
A collective I/O implementation based on Inspector-Executor paradigm ∗

David E. Singh, Florin Isaila, Juan Carlos Pichel and Jesús Carretero
Computer Science Department

Universidad Carlos III de Madrid
Spain

Abstract

In this paper we present a multiple phase I/O collec-
tive operation for generic block cyclic distributions. The
communication pattern is automatically generated by an in-
spector phase and the communication and file access phase
are performed by an executor phase. The inspector phase
can be amortized over several accesses. We show that our
method outperforms other techniques used for parallel I/O
optimizations for small access granularities.

1 Introduction

Nowadays, one important bottleneck in parallel archi-
tectures is the I/O subsystem. Usually I/O is considerably
slower than CPU computations. In parallel systems, when
the number of processors increases, the I/O bottleneck be-
comes more and more important. Some parallel file sys-
tems try to solve this problem by exploiting parallelism at
file-level. However, there is a need of efficient and scalable
parallel I/O techniques that exploit both hardware and O.S.
infrastructures. In this work a new parallel I/O technique
for distributed systems is presented.

A major contribution of this paper is the development
of a novel I/O technique for distributed systems called
Inspector-Executor Collective I/O (IEC I/O). Our method
takes advantage of fast communication networks for ex-
changing the data, so that we can improve the I/O locality
and reduce the cost of the global I/O operation. Addition-
ally, we present an experimental evaluation of the effective-
ness of our method for a broad range of input data and ar-
chitectural configurations. Experimental results prove that
our method obtains the best performance in a broad num-
ber of scenarios, when compared with other state-of-the-art
techniques.

∗This work was supported by the Madrid State Government, under
project CP06 Técnicas de optimización de la E/S en aplicaciones para en-
tornos de computación de altas prestaciones.

This paper is structured as follows. The next section con-
tains a description of the existing I/O techniques for dis-
tributed systems. Section 3 describes the IEC I/O method.
Section 4 shows the experimental comparative study. Fi-
nally, Section 5 presents the conclusions.

2 I/O techniques for distributed systems

It has been shown [6] that the processes of a parallel ap-
plication frequently access a common data set by issuing a
large number of small non-contiguous I/O requests. Collec-
tive I/O addresses this problem by merging small individ-
ual requests into larger global requests in order to optimize
the network and disk performance. Depending on the place
where the request merging occurs, one can identify two col-
lective I/O methods. If the requests are merged at the I/O
nodes the method is called disk-directed I/O [3, 7]. If the
merging occurs at intermediary nodes or at compute nodes
the method is called two-phase I/O [2, 1]. Two-phase I/O is
in ROMIO [10], an implementation of MPI-IO interface.

Another parallel I/O optimization technique is List I/O
[11]. In List I/O, the non-contiguous accesses are speci-
fied through a list of offsets of contiguous memory or file
regions and a list of lengths of contiguous regions. MPI-
IO [5] is a standard interface for MPI-based parallel I/O.
MPI data types are used by MPI-IO for declaring views and
for performing non-contiguous accesses. A view is a con-
tiguous window to potentially non-contiguous regions of a
file. After declaring a view on a file, a process may see and
access non-contiguous regions of the file in a contiguous
manner.

In an earlier work [8], we have presented the optimiza-
tion of the I/O stage of STEM-II scientific application. We
implemented a collective I/O technique, targeting the par-
ticular data distribution of STEM-II. The work presented
in the current paper generalizes the work from the previ-
ous one, by including an inspector phase, which automat-
ically generates the data types used for selecting the data
to be exchanged, remote data placement and data trans-
fer to disk. This is a complete new design that can han-

40 8 12

1 5 139

2 6 1410

3 7 11 15P1

P0 P2

P3

Figure 1. Data distribution for Nx = 16, Bx = 1
and Np = 4.

dle generic block-cyclic distribution and does not require a
specific predefined memory layout. Additionally, unlike in
two-phase I/O, the inspector phase is decoupled from the
executor phase (data exchange and disk transfer), which al-
lows the amortization of the inspector phase over several
execution with a similar pattern.

3 Inspector-Executor Collective I/O Algo-
rithm

In this section we present our algorithm, for the case of
storing to disk a vector x with Nx entries distributed among
Np processes using a block-cyclic scheme. Each block con-
sists of Bx entries and each process has Nb blocks assigned.
Subsequently, we have that: Bx∗Nb = Nx. Figure 1 shows
the resulting distributed values for Nx = 16, Np = 4,
Bx = 1 and NB = 4.

There are many real applications fitting this scenario. For
instance, parallel simulations of discretized environments
where a particular problem is discretized into volume ele-
ments distributed among a given number of processes. In
these situations, block-cyclic distributions are commonly
used, given that they achieve a good load-balance. Periodi-
cally, parts of these data are transferred to disk (for instance,
during check-pointing operations). These data are subse-
quently read for visualizing and monitoring the simulated
environment. Usually, the simulation and visualization pro-
grams are developed separately, being necessary a prede-
fined data disk format for allowing the proper environment
reconstruction. One standard format consists of storing the
data in their original order.

Once data are distributed, the scenario that we are con-
sidering consists of storing the x vector on disk in the proper
order. We understand under proper order storing all the x
entries in their original order, that is x = {1, 2, . . .16} for
our example. Note that preserving the data structure avoids
further off-line sorting operations.

The basic idea of IEC I/O method is increasing data
locality of the I/O operations by means of data exchange
among the computing nodes. Figure 2 shows the algorithm
pseudocode. It is divided into four stages: memory alloca-
tion, datatype generation, data exchange and disk transfer.

Initially, we will describe the communication scheme
and the memory layout for the particular distribution shown

in Figure 1. Later, we will extend our technique to other
kind of distributions.

INSPECTOR: DATA MEMORY ALLOCATION
L1 x = allocate(Nx

Np
+ Nph ∗ Nx

2∗Np
)

L2 bin rank = integer2binary(rank)
L2 count = count ones(bin rank)
L2 alloc offset = count ∗ Nx/(2 ∗ Np)
L2 receive(x, alloc offset)

INSPECTOR: DATATYPE GENERATION
L3 Datatype send = generate send datatype()
L4 Datatype pack = generate pack datatype()

EXECUTOR: DATA EXCHANGING
DO ph = 0, Nph − 1

IF r%(2ph+1) < 2ph

L5 r′ph = r + 2ph

ELSE
L5 r′ph = r − 2ph

END IF
recv offset = compute offset(r′1, r

′
2, . . . r′Nph−1)

L6 Exchange(r′ph, x, Datatype send, recv offset)
END DO

EXECUTOR: DISK WRITTING
L7 Pack(output buffer, x, Datatype pack)
L8 bin rank = integer2binary(rank)
L8 perm bin rank = permute(bin rank)
L8 offset = binary2integer(perm bin rank) ∗ Nx/Np

L9 Disk write(output buffer, file name, offset)

Figure 2. Pseudo code of IEC I/O algorithm.

For a given architecture with Np computing nodes, our
method requires Nph communication phases. With:

Nph = �log2(Np)� (1)

Processes are grouped in couples, called pairs. During
a given phase, each pair of processes exchanges a part of
their data. We need to allocate an extra memory space for
the exchanged data. In our method, both the communica-
tion pattern and amount of transferred data are predefined.
More specifically, in each phase each processor sends and
receives Nx/(2∗Np) data entries according to a fixed com-
munication scheme. Subsequently, each process requires a
total of ∆x memory entries for storing all the communi-
cated data:

∆x = Nph ∗ Nx

2 ∗ Np
(2)

2 6 1410

P1

P0

P2

P3

1 5 139

3 7 11 15

40 8 12 1 5 340 8 12

Figure 3. Data distribution of IEC I/O algo-
rithm of x (Nx = 16 and Bx = 1) for four pro-
cesses.

The distributed vector x and the incoming data are stored in
the same memory region. That is, a region of Nx/Np + ∆x
array entries has to be allocated (Label L1 in Figure 2).

During the initial distribution of x we use an offset value
to start storing entries. This offset is shown in lines labeled
as L2 in Figure 2. Function integer2binary converts an
integer number (the process rank) into a binary number;
count ones returns the count of all the bits equal to one.
This value is used to compute the offset used to store the
distributed entries of x.

A graphical example of this distribution is shown in
Figure 3. Given that Np = 4 and Nx = 16, the memory
overhead is 12 entries. The bin rank, num ones and
alloc offset values for each process are shown in Table 1.

During the communication phase, several entries of x are
selected for being exchanged between couples of processes.
Again, during the writing phase, different memory entries
have to be gathered and written to disk. We use automatic
generated datatypes (Figure 2, lines L3 and L4) for select-
ing these memory positions. In the case of regular distri-
butions, datatype structures can be parameterized. That is,
datatypes can be automatically computed by means of a set
of linear equations with parameters Np, Nx and Bx.

For non-regular distributions, datatype structures are au-
tomatically generated by means of an inspector routine.
This routine analyzes both the data distribution and mem-
ory layout, and selects the memory entries corresponding to
data exchanges (or disk writes).

Rank 0 1 2 3

bin rank 00 01 10 11
num ones 0 1 1 2

alloc offset 0 2 2 4

Table 1. Example of bin rank, num ones and
alloc offset values for Nx = 16, Np = 4 and
Bx = 1.

In this work we have decoupled the datatype generation
algorithm (inspector routine) from the parallel I/O stage.
By parallel I/O stage is meant the data exchanging and
disk writing phases. This algorithm structure will allow
increasing performance, given that when the same I/O
operation is performed multiple times, the inspector routine
is executed once and its results are reused multiple times
by the parallel I/O stage. In [9] we present a detailed
description of the inspector routine for datatype generation
and examples of how some regular distributions can be
efficiently parameterized.

Once memory space allocation is completed and
datatypes are generated, the compute nodes perform data
exchange. This operation consists of sending and receiving
x entries between pairs of processes.

We denote the phase number ph, with 0 ≤ ph < Nph.
Given a process with rank r ∈ [0, Np), the line L5 in Fig-
ure 2 determines the rank r ′

ph of the target process used to
exchange data during ph phase.

Table 2 shows the process pairs for a configuration with
eight compute nodes. We also have printed in bold fonts the
pairs for a four process configuration used in our example.
Note that this scheme corresponds to a tree-based commu-
nication pattern.

Note that different datatypes are used for each commu-
nication phase. During the receive operation, all the re-
ceived entries are stored in consecutive memory positions.
The compute offset function returns the offset value for
storing the incoming data. This function is summarized in
Figure 4. For each communication phase i, we check if the
current destination rank (r ′

ph) is greater than the destination
rank of each communication phase (called r ′

i). If it is true,
we increase the offset in half of the assigned entries. In
addition, when r′ph is greater than the home process rank,
the offset is increased by Nx/Np. Table 3 summarizes the
offset values for each process and communication phase.

Finally, Line L6 of Figure 2 shows the exchange func-
tion. This function sends Nx/(2 ∗ Np) elements of x to
process r′ph and receives the same amount of elements from
the same process. Datatypes are used for gathering the data
to be sent, whereas the received entries are stored consec-

Ph 1st pair 2nd pair 3rd pair 4rd pair

0 0-1 2-3 4-5 6-7
1 0-2 1-3 4-6 5-7
2 0-4 1-5 2-6 3-7

Table 2. Process pairs for Np = 8 (Nph = 3).
Each pair corresponds to the rank of the pro-
cesses that exchange data.

recv offset = 0
DO i = 0, Nph − 1

IF r′ph > r′i THEN recv offset+ = Nx/(2 ∗ Np)
END DO
IFr′ph > rank THEN recv offset+ = Nx/Np

return(recv offset)

Figure 4. Pseudo code of compute offset
function.

2 6 1410 3 7

P1

P0

P2

P3

1 5 1398 12

3 7 11 151410

40 8 12 1 5 2 340 8 12 1 5

Figure 5. Data distribution of IEC I/O algo-
rithm after phase 0 (Nx = 16, Bx = 1 and
Np = 4).

2 6 1410 3 74 5

P1

P0

P2

P3

1 5 1398 12 1110

3 7 11 1514101312

40 8 12 1 5 2 340 8 12 1 5 2 3

Figure 6. Data distribution of IEC I/O algo-
rithm after phase 1 (Nx = 16, Bx = 1 and
Np = 4).

utively, starting at the offset value. This communication
scheme is non-blocking. First, the process with lower rank
sends the data to the higher rank processor. Then, the roles
are swapped.

Figures 5 and 6 show an example of the sent/received

Rank 0 1 2 3

Recv offset (ph = 0) 4 0 6 2
Recv offset (ph = 1) 6 6 0 0

Table 3. Example of Recv offset values for
each process and communication phase
(Nx = 16, Np = 4 and Bx = 1).

P1

P0

P2

P3

2 6 1410 3 74 5

1 5 1398 12 1110

3 7 11 1514101312

40 8 12 1 5 2 340 8 12 1 5 2 3

54 6 7

98 1110

12 13 14 15

1 5 2 30 1 2 3

PACKED

Figure 7. Final data distribution of IEC I/O al-
gorithm after packing (Nx = 16, Bx = 1 and
Np = 4).

values for each phase of the case of study. Sent entries are
marked with a gray background and received values are
marked with bolded borders.

Once the communication phases are completed, I/O op-
erations can be performed. Before that, the outgoing data
have to be packed for increasing the network transfer perfor-
mance. We use datatypeDatatype pack and MPI Pack
function for copying the desired values to the output buffer.
Figure 7 shows the content of this buffer for each one of
the processing nodes. Note that the output buffer contains a
chunk of consecutive entries of x.

The last step of our method is the I/O operation. It is
necessary to determine the file offset for each output buffer.
This offset is computed in the lines labeled L8 in Figure 2.
The function permute permutes each bit of the bin rank
sequence: for a sequence of n bits, the most significative
bit (n − 1) is swapped with the less significative (0), the
following one, n − 2, is swapped with bit 1 and so on;
binary2integer converts a binary number into integer. Ta-
ble 4 summarizes the values for our example.

The disk write function (label L9, Figure 2) writes
the content of this buffer into the file file name at
file offset words (in our application a word has 4
bytes). Note that this is a parallel I/O operation over non-
overlapping file entries. Thus, there are not write conflicts.

Rank 0 1 2 3

bin rank 00 01 10 11
perm bin rank 00 10 01 11

file offset 0 8 4 12

Table 4. Example of bin rank, perm bin rank
and file offset values for Nx = 16, Np = 4
and Bx = 1.

0

50

100

150

200

250

300

350

400

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

5
2
4
2
8
8

1
0
4
8
5
7
6

Data Size (Nx)

E
x

e
c

u
ti

o
n

T
im

e
(m

s
e

c
s

.)

Figure 8. IEC I/O Inspector computation time
(msecs.) for 16 processes with different Nx

values and Nb = 8.

4 Experimental Results

We have evaluated each component of our method un-
der different execution environments. The platform used
has the following specifications: 16 dual nodes (Intel Pen-
tium III at 800 MHz, 256KB L2 cache, 1GB memory),
Myrinet and FastEthernet interconnection networks, 2.6.13-
15.8-bigsmp O.S. For the Myrinet network we have used
the MpichGM 2.7.15 distribution. For FastEthernet, Mpich
1.2.6 was used. The parallel filesystem was PVFS 1.6.3 [4]
with one metadata server and a striping factor of 64KB. The
local filesystem corresponds to an ext3 partition of Linux.
Each data element (given by Nx) and stride element repre-
sents a float number of 4 bytes.

This section is divided into two parts. First, the perfor-
mance of the parallel I/O technique is analyzed, taking into
account the datatype generation algorithm as well as the
communication phases and disk access. Then, in the sec-
ond part the performance of our method is compared with
other state-of-the-art approaches.

4.1 Performance Analysis

A contribution of our method consists in splitting the
global algorithm into two components: the inspector and
the executor. The first one analyzes the data distribution
and computes the required datatypes. The second one per-
forms the data exchange and the disk access. This strat-
egy allows amortizing the inspector overhead by means of
datatype reusing. We have taken into account this division
for measuring the algorithm performance: instead of mak-
ing one measure of the whole method, we have evaluated
the performance of each element. In following section we
show and discuss the measured performance of each one of
the stages.

0

50

100

150

200

250

300

350

400

450

2 4 8 16 32 64

Number of processors

E
x

e
c

u
ti

o
n

T
im

e
(m

s
e

c
s

.)

Figure 9. IEC I/O Inspector computation time
(msecs.) for different processes with Nx =
524288 and Nb = 8.

0

500

1000

1500

2000

2500

3000

E
x
e
c
u

ti
o

n
T

im
e

(m
s
e
c
s
.)

1 2 4 8 16 32 64 128 256 512 1024

Stride Size

COMM-L1 COMM-L2 COMM-L3 COMM-L4 WRITE

Figure 10. IEC I/O Executor time for a 300MB
file, Np = 16 and Myrinet network.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

E
x
e
c
u

ti
o

n
T

im
e

(m
s
e
c
s
.)

1 2 4 8 16 32 64 128 256 512 1024

Stride Size

COMM-L1 COMM-L2 COMM-L3 COMM-L4 WRITE

Figure 11. IEC I/O Executor time for a 300MB
file, Np = 16 and FastEthernet network.

The number of datatype tuples (offset and length pairs)
is an important factor in the overall algorithm performance.
They consume system resources like memory space, CPU

1

10

100

1000

10000

100000

1 2 4 8 16 32 64 128 256 512 1024

Stride size

E
x
e
c
u

ti
o

n
T

im
e

(m
s
e
c
.)

List I/O 2 Phase I/O Block I/O Iec I/O

Figure 12. Comparative study for a 100MB
file, Np = 16 and Myrinet network.

and network bandwidth. In the case of the IEC I/O algo-
rithm, we have two datatype structures: sending and pack-
ing data. The number of tuples does not depend on the prob-
lem size(Nx) in case of regular distributions. In our exper-
iments, we obtained a constant value of 16 tuples in both
datatypes. Another factor that we have to consider is the in-
spector overhead. Figure 8 shows the datatype computation
time for different data sizes. IEC I/O algorithm exhibits a
good behavior with respect to Nx.

The relationship between inspector overhead and the
number of processors is shown in Figure 9. Note that the
cost of the IEC I/O inspector increases sublinearly with Np.
This is due to the fact that that inspector algorithm is fully
parallel and scales relatively well with Np.

Regarding the performance of the rest of the stages (data
exchange and disk write operation), figures 10 and 11 show
the execution time for Myrinet and FastEthernet networks,
respectively. Different Bx values were used for fixed val-
ues of Nx = 78643200 (300MB) and Np = 16. PVFS
filesystem employed 8 I/O nodes. The execution time is
divided into the three communication stages and the disk
write access. Note that the amount of data exchanged does
not depend on Bx. For this reason, the communication
times are almost constant for all the phases and Bx values.
When FastEthernet communication network is used (PVFS
filesystem keeps using Myrinet) there is a significant incre-
ment of the communication cost, but the algorithm perfor-
mance does not degrades for different Nb values. Based on
this figures we can conclude that the performance of the ex-
ecutor does not depends on Nb. Note that our method shows
similar performance in all the distribution scenarios (for dif-
ferent strides). As we will see in the following section, this
does not occur with other techniques.

1

10

100

1000

10000

100000

1000000

1 2 4 8 16 32 64 128 256 512 1024

Stride size

E
x
e
c
u

ti
o

n
T

im
e

(m
s
e
c
.)

List I/O 2 Phase I/O Block I/O Iec I/O

Figure 13. Comparative study for a 500MB
file, Np = 16 and Myrinet network.

1

10

100

1000

10000

100000

1 2 4 8 16 32 64 128 256 512 1024

Stride size

E
x
e
c
u

ti
o

n
T

im
e

(m
s
e
c
.)

List I/O 2 Phase I/O Block I/O Iec I/O

Figure 14. Comparative study for a 100MB
file, Np = 16 and FastEthernet network.

4.2 Performance comparison

We have compared the performance of our method with
three parallel disk techniques: List I/O, Two Phase I/O and
Block I/O. Block I/O technique consists of writing the dis-
tributed x entries in consecutive disk positions. Taking into
account the initial requirements, it is not a valid I/O tech-
nique because disk entries are not properly sorted. In fact,
disk entry order depends on how the array was initially dis-
tributed and, as we commented in the introduction, we un-
derstand that it is not a valid disk distribution. We have
chosen this technique as a reference approach: It performs
the most efficient I/O operation given that each processor
writes different chunks of data with the maximum locality
and without communication.

Figures 12 and 13 shows the comparative study us-
ing Myrinet network for Nx = 26214400 and Nx =
131072000, respectively. 16 processing nodes were used
in all the cases. IEC I/O includes executor performance
(containing both the communication phases cost plus the

1

10

100

1000

10000

100000

1000000

1 2 4 8 16 32 64 128 256 512 1024

Stride size

E
x
e
c
u

ti
o

n
T

im
e

(m
s
e
c
.)

List I/O 2 Phase I/O Block I/O Iec I/O

Figure 15. Comparative study for a 500MB
file, Np = 16 and FastEthernet network.

I/O cost). We can observe that (as expected) Block I/O ob-
tains the best performance. For small Bx values, both List
I/O and Two Phase I/O exhibit poor performance. In con-
trast, the performance of IEC I/O executor does not depend
on neither Bx or Nx, reaching values close to the reference
technique (Block I/O). When Bx increases, the performance
of Two Phase I/O improves, reaching the IEC I/O perfor-
mance for Bx = 16. List I/O requires of Bx = 512 or
greater for reaching IEC I/O performance.

The reason of the low efficiently of List I/O is the poor
management of the offset-length structures for small data
grains. These structures were designed for facilitating the
management of blocks of data. When the block sizes are
small, the overhead of handling these structures is too large
for a feasible option. In the case of Two Phase I/O, for small
Bx the communication cost increases. For this technique it
is necessary to determine the communication pattern among
the processors and which entries need to be exchanged. The
smaller Bx is, the greater is the overhead of disk access.

Figures 14 and 15, compare the performance for FastEth-
ernet network. Now we can see that the overall execution
time of methods that require inter-processor communication
(Two Phase I/O and IEC I/O) increases. In contrast, the per-
formance of both List I/O and Block I/O is similar to the one
measured for the Myrinet Network. This is due to a slower
inter-processor network. Note also that PVFS filesystem
keeps using Myrinet network. For larger Bx, List I/O per-
formance is better than Two Phase I/O. We can also note
that for larger Bx, there is not an important difference be-
tween the performance of IEC I/O and Two Phase I/O.

5 Conclussions

Comparing the IEC I/O algorithm with Two Phase
I/O, our method presents several advantages. It allows
communication parallelism: during each communication

phase, processors are organized in couples and perform
send/receive private point to point communications. This
provides a high parallelism degree because several commu-
nication operations can be performed at the same time. Ad-
ditionally, because all processors send and receive the same
amount of data, the communication is well balanced.

Based on the results from this paper, we conclude that
our technique performs best for distributions with low gran-
ularity (small Bx). In these situations, IEC I/O algorithm
outperforms the List I/O and Two Phase I/O techniques.
The performance of IEC I/O depends few on Bx, allowing
a good average performance for a broad number of distribu-
tions (Bx values). Another important contribution consists
in splitting the inspector stage from the executor. Using this
technique we can strongly reduce the overall algorithm cost
in cases of repetitive I/O operations with the same access
pattern.

References

[1] R. Bordawekar. Implementation of Collective I/O in the In-
tel Paragon Parallel File System: Initial Experiences. In
Proc. 11th Int. onference on Supercomputing, 1997.

[2] J. del Rosario, R. Bordawekar, and A. Choudhary. Improved
parallel I/O via a two-phase run-time access strategy. In
Proc. of IPPS Workshop on Input/Output in Parallel Com-
puter Systems, 1993.

[3] D. Kotz. Disk-directed I/O for MIMD Multiprocessors. In
Proc. of the First USENIX Symp. on Operating Systems De-
sign and Implementation, 1994.

[4] W. Ligon and R. Ross. An Overview of the Parallel Virtual
File System. In Proc. of the Extreme Linux Workshop, 1999.

[5] Message Passing Interface Forum. MPI2: Extensions to the
Message Passing Interface, 1997.

[6] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Ellis, and
M. Best. File Access Characteristics of Parallel Scientific
Workloads. In IEEE Transactions on Parallel and Dis-
tributed Systems, 7(10), Oct. 1996.

[7] K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett.
Server-directed collective I/O in Panda. In Proceedings of
Supercomputing ’95.

[8] D. Singh, F. Isaila, A. Calderón, F. Garcia, and J. Carretero.
Multiple-phase I/O technique for improving data access lo-
cality. In PDP 2007, 2007.

[9] D. E. Singh, F. Isaila, J. C. Pichel, and J. Carretero. Inspec-
tor executor collective I/O internal structure. Technical re-
port, Computer Architecture Group,Inspector-Executor col-
lective I/O (IEC I/O) University Carlos III of Madrid., 2007.
www.arcos.inf.uc3m.es/∼desingh/reports.html.

[10] R. Thakur, W. Gropp, and E. Lusk. Data Sieving and Col-
lective I/O in ROMIO. In Proc. of the 7th Symposium on
the Frontiers of Massively Parallel Computation, pages 182–
189, February 1999.

[11] R. Thakur, W. Gropp, and E. Lusk. On Implementing MPI-
IO Portably and with High Performance. In Proc. of the
Sixth Workshop on I/O in Parallel and Distributed Systems,
pages 23–32, May 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

