works which applied sentiment analysis to differ-
ent document or text sources using Big Data tech-
nologies, for example, movie reviews [12] and ho-
tel reviews [13]. Another authors analyzed tweets
in real time [14]. Finally, some researchers have fo-
cused on the impact in the performance of different
ways of distributing virtual machines (workers) on a
cloud environment using sentiment analysis as case
study [15].

III. Architecture of the System

The system is composed of three main modules
illustrated in Figure 1. The first one is the Tweet
Mining Module, which is the responsible of collect-
ing the tweets for the future processing. This module
has two components that will be explained in detail
in the next section. The second module is, strictly
speaking, the MapReduce application. This mod-
ule is in charge of processing the stored tweets from
a HBase1 table. HBase is a non-relational and dis-
tributed column-oriented database built on top of
HDFS. The mappers receive the tweets from HBase
and process them through the sentiment analysis
classifier if they match the query terms. Note that

1https://hbase.apache.org/

there are two reducers, one is responsible of summa-
rizing the number of successfully processed tweets
and the other calculates the average positivity ratio
and the number of matches for a particular query.
This module is described in Section V.

The application can be executed through a web
interface as shown in Figure 2, which corresponds to
the third module of the system. The interface has
two different views. A simple web form (main view,
left image) allows to customize the MapReduce jobs
that will be launched using two filters: start and end
dates (an interval can be established) and the input
terms. Several terms can be introduced separated
by spaces. The second view shows the obtained re-
sult when the MapReduce job finishes (right image
in the figure). The web back-end processes the data
received from the web form, launches a Hadoop job
and reads the outputs from HDFS, showing the re-
sult when it is finished.

IV. Tweet Mining Module

The Tweet Mining Module was developed in Java
and consists of two components. The main module is
a web scraper which acquires tweets directly from the
official user interface for web browsers. The second
component uses the Streaming API of Twitter with
the help of the Twitter4J2 library.

Twitter streams an arbitrary selection of tweets
through the Streaming API. This represents a small
fraction of the total volume of tweets published at
each moment. The provided stream is the same for
every consumer and it is very limited. It is said to
provide about the 1% of the total tweets produced
in every moment.

The idea to deal with the aforementioned problems
is to retrieve tweets making queries to the Search
API with common words of a particular language.
Queries should be executed very often for each term
when using this method, but this is not feasible
due to the API limitations. However, these limita-
tions can be bypassed considering web scraping tech-
niques. This is the job of the second and main com-
ponent of the Tweet Mining Module, which gathers
tweets from the official web client making queries di-
rectly to twitter.com/search.

The module retrieves the HTML code that the
web client returns for each query of every selected
term and processes it using the HtmlUnit3 library.
Through the web client, Twitter provides 20 tweets
every 20 seconds for each query and for every con-
sumer (at most, if available). Their system makes a
selection of tweets as the Streaming API does, but,
in this case, if the optimal terms are selected, a sig-
nificant percentage of the total produced tweets for
some language could be collected.

An important drawback of this method arises
when lots of tweets contain only very common terms
(usually there are more than those 20 tweets per
term) forcing the loss of tons of tweets. This method

2http://twitter4j.org/
3http://htmlunit.sourceforge.net/

https://hbase.apache.org/
http://twitter4j.org/
http://htmlunit.sourceforge.net/


Fig. 1

Architecture diagram of the Sentiment Analysis system.

Fig. 2

Web GUI of the Sentiment Analysis system.

gets good results using frequency lists of certain lan-
guages and other type of terms like trending ones.
This module and the idea behind it pretend to max-
imize the tweet retrieval at zero-cost.

When this module is executed, one thread is con-
sulting the Streaming API while a configurable num-
ber of web scraper threads are retrieving information
from the web client with the list of selected terms.
In order to launch a mining job, the API tokens of a
Twitter application must be set if using the official
Streaming API. Other relevant parameters that can
be set are the number of scraper threads to launch,
the base size of the buffer and the step (in order
to distribute the writes into HBase: the buffer of
each thread is increased progressively with the step
value), the number of laps (times that every web
scraper thread consults its assigned terms) and the
sleep time (number of seconds that every web scraper
thread will pause its execution before starting a new
lap).

V. Sentiment Analysis Module

Our approach is based on a Naive Bayes (NB) clas-
sifier. NB combines efficiency (optimal time perfor-
mance) with reasonable accuracy. The main theo-
retical drawback of NB methods is that it assumes
conditional independence among the linguistic fea-
tures. If the main features are the tokens extracted
from texts, it is evident that they cannot be con-
sidered as independent, since words co-occuring in a
text are somehow linked by different types of syntac-
tic and semantic dependencies. However, even if NB
produces an oversimplified model, its classification
decisions are surprisingly accurate [16]. To improve
the performance of the system, the classifier was en-
riched with lexicon-based features. Our sentiment
analysis system is called CitiusSentiment4, it is mul-
tilingual and supports English and Spanish texts. It
was implemented in Perl.

A. Strategy and features

Our classifier requires both a simplified annotated
corpus of tweets (or short sentences) and a polarity
lexicon with both Positive and Negative words. The
annotated corpus only contains positive and nega-
tive examples of tweets. Neutral tweets are not re-
quired. As a result, a basic binary (or boolean) clas-
sifier which only identifies both Positive and Nega-
tive tweets is trained. In order to detect tweets with-
out polarity (or Neutral), the following basic rule is
used: if the tweet contains at least one word that is
also found in the polarity lexicon, then the tweet has
some degree of polarity. Otherwise, the tweet has
no polarity at all and is classified as Neutral. The
binary classifier is actually suited to specify the ba-

4freely available at http://gramatica.usc.es/pln/tools/
CitiusSentiment.html

http://gramatica.usc.es/pln/tools/CitiusSentiment.html
http://gramatica.usc.es/pln/tools/CitiusSentiment.html


sic polarity between positive and negative, reaching
a precision of more than 80% in a corpus with just
these two categories.

The training corpus of tweets as well as the ana-
lyzed tweets are preprocessed as follows:

• Removing urls, references to usernames, and
hashtags

• Reduction of replicated characters (e.g.
looooveeee → love)

• Identifying emoticons and interjections and re-
placing them with polarity or sentiment expres-
sions (e.g. :-) → good)

The features considered by the classifier are lem-
mas, multiwords, polarity lexicons, and valence
shifters. In the following, we describe the polarity
lexicons and valence shifters.

Polarity Lexicons: For each language, we built a
polarity lexicon with both Positive and Negative en-
tries from different sources. The English lexicon is
the result of unifying the following lexical resources:

• AFINN-1115 contains 2, 477 word forms, which
were lemmatized and converted into 1, 520, pos-
itive and negative lemmas.

• Hedonometer [17] contains about 10, 000 fre-
quent words extracted from tweets which were
classified as expressing some degree of happi-
ness.

• Hu&Liu list [18] contains over 6, 800 words out
of which 5 positive and negative lemmas were
selected 5, 695.

• Sentiwordnet-3.0 [19] contains more than
100, 000 entries. We selected a subset of 6, 600
positive and negative lemmas with the highest
polarity values.

• Finally, we have built a polarity lexicon with
10, 850 entries by merging the previous ones.

The resources used to elaborate the Spanish lexicon
are the following:

• Spanish Emotion Lexicon (SEL) [20] contains
2, 036 words.

• A list of synonyms (ExpandSEL) was automat-
ically extracted by expanding SEL using a dic-
tionary of synonyms.

• A list of polarity words was semi-automatically
extracted from the training corpus (CorpusLex).

• Finally, we have built a polarity lexicon with
4, 564 entries by merging the previous ones.

Valence shifters: We take into account negative
words that can shift the polarity of specific lemmas
in a tweet. In the presented work, we will make use of
only those valence shifters that reverse the sentiment
of words, namely negations. The strategy to identify
the scope of negations relies on the PoS (part-of-
speech) tags of the negative word as well as of those
words appearing to its right in the sequence.

5http://arxiv.org/abs/1103.2903

B. Integration into a Big Data infrastructure

In order to store the tweets collected by the Tweet
Mining Module we have used Apache HBase. The
Tweet Mining Module fills a buffer as the tweets are
retrieved in such a way that when the buffer is full,
all its content is dumped in the HBase corresponding
table. Each row of the table has the following fields:
a key (it matches the tweet original ID) and several
attributes of the tweet stored in a single column fam-
ily. These attributes are: user ID, nickname of the
publisher, language, date of the post and the text of
the tweet.

MapReduce (Hadoop) jobs can be launched when
the Tweet Mining Module has finished or when it is
still working. The MapReduce application performs
reads from the HBase table which contains all the
stored tweets. The initial and final date, the prefetch
value, the table name, the internal task ID (it will
determine the output file) and the target terms must
be set when starting a job. Every tweet should match
with each term to be processed (not necessarily in a
contiguous manner).

HBase tables are split into regions and a mapper
is launched for every region. While retrieving data
from a HBase table, one region is equivalent to a split
or map task. The MapReduce execution consist in a
set of mappers, whose number is determined by the
quantity of regions of the table, and two reducers.
The mappers process a given set of terms.

Each accepted tweet is evaluated at the map
function using the sentiment analysis classifier
(CitiusSentiment) to get a result which takes the
values -1, 0 or 1 (negative, neutral and positive, re-
spectively). In order to integrate the classifier into
the Hadoop infrastructure we should use Hadoop
Streaming as it was originally implemented using
Perl. Note that Hadoop Streaming is an utility pro-
vided by Hadoop to execute applications written in
languages different from Java. However, important
degradations in the performance were detected using
Hadoop Streaming with respect to using Java codes.
For this reason, we have used Perldoop [21] to trans-
late Perl code into Java.

The reducer computes the total sum of the query.
The final value contrasts the positive tweets with the
negative ones. This value is eventually normalized
from the total number of processed tweets, in a scale
that goes from 0 to 1. This scale represents the posi-
tivity ratio of the query. Results lower than 0.45 are
considered negative and upper 0.55, positive. The
remaining intermediate values represent a neutral re-
sult. Both Hadoop output files and HBase data are
stored in HDFS.

VI. Performance Results

In order to test our Sentiment Analysis system we
set up a Hadoop cluster in Amazon EC2. The in-
stances were created with Amazon Linux AMI run-
ning Apache Hadoop 2.7.2 and Apache HBase 1.1.4.
Amazon gives their users the possibility of running a
wide variety of virtual machines in their EC2 infras-

http://arxiv.org/abs/1103.2903


TABLE I

Average number of unique collected tweets per second, filtered by language.

Spanish English

Streaming API Full System Streaming API Full System

5.6 259.2 (46.3×) 15.1 275.4 (18.2×)

tructure. In our case, the cluster consists of 5 nodes
of the r3.2xlarge instance type. This kind of EC2
instances has the following characteristics:

• CPU: Intel Xeon E5-2670 v2 (Ivy Bridge mi-
croarchitecture)

• Cores per node: 8
• RAM Memory per node: 61 GiB
• Disk: Each node has a 50 GB SSD General Pur-

pose disk

According to the specifications provided by Ama-
zon, the network performance of the r3.4xlarge in-
stances is “high” so the theoretical bandwidth value
is 1 Gbps.

The Tweet mining module has been evaluated us-
ing one c4.8xlarge instance. This system contains
Intel Xeon E5-2666 v3 (Haswell microarchitecture)
processors, there are in total 36 cores (72 threads).

A. Tweet mining module evaluation

In order to test the capabilities of this module,
the performance was tested comparing the tweets
per second collected considering the full system de-
tailed previously in Section IV and also using the
Streaming API thread working alone for Spanish and
English in separated tests. The target terms were
two lists of the 5,000 most frequent words for the
Spanish and English languages. The CREA (Refer-
ence Corpus of the Current Spanish) list from RAE6

was used for Spanish. In the case of English the
terms were extracted from a 6,000 words list from
insightin.com7.

Tests were performed distributing the selected
terms over 72 threads. Results are shown in Table I.
The amount of tweets that the Streaming API can
provide for a certain language is very low compared
to the results obtained when executing our approach.
For instance, our system collects 46.3× more tweets
per second in Spanish than the Streaming API. Even
if the language is not filtered when using the Stream-
ing API the stream rate was at most 40 tweets per
second.

B. Sentiment analysis evaluation

Our system, CitiusSentiment, took part as a par-
ticipant in two different sentiment analysis competi-
tions: TASS [22] and SemEval (task 9) [23]. TASS is
an experimental evaluation workshop for sentiment
analysis and online reputation analysis focused on
Spanish language. SemEval (task 9 or 10) is focused
on sentiment analysis in English microblogging. In

6http://corpus.rae.es/lfrecuencias.html
7http://www.insightin.com/esl/

both competitions, the systems were trained with dif-
ferent training annotated corpora. In TASS we used
as input dataset the training corpus of tweets pro-
vided by the organization. This set contains 7,216
Spanish tweets, which were tagged with several po-
larity values: Positive, Negative, and Neutral. In Se-
mEval, we used the training dataset of English tweets
provided by the organization, which contains 6,408
tweets. The systems were evaluated against different
test datasets of tweets annotated with the polarity
tags. In some subtasks, further tags were used in or-
der to distinguish between strong and weak positive
tweets, between strong and weak negative tweets, or
between neutral (neither positive nor negative) and
objective (no polarity at all) tweets.

Tables II and III show the performance results of
our system in TASS and SemEval, respectively. We
compare the F-score achieved by our system with re-
spect to those reached by both the best and worst
systems, as well as the average considering all sys-
tems in each competition. The F-score is a weighted
average of the precision and recall. Precision is the
number of all positive results returned by the system
divided by the number of results which were actu-
ally returned, while recall is the number of correct
positive results returned by the system divided by
the number of positive results that should have been
returned. F-score reaches its best value at 1 and
worst score at 0. Each competition consists in sev-
eral tasks. For example, in TASS, Task-1 makes use
of 6 polarity tags, Task-2 only uses 4 tags, and Task-
3 deals with determining the polarity at entity level.
In SemEval, each task corresponds to a different test
dataset: LiveJournal sentences (Task-1), SMS mes-
sages (Task-2), tweets of SemEval 2013 (Task-3),
tweets of SemEval-2014 (Task-4), and tweets with
sarcasm (Task-5).

For each subtask, the ranking of CitiusSentiment
is enclosed in brackets. For instance, it was ranked as
the 3th best system out of 13 participants in Task-2
of TASS, and it was the first system out of 5 in Task-
3 of the same competition. The results obtained in
TASS contest, focused on Spanish tweets, were sig-
nificantly better that those obtained in SemEval, fo-
cused on English short messages. Yet, in all tasks,
including those of SemEval, the scores of CitiusSen-
timent are clearly above the average.

C. Evaluation of the Big Data infrastructure

In order to test the processing times and scalabil-
ity of our system 68 Spanish terms were selected as
targets for the Tweet Mining Module. These terms
were relevant in mid-February 2016, when the com-

http://corpus.rae.es/lfrecuencias.html
http://www.insightin.com/esl/


TABLE II

F-score and ranking of our system (CitiusSentiment) in the TASS competition: Sentiment analyis on Spanish

tweets.

System Task-1 Task-2 Task-3

Best system 61.6 68.6 39.4
CitiusSentiment 55.8 (4/13) 66.8 (3/13) 39.4 (1/5)
Worst system 12.6 23.0 30.7
Average 43.3 53.0 36.9

TABLE III

F-score and ranking of our system (CitiusSentiment) in the SemEval competition, namely task 9 focused on

sentiment analysis in Twitter (only English microtexts).

System Task-1 Task-2 Task-3 Task-4 Task-5

Best system 74.8 70.2 72.1 70.9 58.1
CitiusSentiment 64.5 (29/50) 58.2 (24/50) 63.2 (24/50) 62.9 (27/50) 46.1 (25/50)
Worst system 29.3 24.6 34.2 33.0 28.9
Average 59.9 52.4 56.4 56.9 42.8

pilation of tweets started, e.g., political parties, fa-
mous people, new devices, etc. A total amount of
8,016,139 tweets written in Spanish (3.1 GiB) were
stored in the HBase database. The selected terms
for the tests were: corrupción (corruption), gobierno
(government) and elecciones (elections). Table IV
shows the number of matches (tweets containing the
considered word) and the positivity ratio obtained
by the system related to each term.

Due to the fact that Hadoop handles each region
of a HBase table like a split, the original table was
split into equal parts progressively, getting always a
number of regions power of two from 1 to 32. A total
amount of 50 GiB of RAM per node was configured
for YARN containers, 7 GiB for every map or reduce
container. 3GiB for HBase and the rest for other
Hadoop processes and the OS. The number of cores
per node (YARN) was set to 8.

HBase tables are split in regions accord-
ing to the established policies. For this
experiment, the split policy that was used
was the ConstantSizeRegionSplitPolicy.
Thereby, every region is split when one of
their column families exceeds the value for the
hbase.hregion.max.filesize attribute. This
parameter was set to 20GiB, getting only one region
in the table for all the tweets that were stored. For
the purpose of obtaining the different number of
regions, the tests were performed on the table in
many iterations. In every iteration, each region
was manually divided in two equal parts through
the HBase Shell. It is important to set some
properties to the Scan instance that will be used
by the mappers. The cache blocks option must be
disabled (the MapReduce job is a batch reading
and this option is intended for frequently accessed
rows). Furthermore, an important parameter when
performing readings is the client prefetch (called
caching). This refers about how many rows from the

table could be retrieved in a single RPC call by the
client. Using the default value (1) will cause a huge
degradation of the execution performance. For the
tests, the chosen values were 50 and 5,000 (rows).

Results of the experiments carried out are dis-
played in Table V, which show that the system
scales up quite good when the physical resources are
enough to handle the launched tasks. Note that our
system is capable of processing more than 8 million
tweets in few minutes. Considering the term elec-
ciones, the one with the lowest number of coinci-
dences, using 32 mappers degrades the performance
due to the overhead. In addition, low values for
the caching parameter in the Scanner object causes
worse results. This behavior is clearly detected with
few regions. Additional tests were executed using
other values for caching, but higher values for this
parameter do not show relevant differences with re-
spect to the results shown in Table V.

VII. Conclusions

Twitter can be considered as a large source of short
texts (tweets) containing user opinions. Making sen-
timent analysis on tweets is challenging from the
natural language processing perspective, but also in
terms of performance when huge amounts of tweets
should be processed. Both challenges are addressed
in this paper.

First, our sentiment classifier (CisitusSentiment)
has obtained good results considering both Spanish
and English tweets. We must highlight that our clas-
sifier took part as a participant in two different sen-
timent analysis competitions, reaching scores clearly
above the average with respect to other approaches.

Regarding the second challenge, we propose a new
system that takes advantage of parallel architectures
using Big Data technologies with the aim of speed-
ing up the sentiment analysis process. The system
consists of three modules. The first module is respon-



TABLE IV

Successfully processed tweets, matches and positivity ratio for the selected Spanish terms.

Term Processed tweets Matches Positivity ratio

corrupción
8,016,139

195,590 0.304 (negative)
gobierno 99,601 0.433 (negative)

elecciones 30,001 0.577 (positive)

TABLE V

Processing time (in minutes) for the selected Spanish terms.

corrupción gobierno elecciones
Scanner caching (prefetch)

No. of reg. 50 5,000 50 5,000 50 5,000

1 52.5 50.7 29.2 27.8 12.4 10.9

2 30.2 27.5 15.9 15.0 7.4 6.7

4 17.9 16.6 10.2 9.1 4.7 4.0

8 11.2 8.4 5.7 5.5 3.2 2.7

16 7.4 6.5 4.5 4.1 2.4 2.1

32 5.3 5.1 3.9 3.7 2.4 2.3

sible of collecting the tweets. It has been designed in
such a way that captures 46× more tweets per sec-
ond than the standard Twitter Streaming API. The
second module uses Hadoop to process the tweets
captured by the first module. Performance results
show that our system is able to analyzed more than
8 million tweets in a few minutes on a small cluster.
Finally, a GUI is also provided for the users.

Acknowledgment

This work was supported by MINECO (ref.
TIN2014-54565-JIN) and RedPLIR-Xunta de Gali-
cia (ref. CN2014/034). It was also supported by
AWS in Education Grant award.

References

[1] “Apache Hadoop home page,” http://hadoop.apache.
org/, [Online; accessed February, 2016].

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” in Symposium on Operating
System Design and Implementation, 2004, pp. 10–10.

[3] Satish Narayana Srirama, Pelle Jakovits, and Eero
Vainikko, “Adapting scientific computing problems to
clouds using MapReduce,” Future Generation Computer
Systems, vol. 28, no. 1, pp. 184 – 192, 2012.

[4] Jared Kramer and Clara Gordon, “Improvement of a
Naive Bayes Sentiment Classifier Using MRS-Based Fea-
tures,” in Joint Conf. on Lexical and Computational
Semantics, 2014, pp. 22–29.

[5] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan,
“Thumbs Up?: Sentiment Classification Using Machine
Learning Techniques,” in Conf. on Empirical Methods in
Natural Language Processing, 2002, vol. 10, pp. 79–86.

[6] Franco Salvetti, Christoph Reichenbach, and Stephen
Lewis, “Opinion polarity identification of movie reviews,”
in Computing Attitude and Affect in Text: Theory and
Applications, pp. 303–316. 2006.

[7] Maite Taboada, Julian Brooke, Milan Tofiloski, Kimberly
Voll, and Manfred Stede, “Lexicon-based methods for
sentiment analysis,” Comput. Linguist., vol. 37, no. 2,
pp. 267–307, 2011.

[8] Saif M. Mohammad, Svetlana Kiritchenko, and Xiaodan
Zhu, “Nrc-canada: Building the state-of-the-art in sen-
timent analysis of tweets,” CoRR, vol. abs/1308.6242,
2013.

[9] X. Saralegi and I. San Vicente, “TASS: Detecting Sen-
timents in Spanish Tweets,” in Workshop on Sentiment
Analysis at SEPLN, 2012.

[10] Aliaksei Severyn, Alessandro Moschitti, Olga Uryupina,
Barbara Plank, and Katja Filippova, “Multi-lingual opin-
ion mining on youtube,” Inform. Processing & Manage-
ment, vol. 52, no. 1, pp. 46–60, 2015.

[11] David Vilares, Miguel A. Alonso, and Carlos Gómez-
Rodŕıguez, “On the usefulness of lexical and syntactic
processing in polarity classification of twitter messages,”
Journal of the American Society for Information Sci-
ence, vol. 66, no. 9, pp. 1799–1816, 2015.

[12] B. Liu, E. Blasch, Y. Chen, D. Shen, and G. Chen, “Scal-
able sentiment classification for big data analysis using
naive bayes classifier,” in IEEE Int. Conference on Big
Data, 2013, pp. 99–104.

[13] L. Banić, A. Mihanović, and M. Brakus, “Using Big Data
and sentiment analysis in product evaluation,” in Int.
Convention on Information Communication Technology
Electronics Microelectronics, 2013, pp. 1149–1154.

[14] A. H. A. Rahnama, “Distributed real-time sentiment
analysis for big data social streams,” in Int. Conf. on
Control, Decision and Information Technologies, 2014,
pp. 789–794.

[15] J. Conejero, P. Burnap, O. Rana, and J. Morgan, “Scal-
ing archived social media data analysis using a hadoop
cloud,” in Conf. on Cloud Computing, 2013, pp. 685–692.

[16] Chris Manning, Prabhakar Raghadvan, and Hinrich
Schütze, Introduction to Information Retrieval, Cam-
bridge University Press, Cambridge, MA, USA, 2008.

[17] Peter Sheridan Dodds, Kameron Decker Harris, Isabel M.
Kloumann, Catherine A. Bliss, and Christopher M. Dan-
forth, “Temporal patterns of happiness and information
in a global social network: Hedonometrics and Twitter,”
PLoS ONE, vol. 6, no. 12, pp. e26752, 2011.

[18] Bing Liu, Minqing Hu, and Junsheng Cheng, “Opinion
Observer: Analyzing and Comparing Opinions on the
Web,” in Int. World Wide Web conference, 2005, pp.
342–351.

[19] Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-
tiani, “SentiWordNet 3.0: An Enhanced Lexical Re-
source for Sentiment Analysis and Opinion Mining,” in
Int. Conf. on Language Resources and Evaluation, 2010,
pp. 2200–2204.

[20] Grigori Sidorov, “Empirical study of opinion mining in
spanish tweets,” Lecture Notes in Artificial Intelligence,
vol. 7629-7630, 2012.

[21] J. M. Abúın, J. C. Pichel, T. F. Pena, P. Gamallo, and
M. Garćıa, “Perldoop: Efficient execution of Perl scripts
on Hadoop clusters,” in Int. Conf. on Big Data, 2014,
pp. 766–771.

[22] Pablo Gamallo, Marcos Garcia, and Santiago Fernández-

http://hadoop.apache.org/
http://hadoop.apache.org/


Lanza, “A naive-bayes strategy for sentiment analysis on
spanish tweets,” in Workshop on Sentiment Analysis at
SEPLN (TASS), 2013, pp. 126–132.

[23] Sara Rosenthal, Preslav Nakov, Alan Ritter, and Veselin
Stoyanov, “SemEval-2014 Task 9: Sentiment Analysis
in Twitter,” in Int. Workshop on Semantic Evaluation,
2014.


	Introduction
	Background & Related Work
	Big Data processing
	Sentiment analysis

	Architecture of the System
	Tweet Mining Module
	Sentiment Analysis Module
	Strategy and features
	Integration into a Big Data infrastructure

	Performance Results
	Tweet mining module evaluation
	Sentiment analysis evaluation
	Evaluation of the Big Data infrastructure

	Conclusions

