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Abstract

In this paper we extend a model of locality and the sub-
sequent process of locality improvement previously devel-
oped for the case of sparse algebra codes in monoproces-
sors to the case of NUMA shared memory multiprocessors
(SMPs). In particilar the product of a sparse matrix by a
dense vector (SpM x V) is studied. In the model, locality is
stablished in run-time considering parameters that describe
the structure of the sparse matrix involved in the computa-
tions. The problem of increasing the locality is formulated
as a graph problem whose solution indicates some appro-
priate reordering of rows and columns of the sparse matrix.
The reordering algorithms were tested for a broad set of
matrices. We have also performed a comparison with other
reordering algorithms. The resilts lead to general conclu-
sions about improving SMP performance for other sparse
algebra codes.

1. Introduction

Sparse matrix-vector multiplication (SpM x V) is an im-
portant computational kernel used in scientific computa-
tion, computer graphics algorithms and many other appli-
cations. The primary reason for inefficiencies of sparse ma-
trix codes such as the SpM x V is the poor data locality in
the irregular accesses. Due to the indirect addressing, mem-
ory hierarchy is generally considered inefficient for irreg-
ular codes [13, 10]. Their unpredictable behaviour implies
a lot of work in the development of special implementa-
tions of the codes and when tuning the performance of such
codes. This fact is specially important on SMPs (NUMA
Shared Memory Multiprocessors) because remote accesses,
coherence and consistence mechanism are very costly [15].

A large number of algorithms for evaluating and opti-
mizing data locality can be found in the literature. In the

case of dense codes, most approaches are based on decreas-
ing conflict misses by using blocking, strip—mining or other
code restructuring techniques [16]. Some of these tech-
niques have been applied to irregular codes as, for exam-
ple, to different versions of the product of a sparse matrix
by a dense matrix [8].

We are interested in applying a technique that is comple-
mentary to the restructuring techniques referenced above.
Instead of changing the code, we perform a reorganiza-
tion of data with the aim of increasing the grouping of el-
ements in the pattern of the matrix. Therefore, the reorder-
ing could improve the effectiveness of a later restructuring
technique. Our technique is effective for matrices with any
structure. Similar approaches performing a reordering in-
side the data structures have been successfully applied in
other papers [14, 10].

Some ordering techniques like bandwidth reduction al-
gorithms, which derive from the Cuthill-McKee algorithm,
and the Minimum Degree algorithm based heuristics as
the Approximate Minimum Degree algorithm, among oth-
ers [12, 1], are considered classical methods for dealing
with the problem of improving the locality in the execu-
tion of a sparse code. These standard reordering algorithms
do not ensure good results as oppossed to the reordering al-
gorithms that we have developed [5].

2. Data locality for the SpA xV

In this work we use the standard Compressed-Sparse-
Row format storage (CSR) for unstructured sparse matri-
ces. DA, INDEX and PTR are the three vectors (data, column
indices and row pointer) corresponding to this storage for-
mat. Based on this format the SpM x V product can be im-
plemented as shown in Figure 1(a). The data accesses re-
quired by this code to perform the product of a row of the
matrix by the vector are displayed in Figure 1(b).

The starting point for our analysis on SMPs is to ana-
lyze the locality properties of the execution of the code in



DOI=1,N
REG=0.0
DO J = PTR(I), PTR(I +1) — 1
REG = REG + DA(J)* X(Index(J))
ENDDO
Y(I) = REG
ENDDO
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Figure 1. Algorithm for the product of a
sparse matrix by a vector.

Figure 1(a). We will consider [7] that when a high spatial
or temporal locality in the accesses generated by the execu-
tion of a code is exhibited, there will be reuse of data in a
particular level of the memory hierarchy under study.

Given that each element of the matrix is multiplied only
once, the accesses to DA, INDEX and PTR do not yield tem-
poral locality. Each element of Y is used repeatedly a num-
ber of times and the elements are accessed consecutively so
there is a possibility of having both spatial and temporal lo-
cality. The temporal locality is exploited by the use of the
CPU registers in the code of Figure 1(a).

The locality is more unpredictable for vector X. For this
case neither spatial locality nor temporal locality are en-
sured because there is a dependence on the pattern of the
matrix which determines the elements of X accessed in the
product. Therefore, the greatest potential for locality im-
provement is on vector X.

In the case of a SMP we can use the same code as the
one presented in Figure 1(a). It is necessary only to add
some directives to specify data partitioning. So each pro-
cessor computes the product of only some consecutive rows
of the original matrix. Assuming that the product is com-
puted using the “owner-computes” rule, the locality proper-
ties of the code are similar to those for the case of a single
processor.

A closer “grouping” of elements in a particular row of

the matrix will lead to accesses to nearer elements of vec-
tor X, improving the spatial locality in the accesses to that
vector. A closer grouping of nonzero elements between two
or more consecutive rows of the matrix will produce an in-
crease in the temporal locality achieved in the accesses to
vector X. So, the closer the grouping of entries in the matrix
pattern, the greater the locality in the accesses described.

Given that each element of Y is updated by only one
processor there is no sharing nor invalidations. So, the
most costly accesses will be those caused by primary cache
misses and mainly by secondary cache misses.

3. Modelling the locality

For the SpM x V operation as we have indicated in the
previous section, as for other sparse algebra codes, the reuse
achieved when the code is executed will depend on the lo-
cality properties and also on the characteristics of the mem-
ory hierarchy. And this holds for both single processor and
multiprocessor computers.

To model the locality for a SMP we have used a model
we have introduced [4] for some sparse codes executed on
single processor computers. We are going to briefly outline
the model. In this model the locality is measured over con-
secutive pairs of rows or columns. The model is based on
two locality parameters: number of entry matches (Qetems)
and number of block matches (apocks). The measurement
of locality is based on these two parameters. The number of
entry matches between any two rows of the sparse matrix is
defined as the number of times that there are two nonzero
elements in the same column of the sparse matrix. The con-
cept of entry matches can be extended to block matches in
a straightforward way. The definition of both concepts can
be extended for columns. For the case of the SpM x V op-
eration, these parameters in terms of rows are related to the
temporal locality of X. And when they are used in terms of
columns, they are related to the spatial locality of X and Y.

Based on these two parameters we have defined a mag-
nitude called distance between rows x and y, denoted by
d(x,y). It is used to measure the locality displayed by the ir-
regular accesses performed by the sparse irregular code on
these two rows. Two proposals for d(x,y) were introduced:

di(z,y) = max(Netems(T), Netems(Y)) — Getems (T, Y)
do ($a y) Nplocks (.’IJ) + Nblocks (y) — 2xApiocks («'Ea y)

where nejems () 18 the number of elements in row x and
Tiplocks (2) 1s the number of blocks of elements in row x.
Each distance function defines a metric over the N rows or
columns of the matrix [4].

For a given sparse matrix, two quantities, that are in-
versely proportional to the locality of the SpM x V for the
whole sparse matrix, can be modelled by summing the dis-



tances between pairs of consecutive rows/columns in the or-
der they are accessed:

D=3 d;(ii+1), j=1.2. )

=0

For the case of a SMPs the locality must be high in each
processor. Thus, the locality will be modelled for any pro-
cessor separately by considering only the portion of the
original sparse matrix that the processor needs for its com-
putations.

4. Data locality improvement

For the parallel SpM xV operation it has been shown in
Section 2 that some benefits, in terms of locality, can be
obtained from grouping the entries of the submatrix corre-
sponding to each processor. One way of achieving this ob-
jective is to search for the permutation matrices of rows and
columns of the submatrix, that will produce an increase in
the locality properties in the corresponding processor. These
reorderings produce a decrease in the value of the quantities
D or D5 (See Equationl) for the submatrix considered.

As we have explained in section 2, for our implementa-
tion of SpM XV in SMPs, it will be necessary to increase
the locality of the accesses to primary and secondary caches
in each processor. We formulate the problem of locality im-
provement as a NP—-complete problem [9] whose solution is
two permutation matrices. Given that we have measures for
evaluating the adequateness of an ordering, we have opted
for heuristic solutions based on graphs [11]. In such a way
that solving our problem is equivalent to finding a path of
minimum length that goes through all the nodes of a com-
plete graph.

Until now we had proposed and extensively proven the
two following solutions to the problem of locality on a sin-
gle processor system:

s The first solution begins with the construction of a
minimum-spanning tree of the complete graph using
Prim’s algorithm. The vertices of the tree are visited
to establish an order of the nodes using a depth—first
search.

e The second solution for solving our problem uses
the greedy heuristic called Nearest Neighbour algo-
rithm [11] to establish the order of rows and columns
of the matrix.

Any of the two previous algorithms was proven with any
of the two distance functions guiding the improvement pro-
cess on single processor systems. Nevertheless, after a large
number of experiments we concluded that the first algo-
rithm (based on Prim’s algorithm) with distance function

| Matrices | Name | N | Ng |
MI MSCI10848 10848 | 1229778
M2 NCS 19652 | 1499816
M3 BCSSTK30 23000 | 1608696
M4 LI 22695 | 1350309
M5 Synthetic Matrix | 12000 | 1436806

Table 1. Scientific computing matrices used
in the experiments.

d; and the second algorithm (based on the Nearest Neigh-
bour heuristic) with distance function ds gave the best re-
sults for a variety of sparse matrices and operations stud-
ied.

The results obtained by these techniques present a large
dependency on the pattern of the sparse matrix. For solv-
ing this graph problem of increasing the locality (and also
guided by distance functions d; and ds) we introduce a new
heuristic. This new heuristic is based on the Lin—Kernighan
algorithm that is one of the most successful tour-finding ap-
proaches. This is a local search heuristic that takes as an in-
put a feasible but possibly suboptimal solution of the prob-
lem. It repeatedly tries to improve the solution modifying
the previous one. The Lin—Kernighan heuristic can find im-
proving exchanges involving many edges. In principle it
can exchange almost all the edges in a single move. We
use the Chained Lin—Kernighan implementation in CON-
CORDE proposed by Applegate er al. [2].

5. Reordering matrices for shared memory
multiprocessors

In this section we compare the six results obtained us-
ing the three heuristic solutions and the two distance func-
tions proposed in the previous section. P; denotes the so-
lutions obtained using Prim’s algorithm, P;, corresponds
to the solution using the Nearest Neighbour algorithm, and
L K; indicates that the solution is obtained by means of the
Lin—Kernighan algorithm. In all cases ¢ indicates the dis-
tance function employed for guiding the optimization pro-
cess (1 = 1 for dy and i = 2 for ds).

The process of reordering data is performed in two steps:

1. We perform a reordering over the whole sparse matrix
to obtain a later partition of rows of the matrix among
the processors achieving good load balancing.

2. A particular locality improvement is applied over the
portion of the matrix accessed by each processor.

So, the initial matrix is divided into p submatrices (one
per processor), and each one is reordered by columns inde-
pendently, obtaining the final new reordered matrix.
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Figure 2. Test set matrices.

As atest set to validate our reorderings we have selected
five square matrices from real problems that represent a va-
riety of non-zero patterns [3], as shown in Figure 2. Table
1 summarizes the main characteristics of the matrices. N is
the number of rows or columns of the matrix, and Nz is the
number of entries. M3 presents the same pattern as the BC-
SSTK30 matrix from the Harwell-Boeing collection [3], but
we have selected only a square portion of 23000 rows from
the original BCSSTK30. Throughout this section the num-
ber of cache misses were measured using a simulator that
we developed based on trace driven simulation. We simulate
two levels of cache, both using Least Recently Used (LRU)
as replacement algorithm, considering a two-way associa-
tive cache configuration and without prefetching. The first
level cache L1 is 32 KBytes and the line size is 4 words. .2
cache has a size of 256 KBytes and the line size is 8 words.
We use this cache configuration because is similar to those
of some real systems.
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Figure 3. Comparison between different or-
dering techniques using three threads.

Next, we show the results achieved by our reorderings
and compare them to some of the most representative stan-
dard reordering algorithms, the Cuthill-McKee (denoted as
CM), the Nested Dissection (N D) and the Approximate
Minimum Degree (AM D) algorithms. CM modifies the
matrix pattern to obtain a reduced band. N D makes a parti-
tion on the adjacency graph searching for a group of nodes,
so if we remove this nodes the graph is bisected. In the
case of AM D, the objective is to find a symmetric per-
mutation P of the original matrix which reduces the fill-in
when the Cholesky factorization is performed. In Figure 3
we show the comparison with the standard algorithms sim-
ulating the parallel SpMxV and using three threads. The
standard algorithms indicated above only can be applied to
symmetric matrices. This is the reason because the results
obtained through these algorithms for the unsymmetric ma-
trix M5 are not displayed. The results are expressed in terms
of cache miss improvements for the most costly thread with
respect to the original matrix. From the set of Py, Py, P
and P, solutions, we only apply P; and P, that present
the best results (as we explained in section 4). We also dis-



Matrices | Original LK: LK, |

Ml 0.59 098 0.98
M2 0.96 098 0.99
M3 0.85 099 0.99
M4 0.57 075  0.77
M5 0.99 099 099

Table 2. Load balance using three threads.

play the results for solutions LK; and LK. Note that the
behaviour with CM, ND and AM D is very irregular. For
example, using C'M while for the original matrix M/ the
improvement is high in L2 cache, with the other matrices
no locality improvement is obtained. Worsening with C M
can be up to 64% and 27% for L1 and L2 caches respec-
tively. Results for P; and P, are good for some matrices
but very bad for others like the M3 matrix.

It is specially relevant that L K; and LK, obtain good re-
sults in terms of cache miss improvements for most of the
matrices included those highly structured as M4 (see Fig-
ure 2(d)). In particular, K5 is the reordering technique
that achieved the best and the most regular overall improve-
ments. It obtains for all matrices improvements from 7% to
34% in L2, and from 8% to 48% in LL1.

With the objective of evaluating the goodness of our lo-
cality improvement technique more exhaustively we also
compare the load balance achieved using the matrices re-
ordered using Prim’s algorithm, the Nearest Neighbour al-
gorithm and the Lin—Kernighan algorithm. We have ob-
served that the load balance among processors for P; and
P, and for the original matrices is very irregular and de-
pendent on the matrix pattern. Nevertheless, with LK; and
L K5, the best solutions as explained in the previous para-
graph, we achieve a good load balance among threads. In
Table 2 we show these results in terms of the ratio between
the number of entries assigned to the processor with the
lowest load and the number of entries of the most loaded
processor. The closer the value of this ratio to 1 the higher
the load balance. For obtaining these results the SpMx V op-
eration was performed using three threads. We can see how
LK, and L K5 obtain a better load balance for all the matri-
ces than that obtained using the original matrices, specially
for LK.

6. Validating the model on SMP

Our model has been validated on a SGI Origin 200 sys-
tem [6]. The system provides four MIPS R10000 that oper-
ates at a clock frequency of 225 MHz. The MIPS R10000
is a four-way superscalar RISC CPU. The R10000 uses a
two-level cache hierarchy: a 32 KBytes L1 data and in-
struction caches, and a unified L2 cache of 2 MB. For L1

LK1-L1 NLK2-L1 OLK1-L2 OLK2-L2 LK1-L1 NLK2-L1 OLK1-L2 OLK2-12

Cache misses improvement (%)
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Figure 4. Comparison between LK ordering
techniques on a Origin 200 system for the
test matrices.

the line size is 32 bytes, and 128 bytes for L2. Both caches
are two-way set associative with LRU replacement policy.
The R10000 provide hardware support for counting vari-
ous types of events, such as cache misses, memory coher-
ence operations, et(c...

We show in Figure 4, the results obtained performing
SpM x V with matrices reordered by applying the LK heuris-
tic and considering two, three and four threads. LK;-1.1
and LK,-1.1 denote the results for the L1 cache and LK -
L2 and LK,-1.2 those for the L2 cache. The results show
that cache miss improvements are achieved in nearly all
cases. In the Origin 200 system, as in the results presented in



the previous section and obtained through the use of a sim-
ulator, L K, obtains improvements even for the banded ma-
trix M4. The best results are obtained for the original matrix
M1 which presents a structure with low clustering on entries
over the pattern (see Figure 2(a)) and for which improve-
ments in the number of cache misses are up to 20% and
18% for L1 and L2 respectively. The reason is that there are
more opportunities for the Lin—Kernighan heuristic to ob-
tain a good reordering if the initial matrix is unstructured.
Another important observation is that the improvement per-
centage is always better in L1 cache. This behaviour is due
to the fact that L1 cache is smaller than L2, therefore the
number of conflict misses on L1 will be larger than on L2.

7. Conclusions

In this paper a methodology for characterizing and in-
creasing the locality of sparse algebra codes on SMPs based
on the definition of parameters associated with the order of
data accesses is proposed. We have applied our methodol-
ogy to the SpM x V which is one of the most important ker-
nels in scientific applications.

The problem of locality improvement has been solved
using an analogy to The Travelling Salesman Prob-
lem through the application of different heuristics such
as Prim’s algorithm, Nearest Neighbour algorithm and
Lin—Kernighan algorithm. The evaluation of locality for
guiding the improvement process is based on measure-
ments using two parameters evaluated over the sparse ma-
trix involved in the computations: entry matches and block
matches. On applying this methodology, significant de-
creases in the number of cache misses for a representa-
tive set of matrices from real scientific applications have
been obtained, specially using the Lin—Kernighan algo-
rithm. We also conclude that our algorithms are competitive
when comparing to standard ordering algorithms. Qur al-
gorithms also present more stability, i.e., they are more
robust to changes in mairix structure. Our methodol-
ogy was proven first in a simulator and then in a Origin 200
SMP obtaining similar results in both cases.

As future work we will extend the locality improvement
to other sparse algebra codes, such as transposition of a
sparse matrix (SpM7) or the product of a sparse matrix by
a dense matrix (SpM xM). For these codes we hope a larger
benefit achieved by our techniques because they present a
higher percentage of irregular accesses. In addition, we plan
to combine our methodology with some classic locality im-
provement techniques such as register blocking or cache
blocking.
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