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Abstract—This work presents a study undertaken to charac-
terise the FINISTERRAE supercomputer, one of the biggest
NUMA systems in Europe. The main objective was to de-
termine the performance effect of bus contention and cache
coherency as well as the suitability of porting strategies
regarding irregular codes in such a complex architecture.
Results show that: (1) cores which share a socket can be
considered as independent processors in this context; (2) for
big data sizes, the effect of sharing a bus degrades the
final performance but masks the cache coherency effects; (3)
the NUMA factor (remote to local memory latency ratio) is
an important factor on irregular codes and (4) the default
kernel allocation policy is not optimal in this system. These
results allow us to understand the behaviour of thread-to-core
mappings and memory allocation policies.

Keywords-Itanium2, Hardware Counters, Irregular Codes,
FinisTerrae.

I. INTRODUCTION

Irregular codes [1] are the core of many important scien-

tific applications, therefore several widespread techniques to

parallelise them exist [1], [2], [3]. Many of these techniques

were designed to work in SMP systems, where the memory

access latency is the same for all processors. However, state-

of-the-art architectures involve many cache levels in com-

plex several-node NUMA configurations containing different

number of multi-core processors. A good example is the new

supercomputer FINISTERRAE installed at the Galicia Super-

computing Centre (CESGA) in Spain [4]. FINISTERRAE is

an SMP-NUMA system with more than 2500 processors,

19 TB of RAM memory, 390 TB of disk storage and a

20-Gbps Infiniband network, orchestrated by a SuSE Linux

distribution. Designed to undertake great technological and

scientific computational challenges, it is one of the biggest

shared-memory supercomputers in Europe.

In such a complex infrastructure, the observations we

can make are not straightforward, because the interplay of

cache contention, bus contention, cache coherency and other

mechanisms is far from transparent and therefore requires

experimental assessment. In this context, the memory allo-

cation and the thread-to-core distribution may become very

important in the performance of a generic code and, more

noticeably, in strategies to parallelise irregular codes which

reorder the data to optimise the use of the cache hierarchy,

as in iterative kernels such as the sparse matrix-vector multi-

plication (SpMV) and Irregular Reduction. Hence, different

latencies, depending on the processor the data are assigned

to, could significantly affect the performance.

In a recent work, a framework for automatic detection

and application of the best mapping among threads and

cores in parallel applications on multi-core systems was

presented [5]. In addition, Williams et al. [6] propose

several optimisation techniques for the sparse matrix-vector

multiplication which are evaluated on different multi-core

platforms. Authors examine a wide variety of techniques

including the influence of the process and memory affinity.

Regarding memory allocation, Norden et al. [7] study the

co–location of threads and data motivated by the non-

uniformity of memory in NUMA multi-processors, although

they do not analyse the behaviour of interleaved memory re-

gions. To our knowledge, nobody has studied the behaviour

of several cores sharing a socket and/or a bus on an Itanium2

platform and its influence on irregular codes before.

The main objective of this work is to characterise the

behaviour of the FINISTERRAE system and to study the

suitability and impact of applying the mentioned strategies

considering the influence of thread and memory allocations.

The article is organised as follows: Section II introduces

the NUMA system under study. Section III explains the

methodology followed to characterise its architecture, dis-

cussing the influence of the thread allocation. In Section IV

the results of running some benchmarks in our architecture

are presented and analysed. Afterwards, an actual paralleli-

sation technique for irregular codes was ported to test its

performance, which is explained in Section V. Finally, some

concluding remarks and future work are given in Section VI.

II. THE FINISTERRAE SUPERCOMPUTER

FINISTERRAE is an SMP-NUMA machine which com-

prises 142 HP Integrity rx7640 computation nodes. Each

node consists of eight 1.6-Ghz-DualCore Intel Itanium2

Montvale (9140N) processors arranged in a two-SMP-cell



Figure 1. Block diagram of an HP Integrity rx7640 node. 4 dual-core
Itanium2 Montvale are connected to their local memory in every cell
through a Cell Controller, which uses a crossbar to communicate with an
identical second cell.

NUMA configuration1. Figure 1 shows the block diagram

of a node as well as its core disposition. As seen, a cell is

composed of two buses at 6.8 GB/s, each connecting two

sockets (four cores) to a 64GB memory through a sx2000

chipset (Cell Controller). The Cell Controller maintains

a cache-coherent memory system using a directory-based

memory controller and connects both cells through a 27.3

GB/s crossbar. It yields a theoretical processor bandwidth of

13.6 GB/s and a memory bandwidth of 16 GB/s (four buses

at 4 GB/s).

The main memory address range handled by the Cell

Controller is split in two modes: three fourths of the address

range map to addresses in the local memory, the remaining

one fourth maps in an interleaved manner to addresses in

both local and remote memory.

Focusing on the processors, Figure 2 shows a block

diagram of an Itanium2 Montvale processor. Each processor

comprises two 64-bit cores and three cache levels per core.

This architecture has 128 General Purpose Registers and

128 FP registers. L1I and L1D (write-through) are both 4-

way set-associative, 64-byte line-sized caches. L2I and L2D

(write-back) are 8-way set-associative, 128-byte line-sized

caches. Note that FP operations bypass L1.

III. METHODOLOGY

The previous section presented a several-memory-layer

platform where each NUMA node’s cell behaves as an

SMP. Since a good performance of many shared-memory

scientific applications depends on the correctness of this

assumption, our study focuses on quantifying the behaviour

of a FINISTERRAE node depending on how the data allo-

cation, the memory latency and the thread-to-core mapping

can influence the code’s final performance.

1There exists a 143th node composed of 128 Montvale cores and 1 TB
memory, which is not considered in this work.

Figure 2. 1.6Ghz Dual-Core Intel Itanium 2 Montvale (9140N) architec-
ture. Note the separated L3 cache per core.

In order to characterise our test platform, an analysis in

two stages was carried out:

1) Benchmarking: A set of benchmarks to measure the

bus contention as well as the effect of the cache

coherency overhead were executed.

2) Actual scenario: An actual strategy to parallelise irre-

gular codes, designed to be executed on SMP systems,

was ported to FINISTERRAE to evaluate its behaviour

and, if possible, to apply the knowledge acquired in

the benchmarking stage to improve its performance.

Orthogonally to this, two policies were adopted:

1) Intra-cell scenario: In this scenario all data are allo-

cated in local cell memory and only cores in the same

cell, following several thread-to-core assignments, are

involved.

2) Inter-cell scenario: Both data and threads can be

allocated in any cell.

Outcomes were collected with PAPI [8] (which accesses

the Perfmon2 interface [9] underneath) and pfmon [10].

The benchmarks used in the benchmarking stage perform

some warm-up iterations before starting to measure and,

subsequently, they process the outcomes statistically to show

the results in median values, which guarantees that the

outliers are not taken into account. On the other hand, in

the actual scenario stage, only values inside the outcomes’

standard deviation were considered.

The next sections will develop the characterisation des-

cribed above. Section IV will undertake the benchmarking

stage to study issues such as the bus contention (Section

IV-A), coherency overhead (Section IV-B) and the memory

allocation (Section IV-C) in our architecture. Section V will

study similar aspects (sections V-B and V-C) using an actual

parallelisation technique for irregular codes.

IV. BENCHMARKING FINISTERRAE

A. Influence of Thread Allocation in Bus Contention

The first issue under study was the influence of the thread

allocation upon the node buses. Considering that every four

cores share a bus, it was reasonably foreseeable that any



Table I
MEDIAN MEMORY ACCESS LATENCY (IN TICKS) OF memtest

BENCHMARK FOR DIFFERENT CONFIGURATIONS. DEPENDING ON THE

SECOND CORE INVOLVED, CORE 8 WILL SHARE WITH IT THE BUS, THE

CELL OR NONE OF THEM. A MEASUREMENT WITH CORE 8 ALONE FOR

EACH MEMORY SIZE IS ALSO SHOWN AS A REFERENCE.

Cell Processors
Memory allocated

10KB 64MB 1GB 10GB

Cell 1

8 - 0 4,0 338,6 349,8 532,7

8 - 2 3,9 338,8 349,6 534,5

8 - 4 4,0 338,4 349,6 532,6

8 - 6 3,9 338,6 349,6 532,8

8 3,5 329,0 340,6 525,7

Cell 0

8 - 9 3,5 352,9 366,4 546,2

8 - 10 3,5 354,3 366,0 550,2

8 - 12 3,5 342,3 353,7 539,3

8 - 14 3,5 342,2 353,6 537,4

allocation which spreads out the threads as much as possible

through the different buses would get a better performance

than another one which maps several threads in cores within

the same bus, due to a possible bandwidth competition.

To quantify this effect, a benchmark called memtest was

used. Memtest focuses on how multiple cores share the

bandwidth to memory. It allocates a given-sized, private

block of memory per core filled with a randomly linked

pointer trail and goes through it reading and writing the

data, which creates traffic associated to the data read and,

subsequently, written-back to memory. To quantify the effect

of sharing a bus, several configurations comprising different

thread allocations were used. To avoid the system allocating

the data in different memory regions (local, remote or

interleaved) during the tests, all data were allocated in

Cell 0. One thread was always mapped to Core 8 (see

Figure 1). The other one was mapped to a core in the

same cell, either to Core 9 (same processor, same bus),

Core 10 (different processor, same bus), Core 12 (different

processor, different bus) or Core 14 (different processor,

different bus). Additionally, tests between Core 8 and some

cores in Cell 1 (cores 0, 2, 4 and 6) were also performed to

quantify the effect of using two cores which do not share

any resources inside a cell. To have a comparison value,

a test mapping just one thread to Core 8 was also carried

out. Table I quantifies the outcomes of those configurations

for memory blocks of 10KB, 64MB, 1GB and 10GB in

clock ticks per memory access (note that, since the RDTSC

instruction was used to measure the memory access time,

the final average calculation will include the access time but

also some overhead). Depending on the two cores involved

in each test and the size of the memory allocated, a decrease

in the performance was expected as long as the traffic in the

bus increases (because of bigger memory sizes) when both

cores share the same bus. That is, a memory size of 10KB is

not expected to consume too much bandwidth since the data

fits in the L1 and, once loaded in cache, the bus will not be

used until write-back. For block sizes bigger than 9MB (the

L3 size) the traffic in the bus is expected to increase, not

Figure 3. Average L1 DTLB misses per access for the memspeed

benchmark. The y-axis represents the number of events. The x-axis, the
memory size in bytes for the considered cases.

only because of write-back, but also because of the cache

replacing. Therefore, a poorer performance is expected when

two threads mapped to two cores in the same bus and a big

amount of memory allocated are considered.

The outcomes in Table I for 10KB show that, regardless of

the pair of cores involved in Cell 0, the number of required

clocks to access the data is the same (3,5 ticks). As expected,

for a data block small enough to fit into a L1 there is

almost no traffic in the bus and, therefore, no performance

differences are observed. When the second core belongs to

Cell 1 the time to access the data is also almost constant (3,9-

4,0) and higher than the previous case, as can be expected

because all data are allocated in Cell 0.

When the size of the block is increased over the L3 size

(64MB and 1GB) three different cases can be identified.

Focusing on Cell 0, the lowest average latency access occurs

when Core 8 is alone in the bus. A second case with the high-

est latency access appears when Core 8 shares the bus with a

core in the same processor (Core 9) or in a different socket

but in the same bus (Core 10). Indeed, a data size large

enough not to fit into cache can generate enough traffic in the

bus to decrease the performance when both cores compete

for it. The third case appears when two cores access memory

from different buses (Cores 12 and 14). In this case, the

performance decrease is not as important as in the case when

the same bus is shared. Taking into account that the latency

is not as low as the one-core case and that the throughput

in the Cell Controller-to-memory bus is the same regardless

of the pair of cores used, we should conclude that the Cell

Controller introduces, somehow, a small bottleneck when

dealing with traffic from both buses. Besides, since there

are no significant differences between allocating a thread

in the same socket or in other socket sharing the bus, we

can also conclude that, regarding bus sharing, each core can

be considered as an independent processor in this context.

Focusing on Cell 1, the latency is approximately constant

regardless of the core and bus involved (∼338 cycles for

64MB case and ∼349 for 1GB) and lower than using two



cores in the same cell. Although this upholds our conclusion

about the Cell Controller introducing a bottleneck, it must

be taken with caution given that the difference is quite small

and some measurement errors are assumed to be introduced.

The last case studied (10GB) shows the same three latency

regions. However, the latency increases noticeably whereas

the 64MB and 1GB scenarios showed little difference be-

tween them. It seemed reasonable to think that the randomly

linked pointer in such a large block size was increasing the

page eviction. To confirm it, we studied the behaviour of

the TLB. Figure 3 shows the L1 DTLB misses. Indeed, we

can see that the number of cache misses is similar for both

the 64MB and 1GB cases. However, the 10GB case yields a

higher number of TLB misses. Even if some page requests

can be satisfied by the L2 DTLB, the rest will produce page

faults which will increase the access latency noticeably.

We can therefore conclude that it seems advisable that the

data, regardless of the size (as long as it is larger than the

cache size), be distributed in different buses.

B. Influence of Thread Allocation in Cache Coherency

The second issue studied was the influence of the

thread allocation upon the memory coherency protocols. The

rx7640 memory coherency is implemented in two levels. A

standard snooping bus coherence (MESI) protocol is used

for the two sockets sharing a bus, having on top of it

an in-memory directory (MSI) to keep inter-bus coherence.

Therefore, higher latencies are expected when the coherence

has to be kept up between two cores in different buses than

for two cores in the same bus, since in the former case, the

directory must be read.

To quantify the effect of sharing a variable between

two cores, a producer-consumer benchmark was used. The

producer allocates and accesses a whole data block filled

with a randomly linked pointer trail, subsequently modifying

the data after fetching it into cache. Once the producer has

finished, the consumer just reads the whole data. We defined

a configuration where Core 14 is always the producer and

different cores play the role of the consumer. Table II shows

the ticks per access to transfer the data from the producer

to different consumers. 10KB, 128KB, 6MB and 1GB data

sizes were used to make them fit in the L1, L2, L3 or in

memory, respectively.

At the sight of the results we can observe that if the

consumer is in the same bus as the producer the time to fetch

a cache line is shorter than if both are in different buses,

which is the case of Cores 12 and 15 for 10KB, 128KB and

6MB. This is due to the behaviour of the MESI protocol

implemented at bus level, which is faster than reading the

directory. It is also noticeable that the time is the same

regardless of whether the consumer shares the socket with

the producer or not. Remembering also that cores in an

Itanium 2 Montvale processor do not share any cache level,

we can conclude that, regarding cache coherency, each core

Table II
DURATION (TICKS/ACCESS) OF THE producer-consumer BENCHMARK TO

TRANSFER THE ALLOCATED DATA BETWEEN TWO CORES.

Prod-Cons
Memory allocated

10 KB 128 KB 6 MB 1 GB

14 - 0 317,6 353,2 353,2 296,8

14 - 8 220,0 258,4 261,2 194,4

14 - 10 225,2 258,4 261,2 194,4

14 - 12 79,2 79,2 87,2 192,0

14 - 15 79,2 79,2 87,2 192,0

behaves as an independent processor in this context. When

the consumer is in a different bus than the producer, which

is the case of Cores 0, 8 and 10, the directory must be

read to check in which bus the requested data is, with the

subsequent rise in the access time. Cores 8 and 10 are in the

same cell, so their latencies are similar and lower than the

latency from Core 0, which is in another cell. In this latter

case, since the data must be brought through another Cell

Controller, it exhibits the highest latency.

Despite all data fitting in any cache in the previous

cases (10KB, 128KB and 6MB), it can be noticed that the

time increases slightly with the data size. This fact can be

explained arguing that we are observing the effect of cache

collisions due to the limited associativity of the caches.

An exception to the observed outcomes occurs for 1GB.

In that case, the time to fetch a cache line is practically

identical regardless of the cores involved, as long as they

belong to the same cell. The cause for this behaviour lies

in the size of the allocated memory. For 10KB, 128KB and

6MB the data can reside in the L1, L2 or L3. However,

for 1GB the producer must flush the data back to memory

after modifying it, so the consumer must fetch the data from

main memory in most cases instead of doing it from another

cache. Note also that the time to retrieve a data from a core

in a remote cell is higher than from the local memory, as it

is seen in the 14-0 case for 1GB, compared to the 6MB case.

We can conclude that, to minimise the effect of cache

coherency, any parallel application working with a reduced

amount of shared data –not much bigger than the cache

size– should map its threads to the available cores in the

same bus regardless of the socket in which they are. When

this is not possible, the best choice is the adjacent bus in

the same cell and, as a last option, a core in a different

cell. On the contrary, a parallel application which allocates

a large amount of memory might saturate the bus (as was

shown in Section IV-A) with the subsequent decrease in

performance. In this case, mapping the threads to cores in

different buses of the same cell might be the best option

since, as shown in Table II, for a big amount of memory the

latencies due to cache coherency become the same for all

buses. Therefore, the application should be first characterised

to find out whether the restricting factor is the traffic in the

bus due to the amount of allocated memory or due to the

cache coherency, in order to take a proper decision.



C. Influence of Memory Allocation

As explained in Section II, about one fourth of a cell’s

memory in FINISTERRAE is configured in interleaving

mode, which means that all data allocated in that part are dis-

tributed between local memory addresses and remote ones.

This behaviour allows to decrease the average access time

when accessing data simultaneously from cores belonging

to different cells.

In this section, an experiment was carried out to compare

the theoretical memory latency given by the manufacturer

[11] with our observations. We measured the memory access

latency of a small Fortran program, which creates an array

and allocates data in it. The measurements were carried

out using specific Itanium2’s hardware counters, the Event

Address Registers (EAR), using the pfmon tool. Pfmon’s

underlying interface, Perfmon2, samples the application at

run-time using EARs, getting the memory position and

access latency of a given sample accurately.

Figure 4 depicts the results when allocating the data in the

same cell as the used core (a), in the remote cell (b) and in

the interleaving zone (c). In all of the cases, many accesses

happen within 50 cycles, corresponding with the accessed

data which fit in cache memory. There is a gap and, then,

different values can be observed depending on the figure.

Figure 4(a) shows occurrences between 289 and 383 cycles

when accessing the cell local memory. The frequency of our

processors is 1.6 Ghz, which yields a latency from 180,9 to

239,7 ns. Its average value is 210,3 ns, slightly higher than

the 185 ns given by the manufacturer.

When accessing data in a cell remote memory we mea-

sured occurrences between 487 and 575 cycles, that is, from

304,8 to 359,8 ns, with an average value of 332,3 ns. The

manufacturer does not provide any values in this case.

In the case of accessing data in the interleaving zone, the

manufacturer value is 249 ns. Our measurements give two

zones, depending on whether the local or remote memory are

accessed. Indeed, the average access time in the interleaving

zone is the average of combining accesses to the local or

remote memory. Our outcomes gave an average value of

278,3 ns.

We can conclude that, when working with codes mapped

to cores in a same cell (especially for those who demand

a high level of cache replacement), the data should be

allocated in the same cell’s memory. The access to remote

memory becomes very costly, so if cores in both cells must

be used, the allocation of the data in the interleaving memory

makes sense.

V. INFLUENCE OF THREAD ALLOCATION ON IRREGULAR

CODES

A. Ported Technique

The next step consisted of porting a parallelisation tech-

nique for irregular codes to our target architecture, in order

(a)

(b)

(c)

Figure 4. Latency of memory accesses when the data is allocated in
memory local to the core (a), in memory on the other cell (b) or in the
interleaving zone (c). The y-axis shows the number of occurrences of every
access. The x-axis shows the latency in cycles per memory access. Regions
of interest have been zoomed in.



Table III
SPARSE MATRIX-VECTOR PRODUCT (LEFT) AND IRREGULAR

REDUCTION (RIGHT) PSEUDOCODES

for j = 1 to N do

for k = col(j) to col(j +1)−1 do
i = row(k)
Z(i) = Z(i) + val(k) ∗ X(j)

end for

end for

for j = 1 to NNZ do
i = row(k)
Z(i) = Z(i) + alpha

end for

to check out the effect of thread allocation in an actual

application. The chosen technique was IARD [12] (Irregular

Access Region Descriptor). It is a method to efficiently

characterise irregular codes at run-time which exploits the

properties found in the access patterns, expressing them

with a structure that allows a strong reduction in storage

requirements without loss of relevant information. The low-

cost, compact characterisation of the subscript arrays can be

used to perform an efficient parallelisation of a wide set of

irregular codes.

In order to test the efficiency of this technique, two well

known benchmarks (Sparse matrix-Dense vector Product

and Irregular Reduction) were implemented in Fortran and

parallelised using OpenMP. The pseudocodes are shown in

Table III. In both cases, some selected sparse matrices stored

in CSC format from the Harwell-Boeing Sparse Matrix

Collection [13], which had previously been reordered using

this technique, were used as an input. The key features of

these matrices are shown in Table IV.

The compiler used for the experiments was Intel ifort

9.1.052. The baseline compile configuration used in all

our tests involved the -O3 option and the interprocedural

optimisation (-ipo).

B. Influence of Bus Contention

To study the influence of the bus contention several

scenarios were tested. On the one hand, an intra-cell scenario

where the data are allocated in a single cell’s memory and

the cores involved belong to the same cell. On the other

hand, an inter-cell scenario where the data are fetched from

the other cell’s memory and there are cores involved from

both cells. Before presenting the results, it is necessary to

clarify the meaning of a so-called thread distribution. For

example, a distribution 15-11-13-9 means that for a one-

thread execution, the thread will be allocated in Core 15. For

Table IV
SQUARED-MATRIX INPUT SET USED IN OUR TESTS. Na=MATRIX SIZE.

Nz=NUMBER OF NON-ZEROS.

Name Na Nz Description

s3dkq4m2 90451 4820892 FEM, cylindrical shell

3dtube 45330 3213618 3-D pressure tube

nasasrb 54872 2677324 Shuttle rocket booster

struct3 53570 1173694 Finite element

bcsstk29 13992 619488 Model of a 767 rear bulkhead

bcsstk17 10973 428650 Elevated pressure vessel

Table V
PERFORMANCE IMPROVEMENT (% MFLOPS) OF THREAD

DISTRIBUTION 15-11-13-9 OVER 15-14-13-12 FOR Nc = 2 AND

Nc = 4 CORES. DATA ARE ALLOCATED IN CELL 0 MEMORY.

Matrix Nc

Benchmark

IrregRed SpMV

s3dkq4m2
2 0,0 6,3

4 1,6 23,9

3dtube
2 0,8 6,6

4 0,7 13,5

nasasrb
2 2,7 1,4

4 -1,1 7,7

struct3
2 -1,1 0,7

4 0,5 1,6

bcsstk29
2 0,9 1,7

4 1,3 1,8

bcsstk17
2 1,0 0,2

4 1,5 0,7

two threads, they will be allocated in Cores 15 and 11 and,

for four threads, they will be in Cores 15, 11, 13 and 9. In the

cases where more cores are used and the distribution is not

pointed out, it means that the order in which the remaining

available cores are assigned is not relevant.

1) Intra-cell Scenarios: In this scenario, the libnuma

library was used to allocate all data in the Cell 0 memory

and only cores in this cell were used. Several scenarios were

set up to study the effect of running the Irregular Reduction

and SpMV benchmarks with different distributions, in order

to quantify the effect of the bus sharing:

15-11-13-9 vs 15-14-13-12: This scenario is focused on 2

and 4 cores. In both benchmarks the sparse matrix must be

completely read, which is expected to cause some number

of capacity and compulsory cache misses. Therefore, the

bigger the matrix, the higher the traffic in the bus, so a

performance decrease is expected for the biggest matrices

when sharing the bus. At the sight of the results (Table V),

a better behaviour of the distribution 15-11-13-9 can be

appreciated (differences over 6% are highlighted) for the

biggest matrices (3dtube, nasasrb and s3dkq4m2) in the

four-core case. Indeed, it was confirmed that the bigger the

matrix, the higher the traffic in the bus and the higher the

improvement when there are only two threads per bus (15-11

and 13-9) instead of four threads in a single bus (15-14-13-

12). For the two-core case, although a slight improvement

can be observed, the traffic is not high enough to be relevant.

It is noticeable that the most important improvements occur

only in the SpMV benchmark, especially for four processors.

This behaviour happens because SpMV executes a loop

which goes through five different arrays, whereas Irregular

Reduction goes only through two. So in the former case the

cache reuse is smaller than in the latter one. At any given

moment, therefore, the SpMV benchmark generates more

traffic in the bus than the Irregular Reduction one.

15-11-13-9 vs 15-14-11-10: This scenario is focused on

4 cores. The outcomes in Table VI show that there are no

noticeable differences between the case when the threads are



Table VI
PERFORMANCE IMPROVEMENT (% MFLOPS) OF THREAD

DISTRIBUTION 15-14-11-10 OVER 15-11-13-9 FOR Nc = 4 CORES.
DATA ARE ALLOCATED IN CELL 0 MEMORY.

Matrix Nc

Benchmark

IrregRed SpMV

s3dkq4m2 4 4,1 2,4

3dtube 4 -0,5 1,6

nasasrb 4 0 0,8

struct3 4 0,6 0,3

bcsstk29 4 0,6 -0,2

bcsstk17 4 1,4 0,1

allocated in different sockets and the case when two threads

in the same bus share the socket. We know that IARD has no

dependencies among the cores involved. Since the outcomes

show almost no differences between threads mapped to

different cores in different sockets and threads sharing the

same socket, we can confirm, then, the conclusion of Section

IV-A, which stated that each core behaves as an independent

processor regardless of the sockets they are placed in.

2) Inter-cell Scenarios: In this case, the influence of

fetching data from a memory module in other cell was

studied. Moreover, a comparison was carried out between

the automatic thread assignment the system does and our

manual assignments. To do that, libnuma was used through

its command line tool numactl, in order to allocate all the

data in the cell we were working in (memory 0), the remote

memory (memory 1) or the interleaving zone (memory 2).

We intended to infer from these experiments whether the

default system behaviour is reliable or, on the contrary,

another memory allocation policy should be used.

15-11-13-9 vs system-assigned: We used the Perfmon2

library to check the system’s default policy to assign threads

to cores. This scenario compares a manual allocation with

the default one done by the system. We found out that

the system assigns the threads without a defined policy,

changing it in every execution, although it strives to place

the threads in separate cells as far as it is possible. Therefore,

after discarding outliers, we present a range of results inside

the standard deviation instead of a single average value. The

outcomes in Table VII show a dramatic improvement with

our distribution, especially for the biggest matrices (3dtube,

nasasrb and s3dkq4m2). In our previous tests in the intra-

cell scenario, there was no distribution that showed such a

big difference in the performance, which indeed suggests

that the system does not maximise locality.

Threads spread over both cells: Our second test intended

to find out whether the system assignment spreads the

threads over two cells, even if there are available cores in

the same cell. So the automatic assignment was compared

to a manual distribution where the number of involved

threads is kept balanced between both cells. The threads

were distributed to cores 15-7 for two threads, 15-7-11-3

for four and 15-7-11-3-13-5-9-1 for eight. Focusing on the

Table VII
PERFORMANCE IMPROVEMENT (% MFLOPS) OF THREAD

DISTRIBUTION 15-11-13-9 (DATA ALLOCATED IN CELL 0 MEMORY)
OVER AUTOMATIC ASSIGNMENT FOR Nc = 2 AND Nc = 4 CORES.
AVERAGE, MAXIMUM AND MINIMUM IMPROVEMENTS ARE SHOWN.

Matrix Nc

Benchmark

IrregRed SpMV

Avg. Max Min Avg. Max Min

s3dkq4m2
2 23,8 25,5 23,1 32,5 32,9 32,3

4 9,8 14,3 7,5 15,0 17,5 13,9

3dtube
2 17,8 20,0 16,3 34,0 34,4 33,8

4 4,0 7,7 1,5 10,9 13,5 9,1

nasasrb
2 9,5 13,5 7,9 31,6 33,0 31,2

4 -0,8 4,3 -1,9 14,6 18,0 11,7

struct3
2 -0,3 2,5 -1,1 13,9 17,0 11,5

4 -1,1 3,0 -1,7 3,6 8,4 1,6

bcsstk29
2 0,1 2,0 -0,3 1,3 5,2 0,6

4 -1,5 3,8 -2,3 0 2,4 -0,7

bcsstk17
2 0,3 3,3 0 1,6 4,8 1,1

4 -1,5 10,1 -3,3 0,2 3,2 -0,4

Table VIII
PERFORMANCE IMPROVEMENT (% MFLOPS) OF THREAD

DISTRIBUTION 15-7-11-3 WITH DATA ALLOCATED IN THE

INTERLEAVING ZONE VS. AUTOMATIC DISTRIBUTION FOR Nc = 2,
Nc = 4 AND Nc = 8 CORES. AVERAGE, MAXIMUM AND MINIMUM

IMPROVEMENTS ARE SHOWN.

Matrix Nc

Benchmark

IrregRed SpMV

Avg. Max Min Avg. Max Min

s3dkq4m2
2 -6,9 -5,6 -7,4 4,2 4,4 4,0

4 -4,5 -0,6 -6,5 0,8 3,0 -0,2

8 -2,0 3,0 -3,0 2,0 6,3 -1,9

3dtube
2 -2,5 -0,8 -3,9 5,3 5,7 5,1

4 4,4 8,1 1,9 -3,2 -0,9 -4,7

8 2,2 18,3 -2,7 2,4 8,0 -1,7

nasasrb
2 -3,7 -0,2 -5,1 3,0 4,1 2,6

4 -2,3 2,7 -3,3 -2,5 0,4 -5,0

8 -0,1 12,1 -1,9 6,8 12,6 2,5

struct3
2 1,1 3,9 0,3 -3,6 -1,0 -5,6

4 0,1 4,3 -0,4 -1,2 3,4 -3,1

8 0,2 6,5 -1,5 3,0 7,3 0,6

bcsstk29
2 0,1 2,1 -0,3 -2,2 1,0 -2,9

4 -0,1 5,2 -1,0 0,6 3,0 -0,1

8 0,7 11,1 -2,7 -1,4 3,5 -2,6

bcsstk17
2 -0,1 2,9 -0,4 0,9 4,1 0,5

4 0,5 12,6 -1,4 0,6 3,6 0

8 1,4 20,4 -3,6 -0,6 5,0 -1,8

IARD, where there are no dependencies between threads, the

outcomes in Table VIII show that all differences are below

6%, except for some cases in the biggest matrices: nasasrb

(SpMV, 8 threads) and s3dkq4m2 (IrregRed, 2 threads).

In general, especially for small matrices, our distribution

performs better than the automatic one.

C. Influence of Cache Coherency

Taking into account that this kind of irregular codes strives

to maximise the thread locality, we do not expect to notice

important performance decreases due to the cache coherency

protocols when the input matrices are big enough, since they

will be masked by the traffic in the bus. If the matrices fit in

each core’s cache, all misses, except the capacity ones, will

be solved by the snooping protocol inside the bus, faster than



asking the directory. However, this will not usually be the

case in real applications, because this type of codes usually

operates with matrices far bigger than the cache size.

VI. CONCLUSIONS

This paper presented the results of several tests carried out

to characterise FINISTERRAE, an SMP-NUMA machine, in

order to study the suitability of applying strategies to para-

llelise irregular codes initially developed for SMP systems.

The main factors considered were the thread-to-core dis-

tribution and the memory allocation. Firstly, a benchmark

was executed to test the performance influence of several

cores when sharing a bus and allocating the data in local

or remote memory. Secondly, another benchmark was used

to evaluate the influence of the cache coherency between

two cores when sharing data. Furthermore, another test

evaluated the memory access latency depending on the

memory module allocated (local, remote or interleaving).

At the sight of the results, we can claim that, especially

for applications which use the bus intensively, the effect

of sharing a bus between two or more cores degrades

the performance and should be avoided by spreading the

threads among cores in different buses when possible. We

must take into account, though, that the test to evaluate the

local and remote memory access latencies yielded important

differences between them. Therefore, in cases where the

threads must be spread in two cells the best policy will be to

analyse and split the data in both memory zones, maximising

the locality or, when not possible, allocating the data in the

interleaving zone.

Regarding the cache coherency, the effects in the perfor-

mance are noticeable when dealing with small sizes of data

which fit into caches. The more the memory size increases,

the less significant the effect is. Therefore, for small data

sizes, it would be advisable to map the threads on cores in

the same bus. For bigger data sizes, the effect of sharing a

bus will be more important and it will mask the effect of

cache coherency. A noteworthy fact is that every core in the

same processor behaves as an independent processor, so we

can consider two processors in a bus as four independent

cores.

After the benchmarking stage, an actual strategy to para-

llelise irregular codes, successfully tested on SMP archi-

tectures, was ported to FINISTERRAE. A set of matrices

was chosen and reordered with this strategy, being applied

subsequently to the sparse matrix-vector product and the

Irregular Reduction benchmarks. Since this code works with

sparse data, the effects regarding bus sharing were not as

noticeable as in the previous stage. However, it was possible

to confirm the importance of spreading the threads among

cores in different buses when dealing with big data sizes,

the behaviour of each core as an independent processor, and

the fact that the coherency effects are masked by the bus

sharing when increasing the data size.

As a future work, we intend to develop strategies to guide

applications at run-time in the frame of our project, so the

conclusions presented here will help to define a thread-to-

core mapping and memory allocation policies.
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