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Abstract

The combination of techniques based on reordering data with classic code
restructuring techniques for increasing the locality in the execution of sparse
algebra codes is studied in this paper. The reordering techniques are based
on, first modeling the locality in run-time, and then applying a heuristic for
increasing it. After this, a code restructuring technique specially tuned for
sparse algebra codes called register blocking is applied. The product of a
sparse matrix by a dense vector (SpM×V ) is the code studied on different
monoprocessors and distributed memory multiprocessors. The combination
of both techniques was tested for a broad set of matrices from real prob-
lems and known repositories. The results expressed in terms of execution
time show that an adequate reordering of the data improves the efficiency
of applying register blocking, therefore, reducing the execution time for the
sparse algebra code considered.

Keywords: irregular codes, data locality, reordering, blocking, multipro-
cessors.



1 Introduction

The hierarchical arrangement of memory in current computer architectures,
called memory hierarchy, tries to exploit the locality properties in the ex-
ecution of any code. The analysis and improvement of these properties
are fundamental issues for increasing the performance in the execution of a
code [15]. This fact is specially important for the case of irregular codes [20]
because the irregular accesses tend to present low spatial and temporal lo-
cality.

The fact above can be applied to monoprocessors, SMPs and also to
distributed memory multiprocessors like some clusters of PCs. In the case
of monoprocessors, the most costly level of the memory hierarchy is typi-
cally the main memory. So the main issue is to reduce the number of cache
misses. In the case of distributed memory multiprocessors a lack of locality
implies a movement of data between local and remote memories. And these
are the most costly accesses in such computers. High locality in the accesses
generated by each processor empowers the data reuse and consequently re-
duces the global execution time. Another important aspect for achieving
high performance in such architectures is an adequate load balance.

A large number of algorithms for evaluating and optimizing data local-
ity can be found in the literature. In the case of regular codes operating
on dense matrices, most approaches for increasing locality are based on de-
creasing conflict cache misses by using blocking, strip–mining or other code
restructuring techniques [23]. There are a variety of static models for select-
ing memory hierarchy transformations and parameters such as tile sizes for
regular codes [23, 12, 3].

In the case of irregular codes, the techniques for increasing the locality
can be mainly divided into two categories: restructuring code techniques
and reordering data techniques. Those based on restructuring the code like
blocking have been applied with success, for example, to the product of a
sparse matrix by a dense matrix [14, 5].

In previous works we have developed a model to characterize the locality
and a procedure for increasing it based on reorganizing the data instead of
changing or restructuring the code. The objective is increasing the grouping
of elements in the pattern of the sparse matrix involved in the irregular code.
As we demonstrated for monoprocessors and SMPs [16], reordering is effec-
tive for matrices with any structure and for different sparse algebra kernels.
Similar approaches, performing a reordering in certain data structures, have
been successfully applied [21, 17] although in a more reduced context.

The potential of the locality improvement model, described in this paper,
is on increasing the grouping of elements on the pattern of the matrix which
allows to reach two objectives. First, our model can be applied for increasing
the reuse of data in any level of the memory hierarchy, including cache
memory and registers. Second, the grouping of entries over the pattern of the
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matrix makes more efficient the subsequent application of any restructuring
technique like, for example, blocking, given that it generates a structure of
entries in blocks.

So, we have two groups of techniques that are complementary and can
be successfully applied together as some authors have previously suggested.
In [22] and [10] a combination of reordering algorithms and register blocking
in different orders have been applied to the sparse matrix vector product.
Good results were achieved only for some scientific matrices and only for
monoprocessor machines. As far as we know, any author has systemat-
ically studied the combination of data reordering and code restructuring
techniques for sparse matrix codes in distributed memory multiprocessors.

Along this paper we analyze, for several architectures, the performance
of the reordering technique that we propose. We also prove that the com-
bination of such reordering technique and register blocking is profitable in
terms of execution time. The sparse matrix-vector product (SpM×V ) is an
important computational kernel used in scientific computation, signal and
image processing, document retrieval, and many other applications. This is
the main reason why we have chosen it as representative example of irregular
codes.

This paper is organized as follows. Section 2 presents a brief summary
of the locality model, and the reordering data technique for improving the
locality is detailed. In Section 3 a description of the main characteristics of
the matrix benchmark suite and the different hardware platforms used are
shown. The application of the reordering technique is detailed in Section 4.
In Section 5 the results of the combination of the reordering technique and
register blocking are shown. Section 6 presents a summary of the results
obtained on applying our methodology, and finally, the main conclusions of
this work are explained.

2 Locality modeling and improvement based on
reordering data

In this section we briefly describe the locality improvement technique that
we have developed and applied to a variety of sparse algebra codes and
computer architectures in previous works. The locality model was detailed
and applied to the SpM×V operation in [7]. A process to deal with the
locality improvement problem applied to the same sparse algebra code was
described and validated for monoprocessors in [6]. The application of the
locality model for improving the locality was studied in [9] for the product
of a sparse matrix by a dense matrix, and in [8] for the transposition of a
sparse matrix. The model previously developed for monoprocessors was also
extended to the case of NUMA shared memory multiprocessors in [16].
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2.1 The locality model

From now on we consider that when a high spatial or temporal locality in
the accesses generated by the execution of a code is exhibited, there will be
reuse of data in a particular level of the memory hierarchy under study [13].
Our locality model is based on the evaluation of the data locality for the
sparse algebra code considered. The model is general enough to include
any sparse algebra code that can take profit of a clustering of entries in the
pattern of the matrix. And, as we will explain below, the locality model
initially developed for the case of monoprocessors can be easily extended to
the case of distributed memory multiprocessors.

The locality model have been introduced in [7] for some sparse codes ex-
ecuted on single processor computers. In this model the locality is measured
over consecutive pairs of rows or columns. It is based on evaluating two lo-
cality parameters: the number of entry matches (aelems) and the number of
block matches (ablocks). The locality is modeled from these two parameters.
The number of entry matches between any two rows of the sparse matrix is
defined as the number of times that there are two nonzero elements in the
same column of the matrix. The concept of entry matches can be extended
to block matches in a straightforward way by considering instead of single
entries, pieces of consecutive positions in a row of the matrix which include
at least one entry. The definition of both concepts can directly be extended
to columns.

Based on these two parameters we have defined a magnitude called dis-
tance between rows x and y, denoted as di(x, y). It is used to measure the
locality displayed by the irregular accesses performed by the sparse irregu-
lar code on these two rows when they are consecutively accessed. From the
several different distance definitions proposed in [7] we have chosen two:

d1(x, y) = maxelems − aelems(x, y)
d2(x, y) = nelems(x) + nelems(y)− 2∗aelems(x, y).

where maxelems is the maximum number of elements in any row of the
matrix, and nelems(x) is the number of elements in row x. These distance
functions define metrics over the N rows or columns of the matrix [7].

For a given sparse matrix two quantities, that are inversely proportional
to the locality of the data for the whole sparse matrix, can be defined by
summing the distances between pairs of consecutive rows or columns in the
order they are accessed:

Dj =
N−2∑

i=0

dj(i, i + 1), j = 1, 2. (1)

And this could be applied to any sparse algebra code whose locality is de-
termined by the level of grouping of the entries in the pattern of the matrix.
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DO I = 1, N
REG = 0.0
DO J = PTR(I), PTR(I+1)-1

REG = REG + DA(J)* X(Index(J))
ENDDO
Y(I) = REG

ENDDO

(a) (b)

Figure 1: Algorithm for the product of a sparse matrix by a vector: (a)
sequential algorithm and (b) data access.

This is, in particular, true for the SpM×V code. Let consider for this oper-
ation that the matrix is stored using the standard Compressed-Sparse-Row
format (CRS) for unstructured sparse matrices [2]. da, index and ptr are
the three vectors (data, column indices and row pointer) corresponding to
this storage format. Using this format and considering that x is the vector
by which the product is performed and y the result vector, the product could
be implemented as displayed in Figure 1(a). The data accesses required by
this code to perform the product of a row of the matrix by the vector are
displayed in Figure 1(b). According to the code in Figure 1(a), the sparse
matrix is accessed in a row major order and a closer grouping of elements
in a particular row of the matrix will lead to accesses to nearer elements of
vector x, improving the spatial locality in the accesses to that vector. A
closer grouping of nonzero elements between two or more consecutive rows
of the matrix will produce an increase in the temporal locality achieved in
the accesses to vector x. So, in general, the closer grouping of entries in
the matrix pattern, the greater the locality in the accesses. In the case of
distributed memory multiprocessors the same code displayed in Figure 1(a)
can be used. It is only necessary to add some directives to specify which data
are assigned to each processor. The code has to be tuned to establish the
group of consecutive rows that must be multiplied in each processor. The
rows have to be equally partitioned among the available processors. Given
that they will operate over disjoint pieces of the original matrix, the problem
of locality inside each processor is similar to the one of the monoprocessor
case.

This model is suitable for any sparse matrix without limitations in the
type of pattern that they present. The final objective of the locality model
is to guide a locality improvement process for increasing the reuse of data at
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(a) (b) (c)

Figure 2: Example of the patterns of matrix 13 : (a) original, (b) reordered
using d1 and (c) reordered using d2.

any level of the memory hierarchy. This issue is studied in the next section.

2.2 Locality improvement based on reordering data

We have outlined the relevance of searching for an increase of the locality
in the execution of irregular codes. We propose to deal with this problem a
heuristic technique consisting in modifying the pattern of the sparse matrix
and evaluating the goodness of the modification performed by using the
locality model described in the above section.

We formulate this problem of locality improvement as a classic NP-
complete optimization problem, and we solve it as a graph problem using an
analogy to the Traveling Salesman Problem (TSP). The problem is described
using a graph where each node represents a row/column of the sparse matrix,
and each edge has an associated weight that reflects the distance between
rows/columns according to the description of locality given previously. The
solution of the problem consists of two permutation vectors that indicate
the appropriate order of rows or columns minimizing the value of the total
distance defined by Expression 1. We have compared different heuristics for
solving this problem, and finally we have chosen the Lin-Kernighan heuris-
tic (LK). This is a local search heuristic that takes as an input a feasible
but possibly suboptimal solution of the problem and repeatedly tries to im-
prove it modifying the previous one. We use the Chained Lin–Kernighan
implementation in CONCORDE proposed by Applegate et al. [1].

A solution of the locality problem implies, as we have indicated before,
changes in the pattern of the sparse matrix. As an example, Figure 2 shows
the change in the appearance of the pattern of matrix 13 of our test set (see
Section 3) when the reordering process is applied. Note that the reordered
matrices present a higher level of clustering of their entries than the original
one. In the case of multiprocessors the situation is slightly different because
we have different processors operating on disjoint parts of the initial matrix
and performing a part of the SpM×V. For this case we propose a locality
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Matrix N NZ Application Area

1 bayer02 13935 63679 Chemical process
2 bcspwr10 5300 21842 Power Networks
3 crystk02 13965 968583 FEM Crystal
4 ex11 16614 1096948 3D Steady flow
5 goodwin 7320 324784 Fluid mechanics
6 jpwh991 991 6027 Circuit physics
7 lhr10 10672 232633 Light hydrocarbon
8 zenios 2873 27191 Air traffic control
9 mcfe 765 24382 Astrophysics
10 memplus 17758 126150 Circuit Simulation
11 bcsstk30c 23000 1608696 Structural engineering
12 li 22695 1350309 3D Finite element
13 msc10848 10848 1229778 Structural engineering
14 nc5 19652 1499816 N-Body simulation
15 syn12000a 12000 1436806 Synthetic matrix

Table 1: Matrix benchmark suite.

improvement process divided into two steps:

• First, a reordering among rows over the whole sparse matrix is per-
formed to obtain a partition of rows of the matrix among the proces-
sors.

• Second, a particular reordering among columns is performed over the
portion of the matrix assigned to each processor.

So, once the whole sparse matrix is reordered, it is divided into as many
submatrices as the number of processors, and then each submatrix is re-
ordered by columns. By means of this stage the locality is optimized within
each processor separately.

3 Matrix benchmark suite and hardware platforms

As a test set to evaluate the techniques for locality improvement we have
selected fifteen square sparse matrices from different real problems that rep-
resent a variety of non-zero patterns. Table 1 summarizes the main charac-
teristics of the matrices. N is the number of rows or columns, and NZ is the
number of entries. We have selected these matrices from the University of
Florida Sparse Matrix Collection (UFL) [4], except matrices 11, 14 and 15.
Matrix 11 corresponds to a square portion of 23000 rows from the original
bcsstk30 matrix (provided by the UFL collection). Matrix 14 was generated
from an N-body simulation [18]. Finally, matrix 15 is a synthetic matrix
generated randomly. According with the structure of the patterns, we can
group the matrices in three different sets. In the first set those matrices
that present a large number of small fixed-size dense blocks on their pat-
terns are included. In general these are very banded matrices. For example,
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(a) (b)

(c) (d)

Figure 3: Examples of matrix patterns: Matrices (a) 3, (b) 7, (c) 8 and (d)
14.

Finite Element Method (FEM) matrices such as matrix 3. Its pattern is
shown in Figure 3(a). Matrices 4, 5 and 12 also belong to this set. The
second set includes matrices with non-symmetric irregular patterns such as
matrix 7 shown in Figure 3(b). Matrices 1 and 15 present the same kind of
pattern. Finally, symmetric and nonsymmetric structured matrices belong
to the third set. For example matrices 8 and 14, shown in Figures 3(c)
and 3(d) respectively. Matrices 2, 6, 9, 10, 11 and 13 are also included in
this group. For performing the experiments, we have selected four different
hardware platforms based on the following processors: Mips R10000, Sun
UltraSparcII, Sun UltraSparcIII, and Intel Pentium III. Table 2 summarizes
the main characteristics of these processors. The clock speed, number and
size of the floating-point registers, the cache configuration and latencies of
each processor are summarized in the table. Floating-point registers in the
UltraSparc platforms are arranged in a way that some of them overlap, that
is, are aliased [19]. Secondary level caches are external on the four platforms,
and cache latencies in the table correspond to the worst cases.

4 Application of the reordering technique

In this section the application of the locality improvement technique to the
SpM×V operation, described in Section 2, for the matrices and machines
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Mips R10000 Sun UltraSparcII Sun UltraSparcIII Intel PentiumIII

Clock rate 225 MHz 300 MHz 900 MHz 500 MHZ

FP Registers 32 32/32/16 32/32/16 8/8
FP Registers size 64 bits 32/64/128 bits 32/64/128 bits 80/128 bits

L1 data cache size 32 KB 16 KB 64 KB 16 KB
L1 line size 32 Bytes 32 Bytes 32 Bytes 32 Bytes
L1 latency 3 cycles 3 cycles 2 cycles 3 cycles

L2 cache size 2 MB 2 MB 8 MB 512 KB
L2 line size 128 Bytes 64 Bytes 512 Bytes 32 Bytes
L2 latency 12 cycles 9 cycles 14 cycles 10 cycles

Table 2: Summary of the main characteristics of the evaluation platforms.

detailed in Section 3 is studied. A preliminary study for a more reduced
set of matrices and considering SMP architectures was described in our
paper [16]. In particular, we evaluated the improvements achieved in terms
of the reduction in the number of cache misses. Nevertheless, a locality
improvement implies an increase in the reuse achieved at any level of the
memory hierarchy: cache memory, registers, ... In this paper from now on,
the results are expressed in terms of the quotient of the execution time of a
solution respect to the execution time of a situation considered as reference.
The results are shown in terms of execution time because, in fact, it is the
most relevant magnitude for evaluating the performance.

4.1 Reordering on monoprocessor platforms

In particular in Figure 4 we show the execution time improvements achieved
when executing the SpM×V code on a reordered matrix with respect to the
execution time for the same code considering the original matrix. Each
graph represents the results obtained for each one of the four monoproces-
sor architectures considered: MIPS R10000, UltraSparcII, UltraSparcIII and
PentiumIII. The matrices in Table 1 are represented in the X-axis. The line
in each graph indicates a value of 1 for the improvement in the execution
time. This means that the execution time for the reordered matrix is the
same than for the original matrix. For each matrix we show the results
obtained when the reordering process is guided by the distance definitions
d1 and d2.

The main conclusion from these results is that for most of the matrices
some improvement is achieved, although they are generally small. Neverthe-
less even in the worst cases for which a worsening is obtained, this is under
5%, while the improvements for some cases achieve 18%. Note that for any
matrix, the reuse of data achieved for the different architectures depends on
the particular characteristics of the memory hierarchy: number and length
of the registers, cache size, replacement algorithm,... It is also important to
note that the results for the different matrices are quite different depending
on the size and pattern of the matrix. For all the architectures only for

8



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.9

0.95

1

1.05

1.1

1.15

Matrices

E
xe

cu
ti

o
n

 T
im

e 
Im

p
ro

ve
m

en
t

Distance 1
Distance 2

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.9

0.95

1

1.05

1.1

1.15

Matrices

E
xe

cu
ti

o
n

 T
im

e 
Im

p
ro

ve
m

en
t

Distance 1
Distance 2

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.9

0.95

1

1.05

1.1

1.15

Matrices

E
xe

cu
ti

o
n

 T
im

e 
Im

p
ro

ve
m

en
t

Distance 1
Distance 2

(c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.9

0.95

1

1.05

1.1

1.15

Matrices

E
xe

cu
ti

o
n

 T
im

e 
Im

p
ro

ve
m

en
t

Distance 1
Distance 2

(d)

Figure 4: Execution time improvement obtained using LK compared to
original matrix: (a) Mips R10000, (b) UltraSparcII, (c) UltraSparcIII and
(d) PentiumIII.

matrix 10 no improvements are achieved. The reason is that this matrix
presents a structure in narrow bands, with high initial locality and therefore
with a poor margin for locality increase.

4.2 Reordering on multiprocessor platforms

We have also applied the reordering technique to the case of distributed
memory multiprocessors. In particular to four different multiprocessors each
of them built based on the microprocessors described in Table 2. The re-
ordering technique for improving the locality in the case of multiprocessors
was described in Section 2.2 and consists basically in performing an ade-
quate reordering of the rows of the original matrix and after it, a different
reordering of columns over only the portion of the matrix assigned to each
processor. The results in terms of execution time improvements are rep-
resented in Figure 5 in four graphs corresponding to the cases of having
a multiprocessor of one, two, three and four Mips R10000 processors re-
spectively. In each case the execution time improvements refer to the one
achieved when executing the parallel SpM×V code over a reordered matrix
with respect to the execution time for the same code but with the original
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Figure 5: Execution time improvement obtained using LK compared to
original matrix on a MIPS R10000 multiprocessor using (a) 1, (b) 2, (c) 3
and (d) 4 processors.

matrix. When more than one processor is considered the execution time is
the time spent by the most costly processor. Note that the results follow the
same trend for the four cases. Nevertheless, the magnitude of the execution
time improvements is greater when more processors are considered. The
results considering the four different multiprocessors and three processors
per each one are displayed in Figure 6. The behavior in terms of magnitude
of the execution time improvements is similar for the different multiproces-
sors. The differences are due to the different characteristics of the memory
hierarchy present in each computer. Note that, for instance, improvements
up to 1.67 for the UltraSparcII platform were obtained.

5 Combining reordering and register blocking tech-
niques

We are interested in combining the reordering technique that we have devel-
oped and explained in previous sections with code restructuring algorithms
for optimizing the data locality.

Blocking is one of the most well-known code restructuring techniques and
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Figure 6: Execution time improvement obtained using LK compared to
original matrix using three processors: (a) Mips R10000, (b) UltraSparcII,
(c) UltraSparcIII and (d) PentiumIII.

it can be applied to different levels of memory hierarchy such as physical
memory, caches and registers [23]. Blocking reshapes an iteration space
over a data domain by partitioning it into pieces that fit into the selected
level of hierarchy. In this way, all the computations on each piece can be
completed before moving to the next one. Blocking rearranges the order
of the computations, so that multiple references to a data element occur in
inner loops while such element is still resident in the corresponding level of
hierarchy.

In particular register blocking tries to eliminate loads and stores by
reusing values stored in registers. We use the sparsity register blocking
implementation [11]. While the idea of blocking for dense matrix operations
is well known, the sparse matrix transformation is quite different. Register
blocking reorganizes the sparse matrix into a set of fixed-size dense blocks
by finding a small block size that fits into the target machines’s register set.
A reasonably small number of extra zeros elements are stored to compose
dense blocks. These extra zero values increase the number of floating-point
operations because they are involved as a part of the blocks in the sparse
matrix computation. So, the matrix is stored as a sequence of small dense
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blocks, and the computations are reorganized to compute each block before
moving on to the next.

For selecting an appropriate register block size sparsity proposes an
heuristic based on two components. First, an approximation for the perfor-
mance rate of a matrix with a given block size. And second, an approxima-
tion for the amount of unnecessary computations that would be performed.
This number depends on the ratio of computations before and after the ad-
dition of the extra zeros. These two components differ in the amount of
information they require: the first only needs the target machine, whereas
the second only needs the structure of the matrix. The register block size is,
therefore, dependent on the nonzero structure of the sparse matrix. One of
the main drawbacks of the register blocking technique is that it only tends
to be effective on matrices that contain a large number of small fixed-size
dense sub-blocks on their patterns. For example, Finite Element Method
matrices (FEM). But it does not obtain good results with other types of
matrices in the sense that the execution time of the blocked code is higher
than the corresponding time for the original code.

Our proposal is effective for matrices with any structure. It performs
a previous reorganization of the data. This reordering usually improves
the effectiveness of applying a later restructuring technique such as register
blocking. Other approaches that combine reordering and code restructuring
techniques were presented for other authors in [17, 10].

5.1 Blocking and data reordering on monoprocessor plat-
forms

In this section the application of register blocking to previously reordered
matrices on a monoprocessor system is analyzed. As we have mentioned
above, we expect that register blocking improves its performance when com-
bining with reordering due to the closer grouping of entries that it causes
in the matrix. And, this way, the creation of blocks in the pattern of the
matrix is favored. Figure 7 shows the execution time improvement when
combining reordering and register blocking respect to the execution time of
the original sequential code with the original matrix on the four platforms
introduced in Section 3. For the matrices labeled with an asterisk the reg-
ister block size selected is 1 × 1, i.e., no register blocking is performed at
all. Note that register blocking can be applied to each reordered matrix at
least in one platform, except to matrix 15 which appears with asterisk in
all the graphs. The best results are obtained for the UltraSparcIII platform.
It is specially relevant the execution time improvement for FEM matrices
such as matrix 3, where even improvements of 3.44 are reached. After re-
ordering these matrices (see Section 3), they also present dense sub-blocks
in their patterns like the original ones. This fact makes specially efficient
the application of register blocking. Figure 8 shows the original matrices to
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Figure 7: Execution time improvement obtained using LK+Blocking com-
pared to original matrix: (a) Mips R10000, (b) UltraSparcII, (c) Ultra-
SparcIII and (d) PentiumIII.

Matrix d1 d2

3 1.02 1.02
4 0.99 0.99
13 1.01 1.05

(a)

Matrix d1 d2

3 0.99 0.99
4 1.02 1.01
9 1.31 1.11
10 0.95 0.95
13 1.02 1.01

(b)

Matrix d1 d2

3 0.99 1.01
4 1.14 1.10
7 1.09 1.11
11 1.17 1.18
13 1.01 1.01

(c)

Matrix d1 d2

3 1.03 1.04
4 1.02 1.02

(d)

Figure 8: Execution time improvement of blocked code on reordered matri-
ces with respect to blocked code on original matrices on the four hardware
platforms for distances d1 and d2: (a) Mips R10000, (b) UltraSparcII, (c)
UltraSparcIII and (d) PentiumIII.
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which register blocking can be applied with success without performing a
previous reordering. Register blocking on original matrices only is effective
for a reduced number of them. In particular, for matrices 3 and 4 on all
the platforms. The execution time improvement of the blocked code for the
reordered matrices with respect to the blocked code for the original matrices
is also shown. As we have shown in Figure 7, the effectiveness of register
blocking increases remarkably when using reordered matrices. Comparing
the execution time respect to the blocked code for the original matrices, the
results show that, except for a few cases, an improvement is achieved. For
instance, this improvement is up to 1.31 for matrix 9 on the UltraSparcII
platform.

5.2 Blocking and data reordering on multiprocessor plat-
forms

In this section we show the results of combining reordering and register
blocking on four different multiprocessors. The sparse matrix-vector prod-
uct was executed using 1, 2, 3 and 4 processors. In the multiprocessor case
each processor only computes the product of some consecutive rows of the
matrix. As we have commented we divide the initial matrix into p sub-
matrices (being p the number of processors), and then each submatrix is
reorganized independently for increasing the locality. A reorganization of
the data to increase the locality within each submatrix is performed indi-
vidually. This way register blocking can be applied to each submatrix with
a different block size, and it could happen for some submatrices that the
application of register blocking would be inefficient. In the figures of this
section, those reordered matrices for which register blocking is inefficient for
at least one of its submatrices are labeled with an asterisk. As an example,
Figure 9 shows the execution time improvement of the blocked code on re-
ordered matrices with respect to the non-blocked code on original matrices
on a multiprocessor system based on Mips R10000. Note that, generally,
the improvements grow when the number of processors increases. On this
platform we achieve improvements up to 2.2 using 4 processors. As in Figure
8, Figure 10 shows the original matrices to which register blocking can be
applied directly, and the execution time improvement of the blocked code
for the reordered matrices respect to the blocked code for the original ma-
trices using 1, 2, 3 and 4 processors. The behavior using several processors
is similar to the monoprocessor case shown in Figure 10(a). That is, regis-
ter blocking is only effective for the original matrices if they present blocks
in their structure. Anyway, as we point out in Figure 10, the combination
of the two techniques produces better results than applying only register
blocking. Execution time improvements applying reordering and register
blocking with respect to the application of only register blocking on the
original matrices are always achieved when the product is performed using
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Figure 9: Execution time improvements for the blocked code on reordered
matrices compared to the non-blocked code on original matrices on a MIPS
R10000 multiprocessor using (a) 1, (b) 2, (c) 3 and (d) 4 processors.

Matrix d1 d2

3 1.02 1.02
4 0.99 0.99
13 1.01 1.05

(a)

Matrix d1 d2

3 1.03 1.05
13 1.01 1.14

(b)

Matrix d1 d2

1 1.14 1.13
3 1.03 1.01
4 1.01 1.14
13 1.02 1.09

(c)

Matrix d1 d2

1 1.16 1.11
3 1.06 1.05
13 1.12 1.46

(d)

Figure 10: Execution time improvement of blocked code on reordered ma-
trices with respect to blocked code on original matrices on a MIPS R10000
multiprocessor for distances d1 and d2 using (a) 1, (b) 2, (c) 3 and (d) 4
processors.
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Figure 11: Execution time improvements obtained using LK+Blocking com-
pared to original matrix using three processors on the four multiprocessor
platforms: (a) Mips R10000, (b) UltraSparcII, (c) UltraSparcIII and (d)
PentiumIII.

more than one processor. These improvements are up to 1.46 using 4 pro-
cessors. Finally, Figure 11 shows that the results are qualitatively similar
for all the platforms. In this case the results are shown for three processors.
In general, the execution time improvements are higher than those obtained
for the monoprocessors. Comparing the results between multiprocessor plat-
forms it can be observed that the best overall improvements are achieved
using an UltraSparcIII, as in the sequential case. The lowest improvements
are obtained on the Pentium III cluster, and even in this case they are up
to 1.54.

6 Summary of results

In this section we summarize for all the platforms the results obtained using
only the reordering technique, or the combination of register blocking and
reordering when it is possible. Table 3 shows, as example, the results for the
monoprocessor case in terms of the percentage of execution time improve-
ment. The improvements obtained for the two distance functions (d1 and
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Matrix d1 (%) d2 (%) Global (%)

1 0.2 0.8 0.5
2 7.8 6.9 7.4
3 45.0 45.5 45.3
4 12.3 11 11.7
5 11.1 8.0 9.6
6 0.8 -0.4 0.2
7 7.8 8.0 7.9
8 35.0 34.6 34.8
9 19.7 15.8 17.8
10 4.2 4.7 4.4
11 11.3 12.7 12.0
12 20.0 20.0 20.0
13 38.2 38.8 38.5
14 12.1 11.6 11.9
15 7.9 8.5 8.2

Average 15.6 15.1 15.3

Table 3: Summary of the best results in terms of percentage of execution
time improvement for the monoprocessor case on all the hardware platforms.

d2) are very similar. From this table we can conclude that the best results
are obtained for matrices that belong to matrix groups 1 and 3 described
in Section 3. Group 1 includes matrices that present small dense blocks on
their patterns. Matrices 3, 4, 5 and 12 belong to this group. In this case
the average execution time improvement is up to 45.3%. The structured
matrices of the third group also obtain very good results (matrices 2, 6, 8,
9, 10, 11, 13 and 14 ). Finally, matrices belonging to the second group (with
irregular patterns), also achieve improvements. Matrices 1, 7 and 15 are in
this group. The total average percentage of improvement is about 15% for
both distance functions. As we have commented in the previous section, the
execution time improvements increase when the number of processors im-
plied in the product is higher. For example, the total average improvement
performing the sparse matrix-vector product using four processors is about
20%.

7 Conclusions

The combination of different techniques for increasing the locality in the
execution of irregular codes is studied in this paper. The techniques are data
reordering and code restructuring ones. We have chosen the sparse matrix-
vector product (SpM×V ) as a representative kernel of the irregular codes
whose locality properties depend on the clustering of entries on the pattern
of the sparse matrix. The architectures considered are monoprocessors and
distributed memory multiprocessors.

A model of locality and a procedure for increasing it were presented. Our
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proposal is based on performing a reorganization of the data with the aim
of increasing the grouping of elements in the pattern of the matrix, and this
way, improving the locality. Along this paper we analyze, for several archi-
tectures, the performance of the reordering technique that we propose. On
applying it, significant decreases in the execution times for a representative
set of matrices from real scientific problems have been obtained.

After the reordering, a code restructuring technique specially tuned for
sparse algebra codes called register blocking is applied. Register blocking
reduces the number of loads and stores by reusing values that are in registers.

The combination of both types of techniques is profitable in terms of
execution time. This is tested for a broad set of matrices and for different
monoprocessors and distributed memory multiprocessors. The results also
show that an adequate reordering of the data increases the possibility of suc-
cessfully applying register blocking, and therefore, of reducing the execution
time for the sparse algebra code considered.
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