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SUMMARY

One of the main factors that affect the performance of the sparse matrix-vector product
(SpMV) is the low data reuse caused by the irregular and indirect memory access
patterns. Different strategies to deal with this problem have been proposed such as
data reordering techniques. The computational cost of these techniques is typically high
since they consider all the nonzeros of the sparse matrix in order to find an appropriate
permutation of rows and columns that improves the SpMV performance.

In this paper we analyze the possibility of increasing the locality of the SpMV using
incomplete information in the reordering process. This partial information comes as a
consequence of considering only a subset of the nonzero elements of the matrix. These
nonzeros are obtained from the original matrix through a sampling process. In particular,
two different sampling methods have been considered: a random sampling and an event-
based sampling (EBS) using hardware counters.

We have detected that a small number of samples is enough to obtain quality
reorderings. As a consequence, using sampling-based reorderings leads to noticeable
performance improvements with respect to the non-reordered matrices, reaching
speedup values up to 2.1×. In addition, an important reduction in the computational
time required by the reordering technique has been observed.
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1. Introduction

Sparse matrix-vector product (SpMV) is one of the most important computational kernels
in scientific and engineering applications. It is notorious for sustaining low fractions of peak
performance (typically, about 10%) on modern processors. Some of the factors affecting the
SpMV performance are the memory bandwidth limitation and the low data reuse caused by
the irregular and indirect memory access patterns. Note that the sparse matrix pattern that
characterizes the irregular accesses is only known at run-time. To this end, different strategies
focusing on some of the SpMV performance problems have been proposed. This is the case
of reordering techniques. In these techniques the whole sparse matrix pattern is evaluated to
find an appropriate permutation of rows and columns that improves the SpMV performance.
Considering all the nonzeros of the matrix normally implies high computational costs that
must be amortized when the sparse operation is repeatedly performed as, for instance, in
iterative methods for solving systems of linear equations.

In this work we analyze the possibility of increasing the locality of the SpMV when only
a subset of the memory accesses performed is available in the optimization process. This is
equivalent to considering only a subset of the nonzero elements of the matrix. To the best of
our knowledge, researchers have never dealt with the locality optimization of the SpMV using
reordering techniques and incomplete information. Note that the reduction in the amount of
information managed by the optimization technique must have an impact on its computational
cost.

As locality optimization strategy we have selected a data reordering technique previously
developed by the authors [27]. It consists of reorganizing the data guided by a locality model
instead of restructuring the code or changing the sparse matrix storage format. The goal of
this technique is to increase the grouping of nonzero elements in the sparse matrix pattern
that characterizes the irregular accesses and, as a consequence, improving the locality in the
execution of the SpMV code. According to this, the technique must find the appropriate
order of rows and columns of the original matrix for improving the locality using only the
information provided by a subset of its nonzero elements. These nonzeros are obtained from
the original matrix through a sampling process. In particular, two different sampling methods
have been considered in this work: a random sampling and an event-based sampling (EBS)
using hardware counters.

In the first case the nonzero elements of the sampled matrices used as input of the reordering
technique are selected randomly from the original matrix in such a way that each nonzero has
equal chances of being sampled. Despite the fluctuations in the performance measurements
caused by the randomly sampling method, we have detected that a small number of samples is
enough for the reordering technique to generate quality reorderings. Tests have been performed
on two systems consisting of different multicore processors: Itanium2 and Xeon (with Nehalem
microarchitecture).

An event-based sampling process using hardware counters is then considered. A new
methodology to obtain the position of the nonzero elements of a sparse matrix from the sampled
information provided by the hardware counters was introduced. The performance evaluation
shows that reorderings generated using the information provided by these sampled matrices
obtain very similar results with respect to the ones generated by the original technique. In
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addition, we have observed that there are very small differences in the SpMV performance
achieved by reordered matrices generated using the information provided by different samplings
of the same original matrix. A comparison of the SpMV performance with the original (non-
reordered) matrices is also provided. Speedups up to 2.1× were observed when using reordered
matrices. On the other hand, a consequence of using sampled information to perform the
reordering is an important reduction in the overhead introduced by the reordering technique.
In particular, reductions higher than 90% were detected in comparison with the computational
cost of the original technique.
The remainder of this paper is structured as follows: Section 2 discusses previous work on

the SpMV optimization. Section 3 presents the main characteristics of the SpMV kernel and
the hardware platform used in the tests, together with a summary of the locality optimization
technique. Section 4 shows the results of the study when considering the randomly sampled
matrices to perform the reorderings. Section 5 analyzes the behavior of the reordering technique
when using the hardware counters for sampling the memory accesses. The paper finishes with
the main conclusions extracted from the work.

2. Related Work

Many works dealing with the optimization of the sparse matrix-vector product can be found
in literature. Techniques for increasing the locality of SpMV can be mainly divided into two
groups: data reordering and code restructuring techniques.
Standard data reordering techniques are considered classical methods for increasing the

locality in the execution of the SpMV code, although this is not their main objective. The
most used techniques are the bandwidth reduction algorithms, which derive from the Cuthill-
McKee algorithm [9]. In a recent work [27], authors evaluate minimum degree-based heuristics
such as the approximate minimum degree algorithm [1] on multicore processors. Oliker et

al. [24] show the benefits that are offered by the application of some of these reordering
algorithms to sparse codes when executed on different multiprocessor architectures. Note that,
unlike standard reordering algorithms, the main objective of the data reordering technique
considered in this work is to increase the data reuse and, as a consequence, the data locality.
Coutinho et al. [8] perform a comparison of different data reordering algorithms for the SpMV
in edge-based unstructured grid computations. However, they only focus on serial executions.
Techniques based on restructuring the code, like blocking or tiling, have been successfully

applied to different irregular codes such as the product of a sparse matrix by a dense
matrix [14, 23] and stationary iterative methods [29]. Im et al. [16] propose register and
cache blocking as optimization techniques for the SpMV. In [5], a performance model for
the blocked SpMV is presented, which allows to pick in nearly all cases the actual optimal
blocksize. In these last two works the authors use a randomly sampled matrix at runtime
to detect the best blocking size. Vuduc et al. [32] extend the notion of blocking in order
to exploit variable block shapes by decomposing the original matrix to a proper sum of
submatrices storing each submatrix in a variation of the blocked CSR format. In a recent
work [19], a comparative study of different blocking storage techniques for sparse matrices on
several multicore platforms is performed. One of the main drawbacks of these techniques is the
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strong dependence with the sparsity pattern of the matrix. For example, register blocking only
achieves good performance for matrices with small dense-blocks in the pattern. Unlike these
solutions, our locality optimization technique is effective for matrices with any pattern [27].
Finally, Belgin et al. [3] introduce a representation for sparse matrices based on the observation
that many matrices can be divided into blocks that share a small number of different patterns.
The goal is to reduce the SpMV memory bandwidth requirements by reducing the index
overhead.
Some authors have demonstrated that both groups of techniques are complementary. In

particular, Toledo [31] evaluates different standard reordering techniques and combines them
with blocking, showing that SpMV performance increases significantly depending on the size
and sparseness of the considered matrix. Pinar and Heath [28] introduce a reordering technique
that favors the creation of dense blocks on the pattern of the sparse matrix, and in this way the
efficiency of the blocking technique proposed by Toledo is increased. Moreover, a comparison
between their reordering technique and some standard reordering techniques is carried out. In
another work [15], a combination of data reordering algorithms and register blocking has been
applied to the SpMV on shared memory multiprocessors, finding little benefit. The locality
optimization technique used in the present paper can also be applied to codes where data
are stored using a blocked scheme. An example was published in [26] where a reordering of
the sparse matrix in combination with blocking techniques was successfully applied to the
SpMV. The technique was evaluated on different uniprocessors and on distributed memory
multiprocessors.
Moreover, there are several papers that deal with the SpMV optimization problem using

compression. In a recent work [20], the authors propose two different compression methods
targeting index and numerical values. Williams et al. [33] apply an index reduction technique, in
which 16-bits indices are used when it is possible. In the same work the authors propose several
additional optimization techniques for the SpMV, which are evaluated on different multicore
platforms. Authors examine among others: software pipelining, prefetching approaches, register
and cache blocking, etc. Nevertheless, they do not consider data reordering techniques in order
to increase locality.
Research regarding the use of hardware counters is mainly focused on the characterization

and on the analysis of possible bottlenecks in the performance of the applications [13, 21].
However, some works use hardware counters for different optimizations such as improving cache
utilization [4], reducing memory access stalls [7], selecting compiler optimization settings [6]
and dynamic page migration [30]. To the best of our knowledge, researchers have never
dealt with the locality optimization of the SpMV using only the information provided by
the hardware counters.

3. Experimental Conditions

3.1. Hardware Platforms

Table I summarizes the key features of the hardware platforms considered in this work. The
first platform is based on Itanium2 Montvale processors. These processors comprise two cores
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Table I. Specifications of the considered hardware
platforms.

Company Intel
Processor Itanium2 9140N Xeon X5570

(Montvale) (Gainestown)

Clock (GHz) 1.6 2.93
Cores/Socket 2 4
Private L1 DCache

Size (KB) 16 32
Latency (cycles) 1 4

Private L2 DCache
Size (KB) 256 256
Latency (cycles) 5-7 10

L3
Size 9 MB/core 8 MB (shared)
Latency (cycles) 14-21 35

Flops/cycle 4 4
GFlop/s 6.4 11.72
System
# Sockets 4 (SMP) 1

and three cache levels per core. L1D (write-through) is a 4-way set-associative, 64-byte line-
sized cache. L2D (write-back) is a 8-way set-associative, 128-byte line-sized cache. And finally,
there is an unified 12-way L3 cache per core, with line size of 128 bytes and write-back policy.
Cache latencies are 1, 5-7 and 14-21 cycles respectively. Note that floating-point operations
bypass the L1 in this system. Each Itanium2 core can perform 4 FP operations per cycle. The
peak performance per core is 6.4 GFlop/s.
In the platform under study, Itanium2 processors are arranged in a SMP-cell configuration.

A cell has two buses at 8.5 GB/s (6.8 GB/s sustained), each connecting two sockets (that
is, four cores) to a 64 GB memory module through a sx2000 chipset (Cell Controller). The
Cell Controller maintains a cache-coherent memory system using a directory-based protocol. It
yields a theoretical processor-cell controller peak bandwidth of 17 GB/s and a cell controller-
memory peak bandwidth of 17.2 GB/s (four buses at 4.3 GB/s).
The second platform is based on Xeon 5500 series processors (Nehalem-EP), which have

a native quad-core design. Each core has three cache levels. L1D and L2D are 8-way set-
associative and 64-byte line-sized caches. L3 is a 16-way unified, inclusive and shared cache.
Cache latencies are 4, 10 and 35 cycles respectively. All the caches use the write-back policy.
Processors based on the Nehalem microarchitecture feature a dynamic overclocking mechanism
(Intel Turbo Boost Technology [18]) that allows the processor to raise core frequencies as the
thermal limit is not exceed. In particular, Turbo Boost provides a frequency-stepping mode
that enables the processor frequency to be increased in increments of 133 MHz. Note that the
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// SPMV using CSR format

#pragma omp parallel for schedule(static)

for (i=0; i < n; i++) {

  reg = 0.0;

  for (j = ptr[i]; j < ptr[i+1]; j++) 

 reg += da[j] * x[index[j]];

  y[i] = reg;

}

� � � �

Figure 1. Compressed-Sparse-Row (CSR) format example, and a basic CRS-based sparse matrix-vector
product (SpMV) implementation.

peak performance shown in Table I (11.72 GFlop/s) is calculated using the base frequency
(2.93 GHz). Moreover, these processors have an on-chip memory controller, which supports
three DDR3 memory channels. The peak memory bandwidth for the Nehalem processor is 32
GB/s.

3.2. Sparse Matrix-Vector Product (SpMV)

In this work the sparse matrix-vector product (SpMV) operation is considered. This kernel is
notorious for sustaining low fractions of peak processor performance due to its indirect and
irregular memory access patterns. Let us consider the operation y=A×x, where x and y are
dense vectors, and A is a n×m sparse matrix. The most common data structure used to store
a sparse matrix for SpMV computations is the Compressed-Sparse-Row format (CSR). da,
index and ptr are the three arrays (data, column indices and row pointer) that characterize
this format. Figure 1 shows, in addition to an example of the CSR format for a 5×5 sparse
matrix, a basic implementation of SpMV for this format. This implementation enumerates the
stored elements of A by streaming both index and da with unit-stride, and loads and stores
each element of y only once. However, x is accessed indirectly, and unless we can inspect index
at run-time, it is difficult or impossible to reuse the elements of x explicitly. Note that the
locality properties of the accesses to x depend on the sparsity pattern of the considered matrix.
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Table II. Matrix benchmark suite.

Matrix # rows (n) # nonzeros (nnz) nnz/row

crystk03 24696 1751178 71
garon2 13535 390607 29
gyro k 17361 1021159 59
mixtank new 29957 1995041 67
msc10848 10848 1229778 113
nd3k 9000 3279690 364
nmos3 18588 386594 21
pct20stif 52329 2698463 52
sme3Da 12504 874887 70
tsyl201 20685 2454957 119

Codes in this work were written in C and compiled with the Intel’s 10.0 Linux C compiler
(icc). OpenMP directives were used to parallelize the irregular code of Figure 1. In particular,
the partitioning scheme splits the matrix row-wise with a block distribution. All the results
shown in the next sections were obtained using the compiler optimization flag -O2. Note that
HyperThreading is available for both systems detailed above but it was disabled in the tests
shown in this paper.
As matrix test set we have selected ten square sparse matrices from different real problems

that represent a variety of nonzero patterns. These matrices are from the University of Florida
Sparse Matrix Collection (UFL) [10]. Table II summarizes the features of the matrices.

3.3. Locality Optimization Technique

A data reordering technique has been used to check if it is possible to optimize the locality only
considering a subset of the memory accesses performed by the SpMV code. We have introduced
this technique in a previous work [27]. It consists of reorganizing the data guided by a locality
model instead of restructuring the code or changing the sparse matrix storage format. Unlike
other existent locality models that predict in a precise way the data movement among the
levels of the memory hierarchy, our model is able to characterize, sacrificing accuracy, the
trend of this movement in general terms. In particular, locality is evaluated using a distance
function that depends on the number of entry matches (aelems). Considering accesses to the
sparse matrix by rows, the number of entry matches between any pair of rows is defined as the
number of nonzero elements in the same column of both rows. In this way, distance between
rows i and j is defined as:

d(i, j) = nelems(i) + nelems(j)− 2∗aelems(i, j) (1)

where nelems(i) is the number of entries in row i. This function is used to measure the locality
displayed by the accesses performed by the SpMV code on these two rows when they are
consecutively accessed.

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:1–26
Prepared using cpeauth.cls



8

g

h

g

h

nelemsw(g) = 5 nelemsw(h) = 8

aelemsw(g) = 1 aelemsw(h) = 0

aelems(g,h) = 4

Figure 2. Example of the calculation of nelemsw(g), aelemsw(g) and aelems(g, h).

For a given sparse matrix accessed by rows, a quantity that is inversely proportional to the
data locality for the whole sparse matrix can be defined as follows:

D =

n−2∑

i=0

d(i, i+ 1) (2)

where n is the number of rows/columns of the sparse matrix. These definitions can be directly
extended to columns. Note that these functions only provide results based on the locality
evaluated on pairs of consecutive rows (or columns) of the sparse matrix. Nevertheless, reuse
of data could be possible in any level of the memory hierarchy during the product of two or
more consecutive rows (or columns) of the matrix. For this reason, a generalization of the
distance functions based on the concept of windows of locality was presented.
A window of locality is a set of w consecutive rows (or columns) of the matrix between which

there is a high probability of data reuse when executing the sparse matrix code. Based on the
distance function d(i, j), we can define the distance between windows of locality g and h as:

dw(g, h) = n(g) + n(h)− 2∗aelems(g, h) (3)

where n(g) = nelemsw(g)− aelemsw(g). Parameter aelems(g, h) is a direct extension of the entry
matches between windows g and h. nelemsw(g) is the number of elements of window g, and
aelemsw(g) generalizes the concept of entry matches considering matches that take place on two
or more rows within window g. Note that, introducing n(g) the possible reuse of data inside
g is also considered. Figure 2 shows an example of the calculation of these parameters when
w = 2.
Therefore, the indirect estimation of locality defined for a sparse matrix in Equation 2 can

now be calculated as a sum over the whole matrix:

Dw =
∑

g

dw(g, g + 1), ∀ g | 0 ≤ g < ⌈n/w⌉ (4)

These distances (Equations 3 and 4) are equivalent to distances measured over pairs of
consecutive rows/columns of the matrix when the window size is w = 1.
The reordering technique modifies the pattern of the sparse matrix according to the locality

model described before. In order to increase the locality in the accesses performed by the SpMV
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code, we search for a permutation of windows of locality of the matrix that minimizes its total
distance Dw (Equation 4). The problem of locality improvement is formulated as a classic
NP-complete optimization problem, and it is solved as a graph problem using its analogy to
the traveling salesman problem (TSP).

The problem is described using a weighted graph where each node represents a window
of locality of the input sparse matrix. Each edge of the graph has an associated weight that
reflects the distance between pairs of windows of locality according to the description of locality
given previously. Nevertheless, it is not necessary to work with a complete graph. Given that
sparse matrices have a very low density of nonzero elements, most of the weights in the graph
correspond with cases where aelems = 0. Those values, according to the distance definitions,
represent the worst cases regarding locality. So, without losing relevant information about
locality, we can use an incomplete weighted graph where only values of aelems different from
zero are considered. As a consequence, the graph size is noticeably reduced.

Solving the problem of reordering is equivalent to find a path of minimum length that goes
through all the nodes of the graph. This path is represented as a permutation vector that gives
the appropriate order of the nodes of the graph, and therefore, a reordered matrix. On the other
hand, given that we have measures (distance values) to validate the quality of an ordering, we
have opted for focusing on heuristic solutions. After a comparative study of different techniques
the Chained Lin–Kernighan heuristic proposed by Applegate et al. [2] was chosen. Note that,
for practical purposes, if there is an isolated node without edges in the distance graph, the
TSP heuristic will internally connect this node to the others through edges with a very high
distance.
In order to select the window size (w), two types of windows of locality are considered: fixed

and variable [27]. For windows of fixed size the number of nodes in the weighted graph is
⌈n/w⌉. Therefore, for high values of w, graph is noticeably reduced. It implies an important
decrease in the computational time needed for its calculation, together with reductions in the
problem size to manage by the reordering heuristic. Note that we are not taking into account
any locality property of the input sparse matrix in order to create the windows. Therefore,
windows of locality could be formed by consecutive rows (or columns) of the matrix which
exhibit low locality according to our model. This is the reason why big fixed-size windows do
not obtain, in general, good results.

The objective of using windows of locality of variable size is two-fold. On one hand, as in
the fixed size case, to decrease the number of nodes in the weighted graph, whose benefits are
detailed in the above paragraph. On the other, to avoid the grouping of consecutive rows (or
columns) of the matrix with low locality in the windows creation process. Figure 3 shows an
example of the technique to create windows of variable size considering the rows of the matrix.
First, a histogram is created from the input matrix. It represents the distance between each
pair of consecutive rows. Therefore, there are n− 1 values in the histogram. In order to decide
if two consecutive rows i and j will be included within the same window a simple criterion
must be fulfilled: d(i, j) < D/n, that is, the distance must be lesser than the average distance
of the whole sparse matrix. According to this, in the example of Figure 3, four windows of
locality are created: {0, 1, 2}, {3, 4}, {5} and {6, 7}. This way, windows creation process is
guided by the locality model and, as a consequence, locality among rows within each window
is increased. This process can be directly extended to columns. Note that when the matrix
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Figure 3. Example of the creation of windows of locality of variable size: (a) sparse matrix example
and (b) distance histogram.

pattern is non-symmetric, the windows creation process must be applied considering rows and
columns independently.
In our studies we conclude that windows of w = 1 and w = variable are the best choices

in terms of performance. For this reason we have focused on them in this work. However, big
fixed-size windows can be a good solution due to the particularities of the sparse matrices in
some applications such as those related to the simulation of semiconductor devices [25].
In the next sections the behavior of this reordering technique is analyzed when only a

percentage of the nonzero elements of the matrix considered to estimate the locality. That
is, when only a subset of the accesses to x is available (see the SpMV code in Figure 1). In
other words, the permutation vector is calculated using a sampled matrix generated from the
original one. This vector is then applied to the original matrix in order to reorganize the data
and, this way, to increase the locality in the execution of the SpMV.

4. Performance Evaluation Using Randomly Sampled Matrices

In this section we have carried out a study in order to check if considering only a subset
of the nonzero elements from the original matrices is enough for the locality optimization
technique to obtain similar performance results with respect to the reorderings using complete
information. With this purpose we have generated a set of sampled matrices from the original
ones of our testbed. These matrices consist of a subset of the nonzeros of the original ones. In
particular, sampled matrices contain 1%, 2%, 5%, 10%, 15% or 20% of the original nonzeros.
These nonzeros are randomly selected using random(), which implies that each nonzero of the
original matrix has equal chances of being sampled. Twenty sampled matrices were generated
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(a) (b) (c)

(d) (e) (f)

Figure 4. Examples of nmos3 randomly sampled matrices. Matrices with 1% (a), 2% (b), 5% (c), 10%
(d) and 20% (e) of the nonzeros with respect to the original matrix (f).

for each matrix and percentage, which means a total number of 1200 sampled matrices used
in the tests. Figure 4 shows an example of the nonzeros pattern of some randomly sampled
matrices generated from nmos3 matrix.

Information provided by the sampled matrices has been used to generate a permutation
vector that will be applied to the original matrix. This permutation vector is calculated by our
reordering technique using the sampled matrices with windows of variable size and fixed size
with w = 1 (see Section 3.3). In this way, the reordering is performed to the original matrix
considering only the information provided by a subset of its nonzeros.

In order to estimate the quality of the reorderings obtained using the sampled matrices, a
comparison with respect to the original technique (that is, when the complete matrix is used
to calculate the permutation vector) has been carried out. Figures 5, 6, 7 and 8 show the
normalized SpMV performance in such a way that 1 is the result of the original technique. In
this way, the normalized performance is calculated as the ratio between the performance of the
considered reordering and the reorderings using complete information, both in GFlop/s. The
figures show the average performance for each sampled matrices set and number of threads.
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Figure 5. Normalized SpMV performance obtained by the reorderings generated using the locality
optimization technique (w = 1) and the information provided by the randomly sampled matrices on

the Itanium2 platform.

They also include the maximum and the minimum performance values as error-bars. Fifty runs
per matrix have been carried out to obtain these results. We must highlight that due to the
random sampling process, the twenty sampled matrices of each subset can be very different.
Given that these sampled matrices are used as input of the reordering technique, the output in
each case may show a high variation, which will cause fluctuations in the observed performance
within each subset.
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Figure 6. Normalized SpMV performance obtained by the reorderings generated using the locality
optimization technique (w = variable) and the information provided by the randomly sampled

matrices on the Itanium2 platform.
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First, we will focus on the results on the Itanium2 system when the reordering is performed
using windows of fixed size, w = 1 (Figure 5). At first sight we can conclude that reorderings
using sampled and complete information show a similar behavior. We must highlight that this
occurs in some cases even when only 1% of the nonzeros of the matrices are considered. It
means that the locality model used by the reordering technique is able to characterize the
accesses performed by the sparse matrix using only this information. In several cases the
sampled nonzeros are not enough to compete with the original technique. This is the case of
matrices gyro k and sme3Da when using two threads, or mixtank new when four threads are
considered. However, the differences with respect to the reference is at the most about 5%. In
the same way, there are some cases where reorderings using sampled information outperforms
the original ones. For example, reorderings of nd3k and pct20stif when using eight threads.

The explanation of this behavior can be found in some details about the locality model
and the reordering heuristic. The reordering technique uses as input the matrix to create the
distance graph (see Section 3.3). Therefore, sampled matrices generate graphs that are different
from the one produced by the original matrix. Due to the fact that sampled matrices have
fewer nonzeros than original ones, the number of entry matches (aelems) will be smaller, so
the graph will be reduced (small number of edges). Therefore, given that graphs are different
and we are considering a heuristic strategy to minimize the total distance, the results will
be different. Note that the TSP heuristic is limited to a fixed number of iterations searching
for equilibrium between performance and overhead. In this way, in some cases, the reordering
heuristic will find a better solution using a ”sampled graph” than considering the original one
because the problem to deal with is smaller.

Another observation is that performance results change depending on the considered number
of threads. Note that reordered matrices are generated without taking into account the
number of threads used to perform the SpMV (see Section 3.3). However, the sparse matrix is
distributed among the threads to compute the SpMV in such a way that different computations
are assigned to each thread. This distribution of computations depends on the number of
threads, and different memory accesses are required by each thread to carry them out.
Therefore, depending on the accesses performed by each thread the locality optimization
technique will obtain different results. We must highlight that the performance of the parallel
SpMV is determined by the slowest thread. Load balance can also influence the results for
different number of threads.

Some of the observations regarding windows of fixed size agree with the behavior of the
reorderings when using windows of variable size on the Itanium2 system (Figure 6). Note that
considering only 1-2% of nonzeros is again enough to generate reorderings that show the same
(or slightly different) performance in comparison with the original ones. However, the results
show a higher variability with respect to the results in Figure 5. For example, considering few
sampled nonzeros, noticeable improvements are achieved by the mixtank new reorderings using
four and eight threads, while there is some degradation with two threads. Irregular performance
is also obtained by reorderings of matrices nd3k, msc10848 and sme3Da. Additionally to this,
there are some cases in which reorderings based on sampled information always outperform
those obtained by the original technique. This is the case of matrices gyro k and sme3Da. We
find the cause of this performance variability in the variable-size windows creation process
of the locality optimization technique [27]. Note that the criterion in order to decide if two
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Figure 7. Normalized SpMV performance obtained by the reorderings generated using the locality
optimization technique (w = 1) and the information provided by the randomly sampled matrices on

the Xeon platform.

consecutive rows/columns are within the same window depends on the locality estimation
performed by the model (see Section 3.3). Therefore, different windows of locality (both in
number and composition) are considered to calculate the permutation vector for each sampled
matrix, which causes more variations in the performance results than in the case of using
windows of fixed size.
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Figure 8. Normalized SpMV performance obtained by the reorderings generated using the locality
optimization technique (w = variable) and the information provided by the randomly sampled

matrices on the Xeon platform.
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Next we will focus on the performance evaluation on the Xeon processor system. Concerning
the results using windows with w = 1 (Figure 7), several conclusions can be made. First, unlike
on Itanium2 system, the sampling percentage to achieve a similar performance with respect
to the reorderings using complete information increases. It depends on the considered sparse
matrix, ranging from 1% (matrix nd3k) to 20% (matrix nmos3). This behavior points out
that this system penalizes more the small differences in the locality of the accesses than the
Itanium2. This is caused by the different cache hierarchies (see Section 3.1). In particular, the
Xeon processor has a smaller L3 cache and higher cache latencies. And second, performance
follows the same trend in most of the cases, that is, it increases as the percentage of sampled
nonzeros becomes higher.
When using windows of variable size on the Xeon system (Figure 8) higher sampling

percentages are required to get closer to the original reorderings performance in comparison
with the corresponding results on the Itanium2 (Figure 6). The behavior is similar to the
observations for windows of fixed size detailed above. However, in most of the cases, 5% is
enough for obtaining a performance near to 1. As on Itanium2, the results present more
variability with respect to the fixed size case.
This study demonstrates that performing a data reordering to optimize the locality of

the SpMV only considering a subset of the nonzeros of the sparse matrix is feasible. In the
particular case of the Itanium2 system, a few number of nonzeros (typically 1-2%) is enough
to obtain a similar performance with respect to the reorderings using complete information.
On the Xeon system, the required percentage of sampled nonzeros increases, but even then,
sampled information is enough for locality optimization. It has been tested using windows of
fixed and variable sizes. However, important variations in the performance within each subset
were observed when using randomly sampled matrices as input of the reordering technique.
These fluctuations mean, in some cases, a variation higher than 10% between the maximum
and the minimum performance.

5. Performance Evaluation Using Hardware Counters for Sampling

As second case of study, we will perform the sampling of the sparse matrices using the
hardware counters provided by the Itanium2 processors. All modern processors include a
Performance Monitoring Unit (PMU) implemented as a set of privileged registers. Typically,
PMU configuration registers are programmed to measure certain events, and the results are
collected by data registers which are usually counters. Many PMU models offer over hundred
events which cover all aspects of the processor: pipeline, caches, TLBs, buses, interrupts, etc.
In our case, Itanium2 PMU goes well beyond simply counting events, it can also precisely
capture where they occur. For example, it can capture where cache and TLB misses occur as
well as their latencies using the Event Address Registers (EARs) [17].
In order to access the EARs the Perfmon2 [11, 12] monitoring interface has been used.

Perfmon2 performs an event-based sampling (EBS), that is, every time a given event occurs
an EAR increments its value. After a number of events, a sample is collected and stored in
a buffer. Every sample contains information such as the latency of the memory access, the
memory address accessed, etc. When the buffer becomes full, an interruption is raised and

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:1–26
Prepared using cpeauth.cls



18

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Columns

R
o
w
s

Nonzeros

Sampled nonzeros

Figure 9. Example of sampled matrix by using the hardware counters.

the content of the buffer is available at user level. Perfmon2 allows to monitor a particular
memory address range.
We must highlight that floating-point operations on Itanium2 systems bypass the L1 cache in

such a way that every access to a floating-point value generates a L1 cache miss [17]. Therefore,
according to latencies in Table I, every access to a floating-point data has, at least, a 5 cycles
latency (access to L2 cache). In this way, using “cache misses with latencies higher than 4

cycles’ ’ as event for sampling we assure that every access to array x and y is considered to be
sampled. On the other hand, sampling information in this section was obtained at the lowest
sampling rate.
A priori, by only getting the address of an access to array x we cannot determine, in an

univocal way, the position of the accessed nonzero element on the matrix during the SpMV
operation. This is because the counters only provide the address of the x element that misses
the cache (this give us information about the exact column of the corresponding nonzero
element of the matrix) and its latency. In this way, the identification of the row is not possible
using this information. Therefore, in order to characterize the sparse matrix nonzeros by using
the hardware counters we must find a way to obtain the row of the corresponding nonzero
element of the matrix. With this purpose a methodology to obtain the position of an element
in a matrix from the sampled information has been developed.
Accesses to arrays x and y are monitored at the same time. Some of the sampled events will

be caused by accesses to x, whereas the others by the accesses to y. Note that accesses to y
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are driven by loop i in the code of Figure 1. In this way, EARs provide a list of the sampled
accessed elements. For example, considering seven sampled events, the result of reading the
counters could be: y[0], x[23], y[1], y[2], x[12], x[19] and y[2]. As we have indicated
above, accesses to x give us information about the exact column of the corresponding nonzero
element of the matrix, while accesses to y provide information about the rows where the
nonzero element can be placed. Note that with this measuring method we cannot obtain at
the same time the row and column of an entry of the sparse matrix. However, the nonzero
elements of the sparse matrix can be characterized according to the following features:

• Each sampled access to y[i] indicates that some nonzero element belonging to the row
i of the matrix is being multiplied by one element of vector x.

• Each sampled access to x[j] indicates that a nonzero element of the matrix belonging
to the j column has been accessed.

• We can state that the matrix has nonzero elements in the columns provided by the
indices of the sampled x elements collected between two samples y[i] and y[i’]. These
nonzero elements are located in the rows within the interval [i,i’]. From now on, these
intervals are denoted as uncertainty intervals.

• As a particular case of the above property, if i=i’ then the row is determined in an
univocal way. Sampled nonzeros for which the row can be univocally determined will be
called univocal sampled entries from now on.

Let’s illustrate this methodology using the previous sampling example with seven samples.
In this case, we can state that there are three nonzeros of the matrix in the positions ([0,1],23),
(2,12) and (2,19). Note that for the first entry, we do not know exactly its row and only an
interval of possible rows can be provided. In this case, the uncertainty interval is [0,1]. The
other two cases are univocal sampled entries. An example of the pattern characterization using
this methodology with a real sparse matrix is shown in Figure 9 (in green circles the pattern
of the matrix, and in red squares the sampled nonzeros). Note that uncertainty intervals are
shown as a sequence of nonzeros along the same column in the sampled matrix. For example,
intervals [0,7] are in four columns, and [7,16] in three.
Table III shows the results of applying our sampling methodology to the sparse matrices from

the testbed. Only the univocal sampled nonzeros are considered. This information was collected
after performing just one SpMV. The number and the percentage of univocal sampled entries
with respect to the number of nonzero elements of the original sparse matrix are displayed. This
percentage ranges from 2.9% (matrix nmos3) to 9.4% (matrix nd3k). Note that the percentage
of sampled nonzeros will increase if a higher number of SpMV iterations is considered. The
number of univocal sampled nonzeros per row is also shown in Table III. Figure 10 displays
an example of sampled matrix obtained by using the hardware counters. In particular, the
sampled matrix contains 7.3% of the nonzero elements of the original sme3Da matrix.
Next, a comparison between the reorderings obtained by the original technique and those

obtained using the information provided by the hardware counters has been performed. Results
are shown in Figure 11. SpMV performance is normalized with respect to the one obtained
by the original technique. Reorderings using windows of fixed size with w = 1 and variable
size are analyzed. In most of the cases, reorderings guided by the information provided by the
sampled matrices achieve very similar performance to those obtained by the original technique.
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(a) (b)

Figure 10. sme3Da original (a) and sampled matrix generated by using the hardware counters (b).
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Figure 11. Normalized SpMV performance obtained by the reorderings generated using the locality
optimization technique and the information provided by the hardware counters sampled matrices.
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Table III. Characteristics of the sampled matrices
generated by using the hardware counters.

Matrix # sampled nonzeros # sampled nonzeros/row
(% w.r.t. original)

crystk03 128394 (7.3%) 5.2
garon2 17250 (4.4%) 1.3
gyro k 70405 (6.9%) 4.1
mixtank new 143226 (7.2%) 4.8
msc10848 101347 (8.2%) 9.3
nd3k 309116 (9.4%) 34.3
nmos3 11249 (2.9%) 0.6
pct20stif 176469 (6.5%) 3.4
sme3Da 63984 (7.3%) 5.1
tsyl201 204825 (8.3%) 9.9

A few exceptions can be found. For example, considering windows of fixed size, the original
pct20stif reordering outperforms the sampled one when using four threads. The differences
in the performance for these cases are, at most, about 3%. On the contrary, there are some
sampling-based reorderings that achieve better performance with respect to the original ones.
This is the case of matrix nd3k using eight threads, showing an improvement of 8%. A similar
behavior is observed considering windows of variable size. Note that the magnitude of the
performance variations for some matrices is slightly higher in comparison with the fixed size
case. For example, an improvement of about 15% is achieved by the mixtank new sampling-
based reordering using four threads.

We have observed that reordered matrices generated using the information provided by
different samplings of the same original matrix achieve very similar performance. Fluctuations
in the SpMV performance for the reorderings of the same matrix are always lower than 2%.
This is the reason why no maximum and minimum bars are displayed in the figure. We find the
cause of this behavior in the event-based sampling (EBS) method using by Perfmon2 library.
For EBS, a sampling period is expressed as a number of occurrences of an event. According to
[11], using a fixed sampling period may easily lead to biased results. This is the reason why
Perfmon2 uses a randomization of the sampling periods. In this way, hardware counters-based
sampling performs a uniform EBS but not using a fixed sampling period.

According to the previous results we conclude that the sampled information provided by
the hardware counters is enough for the locality optimization technique to generate quality
reorderings.
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Table IV. SpMV performance comparison between the original matrices and the reorderings obtained
by the locality optimization technique (in GFlop/s). Reorderings were performed using the information

provided by the hardware counters sampled matrices.

Matrix 1 Thread 2 Threads 4 Threads 8 Threads

Orig. w=1 w=var. Orig. w=1 w=var. Orig. w=1 w=var. Orig. w=1 w=var.

crystk03 0.36 0.38 0.37 0.47 0.50 0.49 1.64 1.64 1.70 5.22 5.32 5.31

garon2 0.53 0.52 0.53 1.18 1.21 1.21 2.28 2.38 2.39 3.73 4.66 4.66

gyro k 0.33 0.34 0.34 0.70 0.79 0.76 2.40 2.47 2.57 5.12 5.31 5.36

mixtank new 0.33 0.35 0.35 0.52 0.48 0.48 1.03 1.38 1.42 2.29 4.79 4.16

msc10848 0.33 0.35 0.35 0.43 0.59 0.60 2.00 2.54 2.44 5.00 6.08 5.68

nd3k 0.33 0.35 0.34 0.50 0.47 0.46 0.77 0.89 0.93 2.42 3.22 2.71

nmos3 0.48 0.49 0.50 1.08 1.10 1.09 2.15 2.18 2.18 4.16 4.26 4.27

pct20stif 0.35 0.37 0.37 0.47 0.47 0.48 0.92 0.99 0.99 3.73 3.76 3.74

sme3Da 0.35 0.37 0.37 0.86 0.91 0.83 2.61 2.68 2.67 4.79 5.64 5.25

tsyl201 0.31 0.32 0.32 0.43 0.44 0.44 1.05 1.06 1.05 4.51 4.54 4.51

Average 0.37 0.38 0.38 0.66 0.70 0.68 1.68 1.82 1.83 4.09 4.76 4.57

5.1. Comparison with the non-reordered matrices

Until now we have only evaluated the SpMV performance with respect to the reorderings
generated by the original technique. Therefore, a comparison with the original matrices
(without reordering) is required in order to check if sampling-based reorderings obtain a
better performance when the SpMV is executed. Results of this study considering reorderings
performed using the information provided by the hardware counters are displayed in Table IV.

A first approach to the results points out that matrices obtained after applying the data
reordering technique outperform the original ones. There are only a few cases that do not take
profit from this reordering. SpMV performance improvements are up to 53%, which is the case
of matrix mixtank new running with eight threads. Note that, in this example, only 7.2% of
the nonzeros of the matrix are considered to obtain the permutation vector (see Table III).
On the other hand, as the number of threads increases, performance improvements caused by
the locality optimization become more important. For example, considering windows of fixed
size (w = 1), the performance increases on average from 2.6% in the sequential case to 14.1%
with eight threads. Finally, a slightly better behavior is observed for reorderings when using
windows of fixed size instead of windows of variable size. This observation agrees with the
conclusions of our previous works [27].

5.2. Reduction of the reordering technique overhead

One of the main drawbacks of the data reordering techniques is the reordering cost. It must
be amortized when the sparse operation is repeatedly performed as, for instance, in iterative
methods, which usually require thousands of sparse matrix-vector multiplications [25]. As we
show next, a consequence of using sampled information to calculate the permutation vector is
an important reduction in the overhead introduced by the reordering technique.

Our reordering technique has two stages: the graph calculation and the generation of the
permutation vector using the TSP heuristic. In both cases the reduction in the number of
nodes of the graph decreases noticeably their overhead. If the reduction is in the number of
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Figure 12. Overhead of the locality optimization technique using as reference the time required to
perform the reordering using windows of fixed size w = 1 and the original matrices (non-sampled).

edges the overhead also decreases but to lesser degree. Using sampled matrices we are reducing
the number of edges and changing the edge weights in the graph. Note that there will be an
edge between two nodes when at least there is an entry match (see Section 3.3). Given that
sampled matrices have fewer nonzeros than the original ones, there is a high probability that
edges between nodes with few entry matches in the original graph disappear in the graph
generated using the sampled matrices. Note that these edge weights, according to our distance
function, represent the worst cases regarding locality. Therefore, sampling reduces the cost of
building the distance graph and its size. We must highlight that this distance graph is used
as input of the TSP heuristic (Chained Lin-Kernighan algorithm). This heuristic is limited
to a fixed number of iterations in such a way that most of the time is devoted to the graph
calculation. TSP heuristic time dominates the overhead only when considering small matrices.

The analysis of the overhead is displayed in Figure 12. The plot shows the reduction in the
reordering cost using as reference the time required by the technique when using windows of
fixed size w = 1 and the original non-sampled matrices.

When using windows of variable size and non-sampled matrices, the locality optimization
technique reduces on average 62% the reference overhead. But this reduction is even more
noticeable when sampled matrices are considered. In this case the overhead reduction on
average reaches 93% and 98% depending on if fixed or variable size windows are used
respectively. In a more precise way, the overhead expressed in terms of the number of SpMV
operations and considering sampled matrices is on average 620 with w = 1, and 261 with
w = variable. Note that the reference here is the computational time required to perform the
SpMV operation on the original matrices.
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6. Conclusions

In this work we have analyzed the possibility of increasing the locality of the sparse matrix-
vector product (SpMV) when only a subset of the memory accesses performed is available in
the optimization process. This is equivalent to consider only a subset of the nonzero elements
of the matrix.

A data reordering technique previously developed by the authors [27] has been selected as
locality optimization technique for the tests. It consists of reorganizing the data guided by a
locality model instead of restructuring the code or changing the sparse matrix storage format.
The goal of this technique is to increase the grouping of nonzero elements in the sparse matrix
pattern that characterizes the irregular accesses and, as a consequence, increasing the locality
in the execution of the SpMV code. According to this, the technique must find the appropriate
permutation of rows and columns of the original matrix for improving the locality using only
the information provided by a subset of its nonzero elements. These nonzeros are obtained
from the original matrices through a sampling process. In particular, two different sampling
methods have been considered in this work: a random sampling and an event-based sampling
(EBS) using hardware counters.

In the first case the nonzero elements of the sampled matrices used as input of the reordering
technique are selected randomly from the original matrix in such a way that each nonzero has
equal chances of being sampled. Tests have been performed on two systems consisting of
different multicore processors: Itanium2 and Xeon (with Nehalem microarchitecture). Despite
of fluctuations in the performance measurements caused by the randomly sampling method,
results on both systems confirm that locality optimization guided only by sampled information
is feasible. The main difference is the required percentage of sampled nonzeros to achieve
similar results with respect to the reordering technique using complete information. While
for Itanium2 system about 1-2% is enough, on the Xeon platform the percentage of nonzeros
increases up to 10%.

Later, an event-based sampling process using hardware counters is considered. A new
methodology to obtain the position of the nonzero elements of a sparse matrix from the sampled
information provided by the hardware counters was introduced. The performance evaluation
shows that reorderings generated using the information provided by these sampled matrices
obtain very similar results with respect to the ones generated by the original technique. In
particular, the percentage of sampled nonzeros ranges from 3% to 9%. As a consequence, using
sampling-based reorderings leads to noticeable performance improvements with respect to the
non-reordered matrices, reaching speedup values up to 2.1×. In addition, we have observed
that there are very small differences in the SpMV performance achieved by reordered matrices
generated using the information provided by different samplings of the same original matrix.
Finally, note that the reduction in the amount of information managed by the optimization
technique have an important impact on its computational cost.

Therefore, it has been demonstrated that using a subset of the memory accesses performed
by the SpMV is enough for locality optimization, with the added benefit of an important
reduction in the computational time required by the reordering technique.
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