Classification: model selection and evaluation
Lab exercices

Eva Cernadas
CITIUS: Centro de Tecnoloxias Intelixentes da USC
Universidade de Santiago de Compostela

23 de noviembre de 2023

During the master course FMLCV (Fundamentals of machine learning for computer
vision), students will do different exercises in order to practice the practical contents of
unsupervised and supervised classification models.

We will develop the practical contents of classification starting from an exercise that
classifies images based on their textures. The programming language of the example pro-
vides is matlab, but the exercises may be developped in the other language, like Python.
The specific objectives are:

1. Compute some texture features for grey-level images.
2. Classify the images using differents classification models and validation measures.

Specifically, we use two texture features: Harakick’s features of the co-ocurrence matrix
and Local Binary Patterns (LBP) (see section [Il for a brief introduction and the reference
[1] for a wider description). Section [briefly describes the material provided to the lab
exercises and section [enumerates the exercises to do the students.

1. Texture features

Let I(z) € G be the grey-level of the image in the point z = (z,y), z,y € N and
G =0,1,...,255 the posible number of grey levels.

1.0.1. Coocurrence matrix and Haralick’s features

The Grey Level Coocurrence Matrix (GLCM) describes the probability of finding two
given pixel values in a predefined relative position in the image. The spatial displacement
describes the scale and orientation between two points in the image lattice. A matrix is
obtained for each scale and orientation. The main problem of GLCM is to choose the
appropiate set of scale and orientation parameters that effectively capture the structural

1

information of texture. We average the matrices for each scale and all orientations. From the
GLCM matrices, we compute the following features for each scale: contrast, homogeneity,
correlation and energy. In matlab, the option offset in function graycomatrix (in the image
processing toolbox), you can configure the neighborhoods (see the main program in file
haralickinn.m).

1.0.2. Local Binary Patterns (LBP)

The LBP operator describes each image pixel by comparing each pixel with its neigh-
bors. Precisely, for each neighboring pixel, the result will be set to one if its value is higher
than the value of central pixel, otherwise the result will be set to zero. The LBP code of
the central pixel is then obtained by multiplying the results with weights given by powers
of two, and summing then up together. The histogram of the binary patterns computed
over all pixels of the image is generally used for texture description. The final LBP feature
vector is very fast to compute and is invariant to monotonic illumination changes. The
main drawback of LBP features lies in the high dimensionality of histograms produced by
LBP codes (if P is the number of neighboring pixels, then the LBP feature will have 2%
distinct values, resulting in a 2P-dimensional histogram). Many classifiers can not operate
with high dimensional patterns. The LBP with uniform patterns have been proposed to the
dimensionality of original LBP. The uniform patterns are binary patterns with only two
transitions (from 0 to 1 and vice versa). It was found that most of the micro-structures such
as bright /dark spots and flat regions can be successfully represented by uniform patterns.
In a circularly symmetric neighbor set of P pixels can occur P+ 1 uniform binary patterns.
The number of “1’s” in the binary pattern is the label of the pattern, while the nonuniform
patterns are labelled by P + 1. The histogram of the pattern labels accumulated over the
intensity image is employed as texture feature vector.

2. Lab exercises programs for classification

In the lab, we will use the image dataset (suite) Contrib_TC_00006(it can be down-
loaded from: http://www.cse.oulu.fi/CMV /ImageData or in subject webpage [images.zip.
It contains 864 color images of 128 x 128 pixels belonging to 54 classes (16 images per
class). Figura[[] can see an example of each class.

Matlab programs provided to solve the exercises:

1. haralickinn.m: compute the correct classification percentage of images using the
texture features Haralick’s features and the 1NN classifier using the distance L.1. Use
the half of patterns to train and the other half to test. Return the accuraccy for the
test set. It allows to use a distance d or various (multiresolution).

1 % use the haralick texture features of a grey level image and
the 1NN
: % classifier

http://persoal.citius.usc.es/eva.cernadas/fmlcv/lab/images.zip
http://persoal.citius.usc.es/eva.cernadas/fmlcv/lab/matlab/haralick1nn.m

Figura 1: Images belonging to 54 classes of image dataset.

5 clear all;
« % image folder
s pathImages='/home/cernadas/docencia/mvc/lab/matlab/images/

3

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Contrib_TC_00006 ';

numlmages=864; % number of images

% mneighborhoods for different scales

offsetl = [0 1; —1 1; —1 0; —1 —1]; % d=1

offset2 = [0 2; —1 2; —2 1; =2 0; —2 —1; —1 —2]; % d=2

offset3 = [0 3; -1 3; -2 2; -3 1; -3 0; -3 —1;-2 —2; -1 —3];
% d=3

offsetd = [0 4; —1 4; —2 4; —2 3; —3 3; =3 2; —4 2: —4 1; —4
0; -4 —1; 4 —2; -3 —2; -3 —-3; —2 —3; —2 —4; —1 —4]; % d=4

for i=1:numlmages;

£=1];

filename = sprintf('%s/images/%06d.bmp', pathlmages, i—1)

rgb = imread (filename);

grey = rgbh2gray(rgb);
% coocurrence matrix for distance d=1

glem=graycomatrix (grey, 'offset ', offsetl , 'Symmetric',
true) ;

fs=graycoprops(glem,{ 'contrast ', '"homogeneity ', '
correlation', 'Energy'});

f=[f mean(fs.Contrast) mean(fs.Correlation) mean(fs.
Energy) mean(fs.Homogeneity) |;
% coocurrence matrix for distances d=1 and d=2

glem=graycomatrix (grey , 'offset ', offset2 , 'Symmetric',
true) ;

fs=graycoprops(glem ,{ 'contrast ', "homogeneity " '
correlation', 'Energy'});

f=[f mean(fs.Contrast) mean(fs.Correlation) mean(fs.
Energy) mean(fs.Homogeneity) |;
% coocurrence matrix for distance d=1, d=2 and d=3

glem=graycomatrix (grey, 'offset ', offset3 , 'Symmetric',
true) ;

fs=graycoprops(glem,{ 'contrast ', '"homogeneity', '
correlation', 'Energy'});

f=[f mean(fs.Contrast) mean(fs.Correlation) mean(fs.
Energy) mean(fs.Homogeneity)];
features (i,:)=f;
end

% read picture ID of training and test samples
trainTxt = sprintf('%s /000/train.txt"', pathImages)

4

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

testTxt = sprintf('%s /000/test . txt', pathlmages)

% read class ID of training and test samples

[trainIDs , trainClassIDs] = ReadOutexTxt(trainTxt);

[testIDs, testClassIDs| = ReadOutexTxt(testTxt);

% classification test

trains=features (trainlDs ', :);

tests=features (testIDs ', :);

trainNum = size (trains ,1);

testNum = size (tests 1) ;

% use L1 distance as metric measure

[final_accu ,PreLabel] = NNClassifier_.L1(trains ', tests ',
trainClassIDs , testClassIDs) ;

accu_list3 = final_accu;

close all;

. LBP1nn.m: idem the the previous but using LBP texture features. You can change the

radius, number of neighbours and the method (ri invariant rotation, riu2 uniform
and invariant to rotations LBP, w2 uniform LBP and contrast histogram (lbpvar
function).

% use the Local Binary Patterns (LBP) texture features of a
grey level image and the 1NN

% classifier

clear all;

% image folder

pathImages="'/home/cernadas/docencia/mvc/lab/matlab/images/
Contrib_TC_00006 ";

numlmages=864; % number of images

mapping=getmapping (8, 'riu2'); % mapping type: radio
neighbours and LBP type

% compute texture features

for i=1:numlmages;
filename = sprintf('%s/images/%06d.bmp', pathlmages, i—1)

rgb = imread (filename);

grey = double(rgb2gray(rgb));

features (i ,:)=lbp(grey,1,8 ,mapping, 'h');
end

% read picture ID of training and test samples
trainTxt = sprintf('%s /000/train.txt', pathlmages)
testTxt = sprintf('%s /000/test . txt', pathlmages)

bt

http://persoal.citius.usc.es/eva.cernadas/fmlcv/lab/matlab/LBP1nn.m

20

21

22

23

24

25

26

27

28

29

30

31

32

33

10

11

13

14

15

16

17

18

19

20

(

% read class ID of training and test samples

[trainIDs, trainClassIDs] = ReadOutexTxt(trainTxt);
[testIDs, testClassIDs| = ReadOutexTxt(testTxt);

%

classification test

trains=features (trainlDs ', :);
tests=features (testIDs ', :);
trainNum = size (trains 1) ;
testNum = size (tests ,1);

(

% use L1 distance as metric measure

[final _accu ,PreLabel] = NNClassifier L1 (trains ', tests ',

trainClassIDs , testClassIDs);

accu_list3 = final_accu;
close all;

different radious.

% use the multiscalar Local Binary Patterns (LBP) texture

features of a grey level image

% and the 1NN classifier

cle

ar all;

% image folder

pathImages="'/home/cernadas/docencia/mvc/lab/matlab/images/

numlmages=864;

Contrib_TC_00006 ';

% number of images

mapping8=getmapping (8, 'riu2'); % mapping type: radio

neighbours and LBP type

mappingl2=getmapping (12, 'riu2');
mappinglbé=getmapping (16, 'riu2');

% compute texture features

for

i=1l:numlmages;
mlbp =[]
filename = sprintf('%s/images/%06d.bmp', pathlmages, i

rgb = imread (filename);

grey = double(rgb2gray(rgh));

f=lbp (grey ,1,8 ,mapping8,'h'); % LBP para R=1 e P=8
mlbp=[mlbp f];

f=lbp (grey ,2,12 ,mappingl2,'h');% LBP para R=2 e P=12
mlbp=[mlbp f];

. mLBPInn.m: idem that LBP1nn.m but this allows to concatenate LBP features for

1)

http://persoal.citius.usc.es/eva.cernadas/fmlcv/lab/matlab/mLBP1nn.m

21

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

10

11

f=1bp (grey ,3,16 ,mappingl6, 'h');% LBP para R=3 e¢ P=16
mlbp=[mlbp f];
features(i,:)=mlbp;
end
% read picture ID of training and test samples
trainTxt = sprintf('%s /000/train.txt', pathlmages)
testTxt = sprintf('%s /000/test . txt', pathlmages)
% read class ID of training and test samples
[trainIDs , trainClassIDs] = ReadOutexTxt(trainTxt) ;
[testIDs, testClassIDs| = ReadOutexTxt(testTxt);

% classification test
trains=features (trainlDs ', :);
tests=features (testIDs ', :);
trainNum = size (trains 1) ;

testNum = size (tests ,1);

% use L1 distance as metric measure

[final_accu ,PreLabel] = NNClassifier L1 (trains ', tests ',
trainClassIDs , testClassIDs);

accu_list3d = final_accu;

close all;

. |getmapping.m: return the mapping to compute the LBP codes.

. NNClassifier L1.m: calculate the accuraccy on a test set using the 1NN classifier.

The input arguments are two matrix with the training and testing patterns respec-

tively.

% NN Classifier with L1 distance

&l

Y%Function NNClassifier L1 (Samples_Train ,Samples_Test ,
Labels_Train , Labels_Test)

TO calculate the accuracy of the given otesting round and
obtain the

predicted labels using the nearest neighbor classifer

YVINPUT Arguments:

Samples_Train: d x no_of_training_samples matrix

Samples_Test: d x no_of_testing_samples matrix

Labels_Train: 1 x no_of_training_samples vector including
all the labels of the training samples

7

http://persoal.citius.usc.es/eva.cernadas/fmlcv/lab/matlab/getmapping.m
http://persoal.citius.usc.es/eva.cernadas/fmlcv/lab/matlab/NNClassifier_L1.m

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Labels_Test: 1 x no_of_testing_samples vector including all
the labels of the testing samples

YYOUTPUT Arguments :

final_accu: the accuracy of this testing round

PreLabel: 1 x no_of_testing_samples vector including all
the predicted labels of the testing samples

function [final_accu ,PreLabel] = NNClassifier L1 (
Samples_Train , Samples_Test , Labels_Train , Labels_Test)

Train_Model = Samples_Train;
Test _Model = Samples_Test;
numTest = size (Test_Model ,2);
numTrain = size (Train_Model ,2) ;
PreLabel = [];

for test_sample_no = 1l:numTest

testMat = repmat (Test_Model (:,test_sample_no), 1,

numTrain) ;
scores_.vec = cal_matrix_distance (testMat, Train_Model);
[min_val min_idx| = min(scores_vec);

best_label = Labels_Train(1,min_idx);
PreLabel = [PreLabel, best_label];

end

Comp_Label = PreLabel — Labels_Test;
final_accu = (sum((Comp_Label==0))/numel(Comp_Label))=*100

end

function disVec=cal_matrix_distance (matl, mat2)
Y%using L1 as the distance metric

disVec = sum(abs(matl — mat2), 1);

%you may add other distance matric here:

%. ...

end

10
11
12
13
14
15
16
17
18
19
20

21

3.

ReadOutexTxt.m: read the images names and output for the images in the dataset.

% ReadOutexTxt gets picture IDs and class IDs from txt for
Outex Database

% [filenames, classIDs] = ReadOutexTxt(txtfile) gets picture
IDs and class

% 1IDs from TXT file for Outex Database

function [filenames, classIDs] = ReadOutexTxt(txtfile)

% Version 1.0

% Authors: Zhenhua Guo, Lei Zhang and David Zhang

% Copyright @ Biometrics Research Centre, the Hong Kong
Polytechnic University

fid = fopen(txtfile ,'r");
tline = fgetl(fid); % get the number of image samples
1= 0;
while 1
tline = fgetl (fid);
if “ischar(tline)
break ;
end
index = findstr (tline ,"'.");
i = 1i+1;
filenames (i) = str2num(tline (1:index—1))+1; % the picture
ID starts from 0, but the index of Matlab array
starts from 1
classIDs (i) = str2num(tline (index+5:end));
end
fclose (fid);

Exercises to do by the students

The lab work for the students is:

1.

Run the provided code and report the accuraccy for each texture feature. Comments
about the difficulties founded. For students who want to develop the exercises in
Python, it is provided text files with the texture features (first column is the class la-
bel and the remaining columns are the texture features): 1) haralickTrain.txt|/and
haralickTest.txt!for the texture features of Haralick’s coeficients; 2) 1bpTrain.txt
and IbpTest. txt|for the texture features of LBP using d = 1; and 3) mlbpTrain.txt
and mlbpTest.txt| for the texture features of multidimensional LBP using d =

9

http://persoal.citius.usc.es/eva.cernadas/fmlcv/lab/matlab/ReadOutexTxt.m
http://persoal.citius.usc.es/eva.cernadas/fmlcv/lab/python/haralickTrain.txt
http://persoal.citius.usc.es/eva.cernadas/fmlcv/lab/python/haralickTest.txt
http://persoal.citius.usc.es/eva.cernadas/fmlcv/lab/python/lbpTrain.txt
http://persoal.citius.usc.es/eva.cernadas/fmlcv/lab/python/lbpTest.txt
http://persoal.citius.usc.es/eva.cernadas/fmlcv/lab/python/mlbpTrain.txt
http://persoal.citius.usc.es/eva.cernadas/fmlcv/lab/python/mlbpTest.txt

{1,2,3}. You can use the Python package scikit-learn (the documentation is here,
and the code to use with LBP features is:

from sklearn.neighbors import *

from sklearn.metrics import *

from numpy import *

tx=loadtxt('lbpTrain.txt')

ty=tx[:,0] # class label, first column
tx=delete(tx,0, 1) # delete first column

sx=loadtxt ('lbpTest.txt"')

sy=sx[:,0]

sx=delete(sx,0, 1)

model=KNeighborsClassifier (n_neighbors=1) .fit(tx, ty)
z=model .predict(sx) # apply classifier
acc=accuracy_score(sy, z)

kappa = cohen_kappa_score(sy, z)

print ('Accuracy= 7%.2f kappa= %.2f\n'’%(accx100, kappa*100))

2. Test the above code using the Euclidean distance and report the results.

3. Implement and report other measures to estimate the quality of the classifier: the
Cohen kappa and the confusion matrix.

4. Joint the training and test sets and calculate the performance using cross-validation
with four folds (K=4) and the classifier INN. Calculate the accuraccy and Cohen
kappa.

5. Joint the training and test sets and implement the cross-validation using four folds
and three sets (training, validation and test set). Use a kNN classifier instead of INN
classifier, tuning the k parameter (number of neighbours) using the validation set.
Calculate the Cohen kappa and the value of k.

Referencias

[1] E. Cernadas, M. Ferndndez-Delgado, E. Gonzalez-Rufino, P. Carrién, Influence of nor-
malization and color space to color texture classification, Pattern Recogn. 61 (2017)
120 - 138.

10

https://scikit-learn.org/stable/index.html

	 Texture features
	 Coocurrence matrix and Haralick's features
	Local Binary Patterns (LBP)

	 Lab exercises programs for classification
	Exercises to do by the students

