
A New Technique to Reduce False Sharing in Parallel Irregular Codes Based on
Distance Functions∗

Juan C. Pichel Dora B. Heras José C. Cabaleiro Francisco F. Rivera
Dept. Electrónica e Computación

Universidade de Santiago de Compostela, Galicia, SPAIN
jcpichel,dora,caba,fran@dec.usc.es

Abstract

In this paper a technique to deal with the problem of poor
locality and false sharing in irregular codes on shared mem-
ory multiprocessors (SMPs) is proposed. This technique is
based on the locality model for irregular codes previously
developed and extensively proven by the authors on mono-
processors and multiprocessors. In the model, locality is es-
tablished in run-time considering parameters that describe
the structure of the sparse matrix which characterizes the ir-
regular accesses. As an example of irregular code with false
sharing a particular implementation of the sparse matrix-
vector product (SpM×V) was selected. The problem of in-
creasing locality and decreasing false sharing for a irreg-
ular problem is formulated as a graph. An adequate dis-
tribution of the graph among processors followed by a re-
ordering of the nodes inside each processor produces the
solution. The results show important improvements in the
behavior of the irregular accesses: reductions in execution
time and an improved program scalability.

1. Introduction

The hierarchical arrangement of memory in current com-
puter architectures tries to exploit the locality properties in
the execution of any code. The analysis and improvement of
these properties are fundamental issues for increasing the
performance in its execution. This fact is specially impor-
tant for the case of irregular codes [14] because the accesses
tend to present low spatial and temporal locality.

A large number of algorithms for evaluating and opti-
mizing data locality can be found in the literature. In the
case of regular codes, most approaches for increasing lo-
cality are based on decreasing conflict cache misses by us-
ing blocking, strip–mining or other code restructuring tech-
niques [17]. There are a variety of static models for select-

∗ This work was supported by the Spanish Ministry of Education and
Science (MEC) under projects TIC2001-3694-C02-01 and TIN2004-
07797-C02-01.

ing appropriate memory hierarchy transformations and pa-
rameters such as tile sizes for regular codes [17, 8, 3].

In the case of irregular codes, the techniques for in-
creasing the locality can be mainly divided into two cat-
egories: code restructuring techniques and data reorder-
ing techniques. Those based on restructuring the code, like
blocking, have been applied with success, for example, to
the product of a sparse matrix by a dense matrix [10].

In previous works we developed a model to characterize
the locality and a procedure for increasing it using data re-
ordering techniques. It was based on reorganizing the data
instead of changing or restructuring the code [5]. The goal
is to increase the grouping of elements in the pattern of
the sparse matrix that characterizes the irregular accesses.
As we demonstrated for monoprocessors and shared mem-
ory multiprocessors (SMPs) [11], our reordering is effec-
tive for matrices with any structure and for different sparse
algebra kernels. Similar approaches, performing a reorder-
ing in certain data structures, have been successfully ap-
plied by other authors [15, 12] although considering only
standard reordering techniques (Cuthill-McKee, nested dis-
section type orderings, etc.) and monoprocessors as experi-
mental platforms.

However, there is another critical issue to be considered
in the case of SMPs, namely, false sharing. False sharing
occurs when multiple processors access (for both read and
write) different words in the same cache block. In a write-
invalidate coherency protocol, the overhead of false sharing
implies extra invalidations when a processor updates data,
and extra cache misses when other processors read differ-
ent data that reside in the invalidated cache block [6]. This
fact is specially time-consuming because remote accesses as
well as coherence and consistence mechanisms are usually
very costly [16]. The reduction in false sharing misses pro-
duces mainly two effects on the performance of the appli-
cation: reductions in the execution time and improved pro-
gram scalability.

In this paper we apply a procedure for increasing locality
and reducing false sharing for irregular codes based on the

locality model developed previously [5]. The kernel that we
have selected as case of study is an implementation of the
sparse matrix-vector product (SpM×V). In this code false
sharing is one of the main reasons for low performances.
Our proposal can be generalized to other irregular codes in
a straightforward way.

2. Characterization of the sparse matrix-
vector product

In this section the locality model [5] is summarized.
Moreover, the application of the model is analyzed for a
particular implementation of the sparse matrix-vector prod-
uct in which both locality and false sharing are important.

2.1. The locality model

From now on we will assume that when a high spatial or
temporal locality in the accesses generated by the execution
of a code is exhibited, there will be reuse of data in a partic-
ular level of the memory hierarchy under study [9]. The lo-
cality model is based on the evaluation of the data locality
for the sparse algebra code considered. The model is gen-
eral enough to be applied to any sparse algebra code that can
take profit of a clustering of entries in the pattern of the ma-
trix.

In the model, locality is measured for consecutive pairs
of rows or columns of the sparse matrix depending on if the
prevailing irregular accesses to the sparse matrix are row-
wise or column-wise. In both cases, the locality is based
on two parameters: the number of entry matches (aelems)
and the number of block matches (ablocks). Considering ac-
cesses to the sparse matrix by columns, the number of entry
matches between any pair of columns is defined as the num-
ber of nonzero elements in the same row of both columns.
The concept of entry matches can be extended to block
matches by considering instead of single entries (an entry
is defined as a nonzero element), pieces of consecutive po-
sitions in a column of the matrix pattern of the size of a
cache line where there is at least one entry.

Based on these two parameters we have defined a mag-
nitude called distance between columns x and y, denoted as
di(x, y). It is used to measure the locality displayed by the
irregular accesses performed by the irregular code on these
two columns when they are consecutively accessed. From
different distance definitions proposed in [5], In this work
we consider the following:

d1(x, y) = maxelems − aelems(x, y)
d2(x, y) = nblocks(x) + nblocks(y) − 2∗ablocks(x, y)
d3(x, y) = nelems(x) + nelems(y) − 2∗aelems(x, y)

where maxelems is the maximum number of entries in any
column of the sparse matrix, nelems(x) is the number of el-
ements in column x, and nblocks(x) is the number of groups

DO i=1, N
DO j=PTR(i), PTR(i+1)-1

Y(Index(j)) += DA(j)*X(i)
END DO

END DO

(a) Sequential algorithm

Text

Proc. I Proc. II Proc. III Proc. IV Y

X

Y(8)

(b) Data accesses for the parallel execution

Figure 1. Algorithm for the sparse matrix-
vector product by columns.

of elements in column x. These definitions can be directly
extended to rows. It can be shown that these distances de-
fine metrics.

For a given sparse matrix accessed by columns, a quan-
tity, that is inversely proportional to the locality of the data
for the whole sparse matrix, can be defined as follows:

Dj =
N−2∑

i=0

dj(i, i + 1), j = 1, 2, 3. (1)

This model is suitable for any sparse matrix without lim-
itations in the type of pattern that they present. The final ob-
jective of the locality model is to guide a locality improve-
ment process for increasing the reuse of data at any level of
the memory hierarchy. This issue is studied in the next sec-
tion.

2.2. Locality and false sharing in the SpM×V

Let consider, for the SpM×V operation, that the matrix
is stored using the standard Compressed-Column-Storage
format (CCS) for unstructured sparse matrices [2]. DA, IN-
DEX and PTR are the vectors (data, row indices and col-
umn pointer) that characterize this format. Using this for-
mat, and considering that X is the vector by which the prod-
uct is performed and Y the result vector, the sequential prod-
uct by columns could be implemented as displayed in Fig-
ure 1(a) being N the number of columns of the matrix. In
this code, the sparse matrix is accessed in column major or-
der. A closer grouping of elements in columns will lead to
accesses to nearer elements of vector Y, improving the spa-
tial locality in the accesses to that vector. A closer group-
ing of nonzero elements between two or more consecutive

Creation of
the graph

Graph
partitioning

Subgraph Reordering

Reordered
Matrix

1

Sparse
Matrix

Subgraph Reordering2

Subgraph Reordering3

Subgraph ReorderingP

Figure 2. Locality improvement technique.

columns of the matrix will produce an increase in the tem-
poral locality achieved in the accesses to Y. So, in gen-
eral, the closer grouping of entries in the matrix pattern, the
greater the locality in the accesses.

For shared memory multiprocessors the same code dis-
played in Figure 1(a) can be used. Only some directives to
establish the group of consecutive columns that must be
multiplied in each processor have to be added. However,
some important issues have to be taken into account. In the
parallelized code, false sharing is produced when a proces-
sor updates an element of Y in a block that has been pre-
viously written by other processor. As we have mentioned
in Section 1, in a write-invalidate coherency protocol, the
overhead of false sharing implies cache invalidations, and
therefore, an increase in the number of cache misses when
the invalidated data have to be accessed again.

A simple example considering four processors is shown
in Figure 1(b). The sparse matrix is distributed by columns
among four processors in such a way that each processor
operates on different consecutive columns of the matrix. In
order to compute each element of Y, it is necessary to per-
form the product of a row of the matrix by vector X. Each
row is distributed among the processors, so the partial prod-
ucts must be accumulated to obtain the result. If, for exam-
ple, one processor needs to update element Y(I), it has to
invalidate the copies of the block in the local caches of the
rest of processors in which Y(I) is stored. Therefore, when
a processor reads some data in that block, a new cache miss
is produced.

3. Data reordering technique

In the previous section we have outlined the relevance of
increasing the locality in the execution of irregular codes.
Furthermore, in many irregular codes, for achieving good
performance false sharing has to be avoided. To deal with
this problem we propose a heuristic technique that modi-
fies the pattern of the sparse matrix according to the locality
model described in the above section. We propose a tech-
nique that consists of three stages (shown in Figure 2):

Stage I Defining a graph of the problem: The problem is
described using a weighted graph where each node
represents a row or a column of the input sparse ma-
trix depending on if the matrix is accessed by rows

or by columns. Each edge of the graph has an asso-
ciated weight that reflects the distance between pairs
of columns (nodes) according to the description of lo-
cality given in the previous section. In theory, given a
square sparse matrix irregularly accessed by columns,
the model will compute a dense square matrix of dis-
tance values. This is computationally unacceptable be-
cause of the high memory requirements. But, given
that in practice there are pairs of rows for which aelems

and ablocks are zero, the distance matrix can be stored
as a sparse matrix ignoring these values. Besides, the
distance matrix is symmetric and therefore it can be
stored as a triangular matrix so reducing the memory
requirements.

Stage II Graph partitioning: The objective of this stage is
two-fold. On one hand, to equally partition the graph
among processors so that a good load balance, in terms
of the number of nodes assigned to each processor,
is achieved. On the other, to avoid false sharing. Re-
ducing false sharing is related to inter-processors lo-
cality. In particular, the number of false sharing sit-
uations is smaller as this locality decreases. Accord-
ing to our locality model, this decrease is equivalent
to maximize the distance between the subgraphs as-
signed to each pair of processors. This way, the number
of invalidations is reduced, and therefore, cache misses
due to false sharing are minimized. For distributing the
nodes among the processors according to the objec-
tives detailed above, we use the pmetis program from
the METIS software package [7].

Stage III Subgraph reordering: After graph partitioning, P
subgraphs were obtained, one per processor. In this
stage the objective is to increase the intra-processor lo-
cality. In order to deal with this problem we use an
analogy with the Traveling Salesman Problem (TSP).
Solving this problem is equivalent to finding a path
of minimum length that goes through all the nodes
of each subgraph. This path is associated to a permu-
tation vector that gives the appropriate order of the
nodes, and therefore, a reordered matrix. Given that
we have measures (distance values) to validate the ade-
quateness of an ordering, we have focused on heuristic
solutions. After a comparative study of different tech-
niques, the Chained Lin–Kernighan heuristic proposed
by Applegate et al. [1] was used.

In order to obtain a better understanding of the reorder-
ing technique consider the example of Figure 3. The three
different stages of the technique are shown. In the first stage
the graph is created from the input matrix. In this example
we use d1 as distance function. On the right of the graph, the
distances between the nodes (columns of the matrix) are de-
tailed. Note that, only the distances with aelems and ablocks

0 1 2 3 4 5

3 3 3
3 3

3 3
3
3

d1 maxelems = 3

0

1

2

3

4

1 2 3 4 5
Proc. I

Input
Matrix

Proc. II

Reordered
Matrix

0 2 5 3 1 4

Stage I Stage II

Stage III

0 1
1 2

1
1

0
1

2
3

4

5
0

1

2
3

4

5

Figure 3. Application of the reordering tech-
nique.

(a) Original (b) d1

(c) d2 (d) d3

Figure 4. Reordered patterns of matrix 2 us-
ing different distance functions.

not equal to zero are stored. In this case, maxelems is 3. In
the second stage, the distribution of nodes among the pro-
cessors is performed. Moreover, we try to maximize the dis-
tance between each pair of graphs assigned to each pair of
processors. In this example, just two processors are con-
sidered. Nodes 0, 2 and 5 are assigned to processor I, and
nodes 1, 3 and 4 to processor II. In this way, the distance be-
tween the two subgraphs is maximum. Finally, in the third
stage, after distribution of the nodes two subgraphs are ob-
tained. We search for a path of minimum length that goes
through all the nodes of each subgraph. In this case, the
new order of nodes for processor I is 0, 2 and 5. Whereas 3,
1 and 4 is the order for processor II. In summary, a new re-
ordered matrix is obtained.

Therefore, applying the locality improvement technique
implies changes in the pattern of the input sparse matrix.

Figure 4 shows the original pattern of matrix 2 of our test
set (see Section 4.1), and the patterns after reordering it for
4 processors using the three distance functions detailed in
Section 2. The patterns also show the columns assigned to
each processor. Note that for the reordered matrices there is
a higher clustering of entries than for the original one. Be-
sides, the group of elements of Y over which each proces-
sor will operate are disjoint, and therefore, false sharing de-
creases.

4. Performance evaluation

This section begins with a description of the experimen-
tal conditions. The overheads incurred in our approach are
analyzed in Section 4.2. Later, in Section 4.3, the experi-
mental results obtained after applying our technique as well
as their influence on the performance of the code are shown.

4.1. Experimental conditions

As a test set we have selected seven square sparse matri-
ces from different real problems that represent a variety of
non-zero patterns. Table 1 summarizes some features of the
matrices. N is the number of rows or columns, and NZ is
the number of entries. These matrices are from the Univer-
sity of Florida Sparse Matrix Collection (UFL) [4] (except
matrices 1 and 2). Matrix 1 was generated from a N-body
simulation [13], and matrix 2 is a synthetic matrix with a
random uniform distribution of entries over the pattern.

Our model has been validated on a SGI Origin 2000 sys-
tem with MIPS R10k that operates at 250 MHz. The R10k
is a four-way superscalar RISC CPU. The R10k uses a two-
level cache hierarchy: a 32 KBytes L1 data and instruction
caches, and a unified L2 cache of 4 MB. For L1 the line size
is 32 bytes, and 128 bytes for L2. Both caches are two-way
set associative with LRU replacement policy. The code was
written in Fortran with OpenMP directives.

4.2. Overhead of the reordering technique

Given that a preprocessing of the sparse matrix (the ap-
plication of the data reordering technique) must be per-
formed before executing the parallel code, it is necessary
to consider its cost. It includes the three stages described in

Matrix N NZ Application Area
1 nc5 19652 1499816 N-Body simulation
2 syn12000a 12000 1436806 Synthetic matrix
3 nmos3 18588 237130 Semiconductor Simulation
4 igbt3 10938 130500 Semiconductor Simulation
5 garon2 13535 373235 FEM Navier-Stokes
6 poisson3Da 13514 352762 FEM
7 sme3da 12504 874887 FEM

Table 1. Matrix benchmark suite.

1 2 3 4 5 6 7
0

50

100

150

200

250

300

350

400

N
u

m
b

er
 o

f
S

p
M

xV

Stage I
Stage II
Stage III

Matrices

Figure 5. Overhead of the reordering tech-
nique.

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Matrices

In
va

lid
at

io
n

s
(n

o
rm

al
iz

ed
)

Original
D1
D2
D3

(a) Invalidations

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Matrices

L
1

C
ac

h
e

M
is

se
s

(n
o

rm
al

iz
ed

)

Original
D1
D2
D3

(b) L1 Misses

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Matrices

L
2

C
ac

h
e

M
is

se
s

(n
o

rm
al

iz
ed

)

Original
D1
D2
D3

(c) L2 Misses

Figure 6. Cache behavior using 8 processors.

Section 3. Figure 5 displays the number of sequential prod-
ucts that must be performed to compensate the time con-
sumed by the preprocessing stage when it is also sequen-
tially computed. Note that the most costly stage for all the
matrices is stage I . And this can be easily parallelized, and
consequently, reducing the overhead.

Therefore, the overhead of the reordering technique can
be amortized by the repeated execution of the parallel prod-
uct as in the case of iterative methods [2], which might lead
to computational savings in subsequent executions. For ex-
ample in a simulation of a semiconductor device. The over-
head of the reordering technique is not included in the re-
sults along this section.

4.3. Experimental results

We have used the R10k hardware counters to measure
the L1 an L2 cache misses as well as the number of L2 cache
invalidations. Figure 6 shows, as an example, the results of

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Matrices

E
xe

cu
ti

o
n

 T
im

e
(N

o
rm

al
iz

ed
)

Original
D1
D2
D3

Figure 7. Execution time using 8 processors.

applying our technique (normalized with respect to the case
of the original matrix) for the matrices of the test set on
8 processors. As we have previously commented, the over-
head due to false sharing implies invalidations when a pro-
cessor updates data, and cache misses when other processor
reads data included in the invalidated cache block. There-
fore, increasing performance in the execution is equivalent
to reduce the number of invalidations, which indeed affect
the number of cache misses produced. The behavior of the
cache, in terms of the number of invalidations, is shown
in Figure 6(a). An important reduction in percentage is ob-
served. This reduction is specially noticeable for matrix 2,
obtaining reductions up to 95% with respect to the origi-
nal matrix. The behavior of the cache in terms of the num-
ber of L1 and L2 misses is shown in Figures 6(b) and 6(c)
respectively. The reductions in both cases are very impor-
tant. There are few differences in the cache behavior using
the different distance functions and therefore, none of them
can be considered the best for a relevant number of cases.

The reduction in false sharing has two important effects
on run-time performance: a reduction in the execution time
and an improved program scalability. Figure 7 details the
execution time of the code (normalized with respect to the
case of the original matrix) using the reordered matrices for
8 processors. Note that important reductions in the execu-
tion time, that go from 15% to 55%, have been reached.

In addition, note that applying our technique, the scala-
bility of the code is increased as shown in Figure 8. In these
figures the speedup for three matrices of the test set is de-
tailed using up to 10 processors. The speedup is measured
using the parallel code and the reordered matrices with re-
spect to the sequential code using the original matrix. Note
that a better behavior is observed as the number of pro-
cessors increases for all the cases compared to those cor-
responding to the original matrices. For instance, speedup
of matrix 2 using 10 processors is less than 6, while when
the reordered matrices are considered, the speedup is over
8 (Figure 8(a)). Another example is the evolution of the
speedup for matrix 6, shown in Figure 8(b). In this case,
with the original matrix, a low speedup using 10 proces-
sors is obtained, just around 2. Whereas with the reordered
matrices the speedup is around 5. The behavior in terms of

2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

Num. Processors

S
p

ee
d

u
p

Original
D1
D2
D3

(a) Matrix 2

2 3 4 5 6 7 8 9 10
1

2

3

4

5

Num. Processors

S
p

ee
d

u
p

Original
D1
D2
D3

(b) Matrix 6

2 3 4 5 6 7 8 9 10
1

2

3

4

Num. Processors

S
p

ee
d

u
p

Original
D1
D2
D3

(c) Matrix 7

Figure 8. Speedup obtained for different ma-
trices.

speedup for matrices 6 and 7 (Figure 8(c)), is similar.

5. Conclusions

In this paper we propose a technique to deal with the
problem of the locality and false sharing for irregular codes
on SMPs. Our technique is based on the locality model that
we have previously developed. In the model, locality is es-
tablished in run-time considering parameters that describe
the structure of the sparse matrix that characterizes the ir-
regular accesses. The problem is solved as a graph parti-
tioning among processors followed by a reordering of the
subgraph assigned to each processor.

This technique produces important improvements. We
have observed reductions up to 95% in the number of in-
validations and also important decreases in terms of cache
misses. These reductions benefit the execution time and the
program scalability. The average decrease in the total execu-
tion time using the technique is about 35%. This reduction
grows as the number of processors increases. Therefore, the
scalability of the code also improves significatively. For in-
stance, using 10 processors, the average speedup of the code
with the original matrices is around 4, while with the re-
ordered matrices is more than 7.

References

[1] D. Applegate, R. Bixby, V. Chvátval, and W. Cook.
Finding tours in the TSP. Draft available from
http://www.math.princeton.edu/tsp, 1998.

[2] R. Barret, M. Berry, T. Chan, J. Demmel, J. Donato, J. Don-
garra, V. Eijkhout, R. Pozo, C. Romine, and H. van der

Vorst. Templates for the Solution of Linear Systems: Build-
ing Blocks for Iterative Methods. SIAM Press, 1994.

[3] S. Chaterjee, E. Parker, J. Hanlon, and A. R. Lebeck. Exact
analysis of the cache behavior of nested loops. In Proceed-
ings of the ACM SIGPLAN Conf. on Programming Language
Design and Implementation, pages 286–297, June 2001.

[4] T. Davis. University of Florida Sparse Ma-
trix Collection. NA Digest, 97(23), June 1997.
http://www.cise.ufl.edu/research/sparse/matrices.

[5] D. B. Heras, J. C. Cabaleiro, and F. F. Rivera. Modeling data
locality for the sparse matrix-vector product using distance
measures. Parallel Computing, 27:897–912, 2001.

[6] T. E. Jeremiassen and S. J. Eggers. Reducing false sharing on
shared memory multiprocessors through compile time data
transformations. In Proceedings of the Fifth ACM SIGPLAN
Symposium on Principles and practice of parallel program-
ming, pages 179–188, 1995.

[7] G. Karypis and V. Kumar. A fast and high quality multi-
level scheme for partitioning irregular graphs. SIAM Journal
of Scientific Computing, 20(1):359–392, 1998.

[8] K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data
locality with loop transformations. ACM Transactions on
Programming Languages and Systems, 18(4):424–453, June
1996.

[9] K. S. McKinley and O. Temam. A quantitative analysis
of loop nest locality. In Proc. 7th Int’l Conf. on Architec-
tural Support for Programming Languages and Operating
Systems, Oct. 1996.

[10] J. J. Navarro, E. Garcı́a, J. L. Larriba-Pey, and T. Juan. Block
algorithms for sparse matrix computations on high perfor-
mance workstations. In Proc. IEEE Int’l. Conf. on Super-
computing (ICS’96), pages 301–309, 1996.

[11] J. C. Pichel, D. B. Heras, J. C. Cabaleiro, and F. F. Rivera.
Improving the locality of the sparse matrix–vector prod-
uct on shared memory multiprocessors. In Euromicro
Conf. on Parallel, Distributed and Network-based Process-
ing, PDP2004, pages 66–71. IEEE Computer, 2004.

[12] A. Pinar and M. Heath. Improving performance of sparse
matrix-vector multiplication. In Proc. of Supercomputing,
1999.

[13] S. Plimpton. Fast parallel algorithms for short-range molec-
ular dynamics. J. Comput. Phys., 117(1):1–19, 1995.

[14] O. Temam and W. Jalby. Characterizing the behavior of
sparse algorithms on caches. In IEEE Int’l Conf. on Super-
computing (ICS’92), pages 578–587, 1992.

[15] S. Toledo. Improving memory–system performance of
sparse matrix–vector multiplication. In Proc. of the 8th SIAM
Conf. on parallel processing for scientific computing, Mar.
1997.

[16] E. Torrie, M. Martonosi, C. Tseng, and M. W. Hall. Char-
acterizing the memory behavior of compiler–parallelized ap-
plications. IEEE Transactions on Parallel and Distributed
Systems, 7(6), Dec. 1996.

[17] M. E. Wolf and M. S. Lam. A data locality optimization al-
gorithm. In Proc. SIGPLAN’91 Conf. on Programming Lan-
guage Design and Implementation, June 1991.

