
Clustering exercises of FMLCV course

Eva Cernadas
CITIUS: Centro de Tecnolox́ıas Intelixentes da USC

Universidade de Santiago de Compostela

19 de enero de 2023

During the master course FMLCV (Fundamentals of machine learning for computer
vision), students will do different exercises in order to practice the practical contents of
unsupervised machine learning models.

The objective is to test the clustering kmeans algorithm to the purpose of image seg-
mentation. In the class exercice, apply the kmeans algorithm to segment some example
images. You can use the Matlab1 software, the computer vision library OpenCV 2 (with inter-
face for C++ and Python) or the KMeans function of the Python module sklearn.cluster3.

1. Programs in Matlab

For Matlab, the basic code is:

clear all;

name = input('Image: ', 's')

rgb = imread(name);

figure(1); imshow(rgb);

[nrow, ncol, nf]=size(rgb);

aux=reshape(rgb, nrow*ncol, nf);

k=input('Number of clusters:');

out=kmeans(double(aux), k);

out2=reshape(out, nrow, ncol,1);

figure(2); imshow(mat2gray(out2))

which apply the kmeans algorithm to the input RGB image using as variables the R,
G and B colors and using the number of clusters k.

1https://es.mathworks.com/products/matlab.html
2https://opencv.org/
3https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

1

https://es.mathworks.com/products/matlab.html
https://opencv.org/
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

2. Programs in Python

We use the KMeans function of sklearn.cluster object to segment the image. Then,
we need to install the numpy and matplotlib.pyplot modules to manage the images as array
objects and to visualize images respectively. We need also to install the python interface
to Opencv library in order to read the images. The following program segments an image
into two clusters in order to divide the input image into foreground and background:

from sklearn.cluster import KMeans

import numpy as np

import matplotlib.pyplot as plt

import cv2

load image

img = cv2.imread("Image42.jpg", cv2.IMREAD_COLOR)

print('Image Dimensions :', img.shape)

show image

plt.imshow(img); plt.show() # as RGB Format

Flatten Each channel of the Image

pixels = img.reshape((-1,3))

print('New shape: ',pixels.shape)

nclusters = 2

km = KMeans(n_clusters=nclusters)

km.fit(pixels)

KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=30,

n_clusters=nclusters, n_init=10, n_jobs=None, precompute_distances='auto',

random_state=None, tol=0.0001, verbose=0)

centers = km.cluster_centers_

labels=km.labels_

centers = np.array(centers,dtype='uint8')

labels = np.array(labels,dtype='uint8')

print('Center of clusters: ',centers)

print('Labels shape: ',labels.shape, ' Value: ', labels)

segimg = np.zeros((1, img.shape[0]*img.shape[1]),dtype='uint8')

print('Segmented image shape: ', segimg.shape)

Iterate over the image

for ix in range(segimg.shape[1]):

segimg[0, ix] = labels[ix]*255

segimg = segimg.reshape((img.shape[0],img.shape[1]))

plt.imshow(segimg); plt.gray(); plt.show()

The use of clustering to segment an image can be statistically evaluated considering
that each pixel is a pattern. In this case, we can use all the metrics studied in the model
selection and evaluation subject (kappa, accuracy, precision, recall, etc). The next code is
an example:

2

from sklearn.cluster import KMeans

import numpy as np

import matplotlib.pyplot as plt

from sklearn.metrics import *

import cv2

load images

img = cv2.imread("images/images/Image10.jpg", cv2.IMREAD_COLOR) # original

binimg = cv2.imread("images/mask/Image10.png",cv2.IMREAD_GRAYSCALE)

print('Image Dimensions :', img.shape)

show images

plt.imshow(img); plt.show() # as RGB Format

plt.imshow(binimg); plt.gray(); plt.show() # as grey Format

Flatten Each channel of the Image

pixels = img.reshape((-1,3))

print('New shape: ',pixels.shape)

nclusters = 2

km = KMeans(n_clusters=nclusters)

km.fit(pixels)

KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=30,

n_clusters=nclusters, n_init=10, n_jobs=None, precompute_distances='auto',

random_state=None, tol=0.0001, verbose=0)

centers = km.cluster_centers_

labels=km.labels_

centers = np.array(centers,dtype='uint8')

labels = np.array(labels,dtype='uint8')

print('Center of clusters: ',centers)

print('Labels shape: ',labels.shape, ' Value: ', labels)

segimg = np.zeros((1, img.shape[0]*img.shape[1]),dtype='uint8')

print('Segmented image shape: ', segimg.shape)

Iterate over the image

for ix in range(segimg.shape[1]):

segimg[0, ix] = labels[ix]*255

segimg = segimg.reshape((img.shape[0],img.shape[1]))

plt.imshow(segimg); plt.gray(); plt.show()

evaluation

binimg[binimg[:,:]==255]=1 # desired ouput for each pixel

y=binimg.flatten()

print('y size: ', y.shape)

z=labels

print('z size: ', z.shape)

kappa=cohen_kappa_score(y,z);acc=accuracy_score(y,z)

print('kappa=%.1f%% accuracy=%.1f%%'%(100*kappa,100*acc))

cf=confusion_matrix(y,z)

3

print('confusion matrix:'); print(cf)

pre=precision_score(y,z)

re=recall_score(y,z)

f1=f1_score(y,z)

print('precision=%.1f%% recall=%.1f%% f1=%.1f%%'%(100*pre,100*re,100*f1))

Figura 1: Histological images of fish ovaries of European Hake: original images (upper row)
and true annotated images provided by the experts (lower row).

The main problem with the current implementation is that the Kmeans algorithm uses
a random initialization for the initial clusters. This fact can do the algorithm converge to
the optimal solution or to other solutions not optimal from the segmentation point of view
(for example, the background is considered as foreground). We can solve this limitation
providing initial seeds for the kmeans function.

from sklearn.cluster import KMeans

import numpy as np

import matplotlib.pyplot as plt

from sklearn.metrics import *

import cv2

4

load images

img = cv2.imread("images/images/Image10.jpg", cv2.IMREAD_COLOR) # original

binimg = cv2.imread("images/mask/Image10.png",cv2.IMREAD_GRAYSCALE)

print('Image Dimensions :', img.shape)

show images

plt.imshow(img); plt.show() # as RGB Format

plt.imshow(binimg); plt.gray(); plt.show() # as grey Format

Flatten Each channel of the Image

pixels = img.reshape((-1,3))

print('New shape: ',pixels.shape)

nclusters = 2

km = KMeans(n_clusters=nclusters)

km.fit(pixels)

cluster initialization

icluster=np.array([[255,255,255], [255, 0 ,0]], dtype=np.uint8)

KMeans(algorithm='auto', copy_x=True, init=icluster, max_iter=30,

n_clusters=nclusters, n_init=10, n_jobs=None, precompute_distances='auto',

random_state=None, tol=0.0001, verbose=0)

centers = km.cluster_centers_

labels=km.labels_

centers = np.array(centers,dtype='uint8')

labels = np.array(labels,dtype='uint8')

print('Center of clusters: ',centers)

print('Labels shape: ',labels.shape, ' Value: ', labels)

segimg = np.zeros((1, img.shape[0]*img.shape[1]),dtype='uint8')

print('Segmented image shape: ', segimg.shape)

Iterate over the image

for ix in range(segimg.shape[1]):

segimg[0, ix] = labels[ix]*255

segimg = segimg.reshape((img.shape[0],img.shape[1]))

plt.imshow(segimg); plt.gray(); plt.show()

evaluation

binimg[binimg[:,:]==255]=1 # desired ouput for each pixel

y=binimg.flatten()

print('y size: ', y.shape)

z=labels

print('z size: ', z.shape)

kappa=cohen_kappa_score(y,z);acc=accuracy_score(y,z)

print('kappa=%.1f%% accuracy=%.1f%%'%(100*kappa,100*acc))

cf=confusion_matrix(y,z)

print('confusion matrix:'); print(cf)

pre=precision_score(y,z)

5

re=recall_score(y,z)

f1=f1_score(y,z)

print('precision=%.1f%% recall=%.1f%% f1=%.1f%%'%(100*pre,100*re,100*f1))

Figura 2: Histological images of kidney mouse: original images (upper row) and true an-
notated images provided by the experts (lower row).

3. Exercises to do by the students

In the lab work, we will use the kmeans algorithm to segment some biological and
biomedical images. The segmentation objective depends on the problem in hand. The
example images can be downloaded from the subject webpage images.zip. They are the
following problems:

1. Histological images of fish ovary: our objective is recognized the matured cells
in the image in order to measure and count the cells of each development state.
The example images and their true segmentation provided by the experts can be

6

http://persoal.citius.usc.es/eva.cernadas/fmlcv/lab/clustering/images.zip

see in figure 1. In the CiTIUS webpage more information, images and the software
STERapp4

2. Histological images of kidney mouse: our objective is recognized the cyst in the
image in order to measure and count. The example images and their true segmen-
tation provided by the experts can be see in figure 2. In the CiTIUS webpage more
information, images and software CystAnalyser5

3. Immunohistochemical images of mouth tissue: our objective is to detect and
count the number of nuclui in the image. The nucleus can be in blue color (not
stained) in brown color (stained). Figure 3 show some examples.

4. Histological images of liver using oilred protocol: our objective is to quantify
the percentage area of orange/red spots in the image. See example images in figure
4.

5. Histological images of liver: our objective is to quantify the percentage area of
fat (white spots in the image). See example images in figure 5.

Figura 3: Immunohistochemical images of mouth tissue.

The lab work for the students is:

1. Observe visually the behaviour of the kmeans algorithm for the different types of
images mentioned above. You can change the number of clusters used and the features
used to do the clustering (for example, pixel grey level, pixel RGB color, Lab color
space, etc).

2. Evaluated statistically at pixel level the performance of the clustering for the histo-
logical images of fish gonads and kidney.

3. Analyse visually the changes in the resultant segmentation when the initial clusters
are provided to the kmeans algorithm. Calculate the classification metrics for some
image.

4https://citius.usc.es/transferencia/software/sterapp
5https://citius.usc.es/transferencia/software/cystanalyser

7

https://citius.usc.es/transferencia/software/sterapp
https://citius.usc.es/transferencia/software/cystanalyser

Figura 4: Original oilred histological images of liver mouse.

Figura 5: Original oilred histological images of liver mouse.

4. Optional Check other changes that you can imagine (for example, pre-processing
the original image with filter or calculate texture features) or implement the metrics
to do a region evaluation of the segmentation process.

8

	Programs in Matlab
	Programs in Python
	Exercises to do by the students

