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Abstract— In this paper we present Hipster: a free, open source 

Java library for heuristic search algorithms. The motivation of 

developing Hipster is the lack of standard Java search libraries 

with an extensible, flexible, simple to use model. Moreover, most 

of the libraries for search algorithms rely on recursive 

implementations which do not offer fine-grained control over the 

algorithm. Hipster provides a wide variety of classical search 

algorithms implemented in an iterative way like Dijkstra, A*, 

IDA*, AD* and more. In order to facilitate the use and 

integration with most research, commercial and non-commercial 

projects, the software is developed under the open source Apache 

2.0 License. Hipster was successfully applied in two different 

research projects in the areas of Web service composition and 

motion planning. Source code, documentation, binaries and 

examples can be found at https://github.com/citiususc/hipster. 

Keywords: heuristic search; uninformed search; informed 

search; local search; Java library. 

I. INTRODUCTION 

Many areas in Computer Science, such as robotics, 
planning, bioinformatics or web intelligence use heuristic 
search techniques to provide efficient solutions to common 
problems. State space search is widely used in Artificial 
Intelligence to model and solve general and specific problems 
in which the search space is divided into states that represent a 
particular configuration of the problem [1][2]. In this model, 
the search is performed from an initial state —the initial 
configuration to the problem— to a goal state, applying 
different actions in order to find a solution to the problem. 
Algorithms are often classified into two categories, depending 
on the information they use. These categories are uninformed 
and informed search. Uninformed search refers to those 
algorithms that do not have information about what state to 
expand next. Examples in this category are Depth First Search, 
Breadth First Search, Dijkstra or Bellman-Ford among others. 
On the other hand, informed algorithms are those techniques 
that use problem-specific knowledge —usually heuristics— 
that are used to estimate the distance to the goal in order to 
improve the performance by reducing the number of explored 
states. Informed search can in turn be divided depending on 
whether they exploration is over the whole state space —global 
search— or only over a part of the search space —local search. 
Examples of the first category are: Best First Search (BFS) [2], 

A* [3], IDA* [4] or D* [5], including the specific path search 
algorithms with re-planning capabilities such as ARA* [6] or 
AD* [7], whereas most common local search strategies are 
Beam Search [2], Hill Climbing [2], Enforced Hill Climbing 
[8], Tabu Search [9] or Simulated Annealing [10]. 

One of the common problems is the lack of generic search 
libraries with a flexible model that can be directly applicable to 
any problem. This forces developers to program domain-
specific solutions based on generic algorithms for each new 
problem. Furthermore the use of restrictive or viral licenses in 
the current libraries makes even harder to reuse generic 
algorithms. 

As a response to these problems, in this paper we present 
Hipster, a generic Heuristic Search library for Java. Hipster 
relies on a flexible model with generic operators to change the 
behavior without modifying the internals. All algorithms are 
also implemented in an iterative way, avoiding recursion. This 
has many benefits: full control over the search, access to the 
internals at runtime or a better and clear scale-out for large 
search spaces using the heap memory. Hipster also comes with 
a permissive Apache 2.0 license that allows the library user the 
freedom to use and modify it for any purpose. 

At its current state, Hipster implements the following 
algorithms of these families: uninformed search —DBS, BFS, 
Dijkstra and Bellman-Ford—, informed search —A*, IDA* 
and AD*— and local search —Hill Climbing (HC) and 
Enforced Hill Climbing (EHC). More implementations will be 
added in the near future, but it is easy for any user implement 
any other algorithm using the Hipster model. 

II.  PROJECT GOALS 

The library was implemented following some guidelines to 
achieve the following goals: 

Iterative algorithms. We implemented the algorithms in 
Hipster as iterative processes. The reason behind this is that 
most search libraries provide very simple interfaces which only 
require the initial and goal state, and once the search is 
executed the control is not recovered until the processing 
finishes. This makes unfeasible to modify the behavior of the 
algorithm —add new goals, extend the  search process after 
finding the goal, etc.— and to monitor the search. 
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Flexible, extensible, reusable. We are aware that solving a 
search problem requires to combine several pieces —state 
definition, transitions, the algorithm, a cost function, heuristics, 
etc.—, and in many occasions some of these pieces may 
change. The development of Hipster is based on the 
encapsulation of these pieces in separate components so each 
one can be changed without affecting the others, maximizing 
the flexibility of the model. It also facilitates to reuse and 
extend previously implemented components. 

Powerful but simple API. The key insight the API of 
Hipster is to provide an easy way to solve simple search 
problems using the default components —which also reduces 
the barrier of entry for new users— and separate the most 
advanced options that allow the complete customization of the 
algorithms. 

Highly-tested code. One of the project goals of Hipster is to 
provide well tested algorithms and hence a robust 
implementation. The quality of the code is guaranteed by 
automatic unit testing and continuous integration tools. 

Permissive Apache 2.0 license. Most of the available Java 
libraries are released under restrictive licenses that are not 
compatible with many research and commercial projects. To 
minimize these conflicts and to maximize the adoption of the 
library, we chose a very permissive Apache 2.0 free software 
license. This license grants the freedom to use the library for 
any purpose, to modify it, and to distribute modified versions 
under the terms of the license, without concern for royalties. 

III. IMPLEMENTATION DETAILS 

A structure of a search problem is formally defined by 
several components: the state space of the problem —all states 
reachable by applying any sequence of actions—, the transition 
model used to navigate between states, the initial state and, 
optionally, one or more goal states. Executing a search 
algorithm to solve the problem and find the optimal solution 
implies to build a search graph, where the nodes correspond to 
the states and the arcs are the transitions between them. The 
information generated during the search is stored in these 
nodes. Although different algorithms store different 
information in the nodes, these elements are always present: 

 State: State in the state space that corresponds to the 
current node. 

 Parent: Node in the graph that generated the current 
one. 

 Transition: Action applied to move from the parent 
node to the current one. 

This information is enough to execute simple algorithms 
like BFS or DFS. Nevertheless, most search algorithms 
evaluate the transitions to obtain the path with the minimum 
cost. This requires to store in each node the information about 
the cost, g(n), of the path between the initial state and the 

current one. Moreover, algorithms that execute an informed 
search store an additional element, the score, which 
accumulates the cost from the beginning and the estimated cost 
to the goal according to a heuristic function, h(n). Figure 1 
shows how Hipster captures all these elements. Node is a 
generic interface that defines the common operations for all 
node types described above. An abstract implementation of 
Node, AbstractNode, is provided and can be extended to obtain 
custom defined node types to use with the search algorithms. 
The interface Node is extended by CostNode and 
HeuristicNode, which respectively manage the cost and score 
operations required by some algorithms, as described before. 
By default, Hipster uses two different implementations for the 
nodes, namely SimpleNode and HeuristicNodeImpl. These two 
implementations are enough for the included algorithms, but 
more sophisticated nodes can be created by extending 
AbstractNode without affecting the implementation of the 
algorithms. As all implementations extend the Node interface, 
the internal data type used in the algorithm is not required to be 
known, and the compatibility between them is guaranteed.  

 
Figure 1. Data model of Hipster.  The graph search is built using States, 

Transitions and Nodes, and the search algorithms may use heuristic and 

cost functions to evaluate the cost of the paths. The information generated 

during the search is stored in the Node elements, which are instantiated by 

a NodeFactory component. 



Depending on the type of nodes, the algorithm uses an 
implementation of NodeFactory that instantiates the required 
node type. If the algorithm requires using CostNode elements, 
this component is also responsible of aggregating the cost from 
the beginning state associated to each node. Moreover, if 
HeuristicNode is used, it also computes the score by 
aggregating the cost of the node and the heuristic provided by 
the HeuristicFunction component. Hipster provides two 
different factories used for informed and uninformed search 
algorithms: HeuristicNodeFactory and SimpleNodeFactory 
respectively. These implementations are enough to work with 
most search strategies and it is possible to extend these 
components although it is not the most common scenario. 

The algorithms implemented in Hipster rely on different 
components that encapsulate independent operations in the 
search process, such as generating the outgoing transitions of a 
state (TransitionFunction), evaluating the cost of the generated 
transitions (CostFunction) and estimating the cost between a 
state and the goal (HeuristicFunction):  

 TransitionFunction: This interface provides a function 
that takes a state as an argument and returns its 
outgoing transitions, according to a transition model 
that depends on the problem. 

 CostFunction: Evaluates a Transition object and 
returns its corresponding cost. The cost is a generic 
type which may be a numeric value or have a more 
complex definition. 

 HeuristicFunction: Estimates the cost of the path 
between the input State object and the goal State. The 
type returned by this component must be consistent 
with the CostFunction implementation used so they 
can be aggregated. 

As follows from Figure 2 Hipster uses a generic definition 
for the cost. This is motivated by the need of using complex 
definitions for the cost that can be a composition of several 
attributes that cannot be easily summarized in a single value. 
This is something that other search libraries do not contemplate 
and it is an important limitation when dealing with complex 
real problems. To manage an abstract definition for the cost we 
need to define the components to operate with the custom cost 
objects. In order to operate with these costs we define a binary 
function over the domain of the costs: 

  

This corresponds with the interface BinaryFunction (Figure 
2) that accepts two generic costs as input and returns the 
resultant transformation in the same domain, which allows to 
define generic operators as addition, scaling, etc. These are 
used in the NodeFactory to operate with the costs as detailed 
above. Hipster implements some common operators to work 
with Double cost types that are used, for example,  to 
accumulate the costs when performing a Dijsktra search or to 
compute the score of a node as g(n) + h(n) in the A* algorithm. 

In addition to the BinaryFunction interface we need to 
fulfill some properties to define a valid cost algebra [1] to work 

with generic costs. A cost algebra is defined as a 5-tuple {A, x, 
≼, Cid, Cmax} such that {A, x, Cid } is a monoid, ≼ is a total 
order between the elements of the domain and Cid and Cmax are 
the identity and greatest elements of our cost. In order to define 
a monoid {A, x, Cid }, the binary function (x) over the domain 
(A) must be associative and have an identity element (Cid). 
Hipster provides implementations for the addition and 
multiplication of Doubles using this strategy, which are the 
most common scenarios in a great variety of search problems. 
It is worth to note that all these details are hidden to the user 
and it is not necessary to work at that level of abstraction 
unless a custom definition of the cost is used. 

Following this design each component has a separate 
function. This encapsulation allows changing the 
implementation of each component without affecting the 
others. This facilitates reusing and extending them, and also 
makes the basic structure of the algorithms fully reusable. 

The algorithms currently implemented in the library are 
divided in three different categories according to their features. 

Uninformed algorithms: 

 Depth First Search (DFS) [2]: It is a blind algorithm 
that performs an exploration of the graph in a way that 
always reaches the deepest node before backtracking. 
The Hipster implementation is a graph-based search 
that can handle cycles. It uses SimpleNode instances 
because it does not compute costs. This algorithm is 
complete (it always finds a solution if it exists) but not 
optimal (with the minimum cost). 

 Breadth First Search (BFS) [2]: It is similar to DFS 
but in this case the exploration is done visiting all the 
successors of a certain level from the beginning state 
before going deeper. As DFS, it also uses SimpleNode 
instances and it is complete but not optimal. 

 Dijkstra [1]: It is an optimal and complete graph 
search algorithm for non negative costs that visits the 
nodes in the order given by the minimum cost of the 
path from the beginning state. As it involves evaluating 

 
Figure 2. Class diagram showing the cost algebra used to manage custom 

type cost elements. 



the transitions between nodes, and tracks the cost from 
the start, it requires the usage of CostNode instances. 

 Bellman-Ford [1]: It is an algorithm very similar to 
Dijkstra that can handle negative costs but at the price 
of a worse computational complexity. 

Informed algorithms: 

 A* [3]: It is a heuristic search algorithm widely used in 
path finding. It uses a HeuristicFunction to estimate 
the distance between each HeuristicNode and the goal. 
It is complete, and optimal if the heuristic is admissible 
and consistent. The nodes are visited in a best-first 
search strategy where the nodes are ordered by their 
score, namely f(n) = g(n) + h(n). 

 IDA* [4]: This algorithm is similar to A* but uses 
iterative deepening to limit the memory usage to the 
minimum. It uses the score f(n) as the maximum depth 
bound to cut-off the search. This bound is recomputed 
iteratively, taking the minimum f(n) score of all of 
those nodes that exceeded the previous bound. 

 AD* [7]: It is an advanced state-of-the-art algorithm 
with replanning capabilities commonly used in path 
planning. It is able to compute sub-optimal bounded 
solutions inflating the value of the heuristic, so the cost 
of the solution can be adjusted depending on the time 
available to compute it. The solution can be improved 
iteratively reusing previous computation efforts and 
managing changes in the costs of the transitions. The 
order in which the nodes are visited is similar to A*, 
but taking into account the inflation of the heuristic. 
This difference requires using a different 
implementation of Node, ADStarNode. 

Local search: 

 Hill Climbing (HC) [2]: This algorithm starts the 
exploration in an arbitrary state and iteratively selects 
the successor state with the lowest heuristic value (the 
HeuristicNode that is closer to the goal)  in order to 
find a local optimum. The algorithm is neither optimal 
nor complete, but can provide good solutions in very 
fast way in some search problems. 

 Enforced Hill Climbing (EHC) [8]: Is a variation of 
HC that uses a BFS exploration when the algorithm 
gets stuck in a local optimum. The algorithm is only 
complete when the problem has not dead-ends, 
otherwise it can fail without reaching the goal. 

Although these algorithms are enough to solve search 
problems in a huge variety of fields, it is easy for any user to 
implement more algorithms based on this model. 

IV. CASE STUDY I: OPTIMALWEB SERVICE COMPOSITION 

Web services are network-accessible software components 
whose functional features are mainly defined by the inputs that 
consume and the outputs they produce. One of the advantages 
of Web services is to enable greater and easier integration and 
interoperability among systems through Web service 

composition. This advantage allows Web services to be 
composed mainly by connecting their inputs and outputs to 
create larger composite services reusing the existing ones. 
Thus, the goal of Web service composition is to construct new 
services from existing Web services in order to satisfy some 
goals which cannot be achieved by single Web service. 

There are multiple problems related to the automatic 
composition of Web services that are still under active 
research. One of the problems that we tackled in our research 
[11, 12, 13] is the automatic input/output driven composition of 
semantic Web services, optimizing both the number of services 
and the total length of the composition. Concretely, the 
problem consists of finding the optimal service composition 
using only the information of their inputs and outputs that 
solves an input/output request. That is, the optimal composition 
must use some of the inputs provided and must provided at 
least all the outputs expected by the user. 

To solve one part of this problem, we used Hipster to 
develop a backwards A* algorithm that searches for the best 
composition among all possible combinations of services. 
Given an input-output request, a service graph with all the 
relevant services for the request is dynamically generated. 
Then, the backwards A* search algorithm is used to find the 
minimal service composition that satisfies the request, from 
the goal outputs to the initial inputs. We also developed 
different optimizations to reduce the graph size and to 
dynamically compact functional equivalent nodes to further 
improve the search speed. 

Figure 3 shows an example of a service graph with one 
optimal composition which consists of 4 services (S1,1 , S2,1 , 
S3,1  and S3,2). Services are connected by their inputs and 
outputs, generating longer compositions. In order to find the 
optimal composition in the graph, the search navigates state by 
state from the last layer to the first layer, selecting N services at 
each layer. This works as follows: The first state contains only 
the dummy service Do, whose inputs are the goal outputs of the 
request (j,k). When the algorithm expands the initial state, it 
generates two new possible states. Each successor state 
consists of those services from the previous layer that provide j 
and k. In this example there are two different successors that 
satisfy them, one contains the services S3,1 and S3,2 and the other 
the services S3,3 and S3,4. Both successor states have the same 
cost (2 services) and are located at the same distance to the 

 
Figure 3. A graph example with 6 layers two different compositions of 

different sizes. 



goal (3 layers), so in the next step the algorithm selects any of 
them (for example, the first one) and expands it. Now, the 
successor states are the combination of those services from the 
previous layer that satisfy the inputs of the current state, which 
are f and g. There is only one state that contains one service 
(S2,1) that covers both. This is repeated, using the cost (number 
of services) and the heuristic (number of layers to the goal) to 
decide which is state expanded next, until the service that 
contains the goal state Di is selected. 

From the point of view of the search problem, there are 
different problem-specific components that we need to 
implement to perform the backwards A* over the graph, 
namely: 1) the search states that represent the services selected 
in each step; 2) the transition function, which is the function 
that computes the possible successors of each state ; 3) the cost 
function that calculates the cost of each state and 4) the 
heuristic function that computes the distance from one state to 
the goal state. 

 Search states. For this case, we implemented a class 
that contains a set of services, the layer index, and 
some helper methods. The only thing that the state 
must guarantee is that two state instances with the 
same services at the same layer must be the same state. 
To do this, we have to override the methods from the 
Object Java class equals and hashcode accordingly. 
Otherwise, the algorithm cannot differentiate between 
successors states that are the same and hence the search 
is turned into a tree search instead of a graph search. 

 Transition function. This function returns the set of 
the successor states for a concrete state. This was done 
by implementing the TransitionFunction interface. The 
function computes the minimum set of all possible 
combinations of services from the previous layer that 
provide all the unresolved inputs of the current state 
(that is, the union of the inputs of each service in the 
current state).  

 Cost function. We used the CostFunction interface to 
implement our strategy. The implementation is 
straightforward: it takes a state as input and returns the 
number of services that are in the state as output. 
Hipster has standard implementations for the informed 
search algorithms to work with double cost types. 
Since we used doubles to compute the cost, we did not 
need to implement anything else to work with the 
default implementation of the A*. 

 Heuristic function. We created a heuristic strategy 
that implements the HeuristicFunction interface. This 
function computes an admissible and consistent 
heuristic, which is the number of layers to the goal, and 
returns a double value. Again, as we use the default 
cost type, we do not need anything else. The default 
implementation knows how to aggregate the cost and 
the heuristic to guide the search towards the goal. 

All these elements (plus the initial state) are provided to the 
A*, which is then instantiated as an iterator. By iterating over 
the A* iterator, we can obtain the next expanded node until the 
current node contains our goal state. An advantage of the 

iterative model is that we can keep running the algorithm in 
order to find more than one composition in ascending order 
according to its size in number of services and length. Results 
obtained in this work proved the efficiency of the library. 

V. CASE STUDY II: MOTION PLANNING 

Autonomous vehicles rely on a motion planner to 
determine the sequence of actions to reach one or more 
objectives from a starting position. Discretizing the state space 
of the vehicle has proved to be a successful approach to reduce 
the computational complexity of the problem. The state lattice  
is a regular sampling strategy that introduces important 
benefits: it allows working with a set of actions extracted from 
the vehicle motion model to connect the discrete states, and 
because of the regularity these actions are position-
independent, so  they can be replicated for every pair of states 
equally arranged (Figure 4). The discrete states and the actions 
connecting them are expressed as a directed graph, so it is 
straightforward to obtain the optimal path using a search 
algorithm. As the motions between states are extracted from 
the motion model, the path returned by the algorithm is 
guaranteed to fulfill the maneuvering restrictions of the vehicle. 

The planners described in [14, 15] were implemented using 
the forward implementation of Anytime Dynamic A* (AD*) 
included in Hipster. AD* has proved its efficiency in the 
motion planning field, and manages replanning and the 
obtention of sub-optimal bounded solutions anytime; these 
solutions can be improved iteratively reusing previous 
computation effort. Several components of Hipster were 
implemented taking into account the problem-specific 
constraints: 

 States: Are defined by a 5-tuple that contains the 
vehicle pose and the linear and angular speeds: 

  

 Transitions: The problem requires to store the action 
used to connect each pair of states,  the followed path 
and the predicted uncertainty along it. To do this we 
use a custom implementation of the Transition object 
provided with the library, and our TransitionFunction 
implementation returns objects of our custom-defined 

 
Figure 4. Regular arrangement of the states using the state lattice 

strategy. The actions connecting the states (in black) are position-

independent so they can be used to connect the equally arranged states. 



transition type. Extending these components in Hipster 
does neither affect the definition of Node used by AD* 
nor the algorithm itself. 

 Cost function: We evaluate each transition to obtain 
the probability of avoiding collisions, the time length 
of the action and the uncertainty at the final state. 
These measures are stored in a custom-defined cost 
element. We use an implementation of CostFunction 
that receives objects of our custom transition type and 
returns this type of cost elements. Most search libraries 
do not allow custom definitions for the cost of the 
paths and they assume a numeric value, which limits 
their usability in cases like this, where complex 
evaluations cannot be summarized numerically. 
Nevertheless, one of the benefits of using Hipster is the 
possibility of using a custom-defined value type, 
defining the operations of addition —to accumulate the 
cost of the path from the starting state—, and scaling 
—to inflate the heuristic value and obtain sub-optimal 
solutions anytime. 

 Heuristic function: As heuristic we used the cost of 
the path without taking into account the vehicle 
motion model. It is obtained executing a 2D search 
with the Dijkstra search algorithm implementation 
provided in Hipster. The search needs to be performed 
backwards, and it uses a custom-defined stop 
condition: it explores 1.5 times the cost of the optimal 
path between the goal and the beginning position. As 
Hipster algorithms are implemented in a iterative way, 
which grants total execution control, we could vary 
the stop condition of the algorithm as detailed in 
Algorithm 1. This heuristic only depends on the 
environment so it is executed at the beginning of the 
planning process. After executing this search the 
closed queue of the algorithm contains the cost of the 
2D path between all the explored positions and the 
goal. As Hipster provides full access to the internals of 
the algorithm, accessing these values does not require 
additional operations For this search our State objects 
are 2D positions. The TransitionFunction returns the 
8-connected positions neighbors and the CostFunction 
returns the euclidean distance between states. This 
search problem did not require neither a custom 
definition for the cost nor transitions, so using Hipster 
with the default components was straightforward. The 
HeuristicFunction component of the motion planner 
executes the described 2D Dijkstra search in its 
initialization. 

The library design keeps separated the implementation of 
the operators from the algorithm, isolating the problem-specific 
constraints and resulting in a simpler yet efficient planner. 

VI. CONCLUSIONS 

In this paper we presented Hipster, a heuristic search library 
for Java. The main goal of Hipster is to provide robust and 
flexible implementations of the most widely used uninformed 
and informed search algorithms. Hipster relies on a common 
data model that is shared among all the implementations, so it 
is easy to reuse, extend and understand. It comes with 
implementations of common search algorithms such as Dijkstra 
or A*, but also with more advanced techniques that are not 
usually implemented in open source libraries, like the AD* 
algorithm for path planning. Hipster is licensed under a 
permissive open source Apache 2.0 license to facilitate the 
integration in any type of educational, commercial and research 
projects. The library was successfully integrated in two 
representative research projects with different requirements and 
problem-specific operators. As future work, we plan to extend 
the library with other algorithms such as ARA*, D* or 
bidirectional search, but keeping the same simple model. 
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