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Abstract—This work presents a study undertaken to
characterise the behaviour of some parallelisation techniques
for irregular codes, previously developed for SMP archi-
tectures, on a several-node SMP NUMA system. The main
objective is to determine the performance effect of bus con-
tention and cache coherency in such a complex architecture.
Results show that: (1) cores which share a socket can be
considered as independent processors in this context; (2)
for big data sizes, the effect of sharing a bus degrades the
performance but masks the cache coherency effects and (3)
the NUMA-ratio is a critical factor on irregular codes. These
results allow us to study the effect in performance of the
thread-to-core mappings and memory allocation policies.
Keywords-Irregular Codes, Itanium2, Hardware Counters.

I. INTRODUCTION

Irregular codes [1] are the core of many important

scientific applications, so there exist several widespread

techniques to parallelise them [1], [2], [3]. Some of the

strategies to parallelise irregular codes were designed to

work in SMP systems, where the memory access latency

is the same regardless of the processor involved. However,

state-of-the-art architectures involve many cache levels

in Non-Uniform Memory Access (NUMA) configurations

containing multi-core processors.

In this context, the memory allocation and the thread-

to-core distribution may become very important in the

performance of a generic code and, more noticeably, in

strategies to parallelise irregular codes. These techniques

reorder the data to take the maximum advantage of the

memory hierarchy.

In a recent work, a framework for automatic detection

and application of the best mapping among threads and

cores in parallel applications on multi-core systems was

presented [4]. Likewise, Williams et al. [5] propose seve-

ral optimisation techniques for the sparse matrix-vector

multiplication which are evaluated on different multi-core

platforms. Authors examine a wide variety of techniques

including the influence of the process and memory affinity.

Regarding memory allocation, Norden et al. [6] study the

co–location of threads and data motivated by the non-

uniformity of memory in NUMA multi-processors.

The main objective of this work is to characterise the

behaviour of some of the aforementioned techniques in a

NUMA environment considering the influence of thread

and memory allocations.

II. PARALLELISATION TECHNIQUES FOR IRREGULAR

CODES

The chosen techniques were SPRT (Sorted Private

Region Technique) [7], Array Expansion [8] and DWA-

LIP [3]. SPRT is a method based on the characterisation

of the memory access pattern. The low-cost, compact

characterisation of the subscript arrays can be used to

perform an efficient parallelisation of the irregular code.

Array Expansion is based on the privatisation of some

variables in which writings are done. However, instead

of making a private copy of the reduction array, this

is expanded in an additional dimension with as many

elements as processors. Finally, DWA-LIP aims to increase

the data access locality. In this method, computations

are based on grouping loop iterations into sets that are

assigned to cooperating threads.

It must be pointed out that this work does not intend to

compare these three techniques, study which was already

carried out in [7]. The objective of this work is to study

the influence of thread and memory allocations in a given

test architecture: the HP Integrity rx7640.

III. METHODOLOGY

To test the efficiency of the previous techniques two

well known irregular benchmarks (Sparse matrix-Dense

vector Product and Irregular Reduction) were imple-

mented in Fortran and parallelised using OpenMP. The

pseudocodes are shown in Figures 1 and 2, where N is the

matrix size and NNZ is the number of non-zeros. In both

cases some selected sparse matrices stored in CSC format

from the Harwell-Boeing Sparse Matrix Collection [9]

were used as input data. The key features of the considered

sparse matrices are shown in Table I.

Table I
SQUARED-MATRIX INPUT SET USED IN OUR TESTS.

Name N NNZ Description

s3dkq4m2 90451 4820892 FEM, cylindrical shell

3dtube 45330 3213618 3-D pressure tube

nasasrb 54872 2677324 Shuttle rocket booster

struct3 53570 1173694 Finite element

bcsstk29 13992 619488 Model of a 767 rear bulkhead

bcsstk17 10973 428650 Elevated pressure vessel



for j = 1 to N do

for k = col(j) to col(j + 1) − 1 do

Z(row(k)) = Z(row(k)) + val(k) ∗ X(j)
end for

end for

Figure 1. Sparse Matrix-Vector product pseudocode

for j = 1 to NNZ do

Z(row(j)) = Z(row(j)) + alpha

end for

Figure 2. Irregular reduction pseudocode

A. The Test Platform

The target architecture where these techniques were

tested is the Finisterrae supercomputer [10] installed at

CESGA (Galicia Supercomputing Centre). Finisterrae is

a SMP NUMA machine which comprises 142 HP Integrity

rx7640 NUMA computation nodes. Each node consists of

eight 1.6-Ghz-DualCore Intel Itanium2 Montvale (9140N)

processors arranged in a two-SMP-cell NUMA configu-

ration. Figure 3 shows the block diagram of a node as

well as its core disposition. As seen, a cell is composed

of two buses at 6.8 GB/s, each connecting two sockets

(four cores) to a 64GB memory through a sx2000 chipset

(Cell Controller). The Cell Controller maintains a cache-

coherent memory system using a directory-based memory

controller and connects both cells through a 27.3 GB/s

crossbar. It yields a theoretical processor bandwidth of

13.6 GB/s and a memory bandwidth of 16 GB/s (four

buses at 4 GB/s).

The main memory address range handled by the cell

controller is split in two modes: three fourths of the

address range map to the local memory, the remaining one

fourth maps in an interleaved manner to addresses in both

local and remote memory modules. This interleaving zone

means that each address is spread, one by one, between the

local and remote memories. Each processor comprises two

cores and three cache levels per core. L1I and L1D (write-

through, 16KB) are both a 4-way set-associative, 64-byte

line cache. FP operations bypass the L1. L2I (1MB) and

L2D (256KB) are 8-way set-associative, 128-byte line

(both write-back). There exists a single L3 (write-back,

9MB) cache per core. The peak performance per core is

6.4 GFLOPS.

B. Tests Undertaken

The presented architecture shows a several-memory-

layer platform where each NUMA node’s cell must be-

have as a SMP. Our study is focused on quantifying the

behaviour of such techniques on a Finisterrae node taking

into account the data allocation, the memory latency and

the thread-to-core assignment. To carry out the tests, an

allocation scenario was set-up to allocate all data in a local

cell memory, using only cores from the same cell with

several thread-to-core assignments.

Figure 3. Block diagram of an HP Integrity rx7640 node.

All outcomes were collected with PAPI [11]. The com-

piler used for the experiments was Intel ifort 10.1. The

baseline compiler configuration used the -O3 optimisation

option and the interprocedural optimisation (-ipo). To

allocate the data in a given memory module, the libnuma

library and its command-line tool numactl, were used.

IV. EVALUATION OF IRREGULAR CODES

This section evaluates the parallelisation techniques

for irregular codes taking into account the influence of

the thread allocation in the bus contention and cache

coherency. In this paper, only results for 4 cores are shown

as representative case. Results for different numbers of

cores are similar.

A. Influence of Thread Allocation in Bus Contention

In our tests, all data were allocated in Cell 0’s memory,

and only cores in that cell were used. Several scenarios

were set up to study the effect of running the benchmarks

with different distributions, in order to quantify the effect

of the bus sharing. The distribution and observed results

are as follows:

Cores that share the bus vs. cores connected to different

busses (15-11-13-9 vs 15-14-13-12): In both benchmarks

the sparse matrix is completely read, which is expected

to cause some number of capacity and compulsory cache

misses. A degradation in the performance is expected for

the biggest matrices when sharing the bus. At the sight of

the results (Figure 4), a higher improvement is obtained

for the biggest matrices (3dtube, nasasrb and s3dkq4m2)

when using two busses. Indeed, the bigger the matrix, the

higher the traffic in the bus and the higher the improvement

when there are only two cores per bus (15-11 and 13-9)

instead of four threads in a single bus (15-14-13-12). It is

noticeable that some important improvements occur only

in the SpMV benchmark. This behaviour can be justified

because SpMV executes a loop which goes through five

different arrays, whereas Irregular Reduction goes only

through two, so the cache reuse for the first benchmark is

smaller and the generated traffic in the bus is higher.

Cores in different sockets sharing the bus vs. cores

that share socket and bus (15-11-13-9 vs 15-14-11-10):

In this case there were no noticeable differences for the

SPRT between the case when the threads are allocated



(a) SpMV (b) Irregular Reduction

Figure 4. Improvement using different busses.

in different sockets and the case when two threads in

the same bus share the socket. However, the Irregular

Reduction benchmark showed, in the Array Expansion

and DWA-LIP techniques, that some differences appear

between the two considered cases. In particular, Array

Expansion showed a bigger difference when the matrix

size decreases, since a matrix not big enough does not

generate enough traffic in the bus to mask the cache

coherency effects. This suggest that some dependencies

among threads could exist.

B. Influence of Cache Coherency

Taking into account that irregular codes strive for max-

imising the thread locality, we do not expect important

performance decreases due to the cache coherency proto-

cols when the input matrices are big enough, since they

will be masked by the bus traffic. However, when all cores

share the bus a improvement was noticed for some of the

smallest matrices. If the matrices fit in each core’s cache

all misses, except the capacity ones, will be solved by the

snooping protocol inside the bus, faster than asking the

directory. This is an explanation to this behaviour.

V. BENCHMARKING THE TEST PLATFORM

In order to confirm the hypothesis drawn when running

irregular codes, some dense benchmarks were also exe-

cuted in Finisterrae to analyse the effect of bus contention,

memory allocation and cache coherency.

A. Influence of Memory Allocation

In this section an experiment was carried out to compare

the theoretical memory latency given by the manufacturer

[12] to our observations. We measured the memory access

latency of a small program in Fortran which creates an

array and allocates data on it. The measurements were

carried out using pfmon and the Itanium2’s Event Address

Registers (EAR), which get accurately the memory posi-

tion and access latency of a given sample.

In our tests, we allocated the data in the local core

memory, in a remote memory and in the interleaving zone.

In all cases, most of the occurrences appear under 50

cycles, corresponding with the accessed data which fit in

cache memory. Furthermore, occurrences between 289 and

383 cycles were measured when accessing the cell local

memory. As the frequency of our processors is 1.6 Ghz,

it yields a latency from 181 to 240ns. The value given by

the manufacturer is 185ns.

When accessing data in a remote memory we measured

occurrences between 487 and 575 cycles, that is, from 305

to 360ns. The manufacturer does not give any values in

this case. In the case of accessing data in the interleaving

zone, the manufacturer’s value is 249ns. Our measure-

ments give two zones, depending on the local or remote

memory the data are accessed. Indeed, the average access

time in the interleaving zone is the average of combining

accesses to the local or remote memory. Our outcomes

gave an average value of 278ns.

We can conclude that, when working with codes

mapped to cores in a same cell (especially for those with

a high level of cache replacement), the data should be

allocated in the same cell’s memory. The access to a

remote memory is very costly, so if cores in both cells

must be used, the allocation of the data in the interleaving

memory seems to be a good compromise.

B. Influence of Thread Allocation in Bus Contention

The second issue under study was the influence of the

thread allocation upon the node buses. Considering that

every four cores share a bus, it is reasonably foreseeable

that any allocation which spreads out the threads as much

as possible through the different buses would get a better

performance than another one which maps several threads

in cores of the same bus.

To quantify this effect, a benchmark called memtest

[13] was used. This benchmark focuses on how multiple

cores compete for the memory bandwidth. It allocates a

given-sized, private block of memory per core filled with

a randomly linked pointer trail and goes through it reading

and writing the data, which creates traffic associated to the

read data and, subsequently, written-back to memory. To

quantify the effect of sharing a bus, several configurations

comprising different thread allocations were used. All

data were allocated in Cell 0. One thread was always

mapped to Core 8 (see Figure 3). The other one was

mapped either to Core 9 (same processor, same bus),

Core 10 (different processor, same bus), Core 12 (different

processor, different bus) or Core 14 (different processor,

different bus). Additionally, tests between Core 8 and some

cores in Cell 1 (cores 0, 2, 4 and 6) were also performed

to quantify the effect of using two cores not sharing any

resources in a cell. Finally, for comparison purposes, a test

mapping just one thread to Core 8 was also carried out.

Table II quantifies the outcomes of those configurations

for memory blocks of 10KB, 9MB, 1GB and 10GB in

clock ticks per memory access. The results for 10KB show

that, regardless of the pair of cores involved in Cell 0, the

number of clocks to access the data is the same (3.5 ticks).

As expected, for a data block small enough to fit into L1

there is almost no traffic in the bus and, therefore, no

performance differences are observed. When the second

core belongs to Cell 1 the time to access the data is also

almost constant (3.9-4.0) and higher, as expected because

all data are still allocated in Core 0.



Table II
MEDIAN MEMORY ACCESS LATENCY (IN TICKS) OF memtest

BENCHMARK FOR DIFFERENT CONFIGURATIONS.

Cell Processors
Memory allocated

10KB 64MB 1GB 10GB

Cell 1

8 - 0 4,0 338,6 349,8 532,7

8 - 2 3,9 338,8 349,6 534,5

8 - 4 4,0 338,4 349,6 532,6

8 - 6 3,9 338,6 349,6 532,8

8 3,5 329,0 340,6 525,7

Cell 0

8 - 9 3,5 352,9 366,4 546,2

8 - 10 3,5 354,3 366,0 550,2

8 - 12 3,5 342,3 353,7 539,3

8 - 14 3,5 342,2 353,6 537,4

When the size of the block is higher than the L3 size

(64MB and 1GB) three cases were detected. On Cell 0,

the lowest average latency access occurs when Core 8 is

alone in the bus. A second case with the highest latency

access appears when Core 8 shares the bus with a core in

the same processor (Core 9) or in a different socket but in

the same bus (Core 10). Indeed, a data size large enough

not to fit into cache can generate enough traffic in the bus

to decrease the performance when both cores compete for

it. The third case appears when two cores access memory

from different buses (Cores 12 and 14). In this case, the

performance decrease is not as important. Taking into

account that the latency is not as low as the one-core case

and that the throughput in the Cell Controller-to-memory

bus is the same regardless of the pair of cores used, we

conclude that the Cell Controller introduces a bottleneck

when dealing with traffic from both buses. Besides, since

there are no significative differences between allocating a

thread in the same socket or in other socket sharing the

bus we can also conclude that, regarding bus sharing, each

core can be considered as an independent processor in this

context. On Cell 1, the latency is approximately constant

regardless of the core and bus involved (∼338 cycles for

64MB and ∼349 for 1GB) and lower than the case in

which two cores in the same cell are used. This upholds

our conclusion about the Cell Controller introducing a

bottleneck when dealing with two buses.

The last case studied (10GB) shows the same three

latency regions. However, the latency increases noticeably

whereas the 64MB and 1GB scenarios showed little differ-

ence between them. The randomly linked pointer in such

a large block size was increasing the page eviction. We

confirmed it by observing that, whereas the number of

TLB misses is similar for the 64MB and 1GB cases, the

10GB case yields noticeable higher values.

In general, it seems advisable that the data, regardless

of the size, be distributed in different buses.

C. Influence of Thread Allocation in Cache Coherency

The third issue studied was the influence of the thread

allocation upon the memory coherency protocols. The

rx7640 memory coherency is implemented in two levels.

A standard snoopy bus coherence (MESI) protocol is

used for the two sockets sharing a bus, with an in-

memory directory (MSI Coherence) on top. Therefore,

higher latencies are expected when the coherence has to

be kept up between cores in different buses than for cores

in the same bus.

To quantify the effect of sharing a variable between

two cores, a producer-consumer benchmark was used.

The producer allocates and accesses a whole data block

filled with a randomly linked pointer trail, subsequently

modifying the data after fetching it into cache. Once the

producer has finished, the consumer just reads the whole

data. We defined a configuration where Core 14 is always

the producer and different cores play the role of the

consumer. Table III shows the ticks per access to transfer

the data from the producer to different consumers. 10KB,

128KB, 6MB and 1GB data sizes were used to make them

fit in the L1, L2, L3 or in memory, respectively.

The results show that if the consumer is in the same bus

as the producer the time to fetch a cache line is shorter

than if both are in different buses, which is the case of

Cores 12 and 15 for 10KB, 128KB and 6MB. It is also

noticeable that the time is the same regardless of whether

the consumer shares the socket with the producer or not.

Remembering also that each core in an Itanium 2 Montvale

processor does not share any cache level we can conclude

that, regarding cache coherency, each core behaves as an

independent processor in this context.

When the consumer is in a different bus than the

producer, which is the case of Cores 0, 8 and 10, the

directory must be read to check in which bus the requested

data is, with the subsequent rise in the access time. Cores

8 and 10 are in the same cell, so their latencies are

similar and lower than the latency from Core 0, which

is in another cell. Since the data must be brought through

another cell controller, this latter case is the most costly.

Despite all data fitting in any cache in the previous cases

(10KB, 128KB and 6MB), the time increases slightly as

the data size also does.

An exception to the observed outcomes occurs for 1GB.

In that case, the time to fetch a cache line is practically

the same regardless of the cores in the same cell involved.

This is due to the size of the allocated memory. For 10KB,

128KB and 6MB the data can reside in the L1, L2 or L3.

However, for 1GB the producer must flush the data back

to memory after modifying it, so the consumer must fetch

the data from main memory in most cases instead of doing

it from another cache.

We conclude that, in order to minimise the effect of

cache coherency, any parallel application in which some

of its threads work with a reduced amount of shared data

Table III
TICKS PER ACCESS OF THE producer-consumer BENCHMARK TO

TRANSFER THE ALLOCATED DATA BETWEEN TWO CORES.

Prod-Cons Memory allocated

10 KB 128 KB 6 MB 1 GB

14 - 0 317,6 353,2 353,2 296,8

14 - 8 220,0 258,4 261,2 194,4

14 - 10 225,2 258,4 261,2 194,4

14 - 12 79,2 79,2 87,2 192,0

14 - 15 79,2 79,2 87,2 192,0



should be mapped, as far as it is possible, to the available

cores in the same bus, regardless of the socket in which

they are. When this is not possible, the best choice is

the adjacent bus in the same cell and, as last option,

a core in a different cell. Nevertheless, this rule is not

efficient for parallel applications which allocate a large

amount of memory that could saturate the bus, as it was

shown in Section V-B, with the subsequent decrease in the

performance. In this case, mapping the threads to cores in

different buses of the same cell is the best option since

for a big amount of memory the latencies due to cache

coherency become the same for all buses.

VI. CONCLUSIONS

This paper presents several tests carried out to study

the suitability of applying the strategies SPRT, Array

Expansion and DWA-LIP, initially developed to parallelise

irregular codes on SMP systems, to the NUMA machine

Finisterrae. A set of matrices was chosen and applied

to a sparse matrix-by-vector product and an Irregular

Reduction benchmarks. The main factors considered were

the thread-to-core distribution regarding bus contention

and cache sharing, as well as the memory allocation.

It was stated the importance of spreading the threads

among cores in different buses when dealing with big

data sizes. In particular, the SpMV benchmark, which

generates an important traffic in the bus, showed notice-

able improvements when combined with the SPRT and

Array Expansion techniques. The SPRT technique proved

to be more stable than the rest of techniques regardless the

thread distribution. In general, the three techniques obtain

better results with big matrices, where the coherency

effects are masked by the bus sharing when increasing

the data size. In addition, it was observed that each core

behaved as an independent processor regardless of the

socket they were placed in.

To confirm these issues, some dense benchmarks were

executed. Firstly, a benchmark designed to test the perfor-

mance of several cores when sharing a bus and allocating

the data in local or remote memory. Secondly, another

one to evaluate the influence of the cache coherency

between two cores when sharing data. Finally, another

test evaluated the memory access latency depending on

the memory module allocated.

At the sight of the results we can claim that, especially

for applications which use the bus intensively, the effect

of sharing a bus between two or more cores degrades

the performance regarding the memory access latency and

should be avoided, spreading the threads among cores in

different buses when possible. Regarding cache coherency,

the effects in the performance are noticeable when dealing

with small sizes of data which fit into cache. The more

the memory used increases, the less significant the effect

is. Therefore, for small data sizes would be advisable to

map the threads in cores in the same bus. For bigger data

sizes the effect of sharing a bus will be more important

and it will mask the effect of cache coherency. Indeed,

SPRT and Array Expansion proved to behave better using

several busses for SpMV, which generates a large amount

of traffic.

As a future work, we intend to develop strategies to

guide applications in run-time in the frame of our project,

so the conclusions presented here will help to define a

thread-to-core mapping and memory allocation policies.
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