
Robotics and Autonomous Systems (2020) 1–14

Journal
Logo

Autonomous navigation for UAVs managing motion and sensing uncertainty

Adrián González-Sieiraa,∗, Daniel Coresa, Manuel Mucientesa, Alberto Bugaŕına

aCentro Singular de Investigación en Tecnolox́ıas Intelixentes (CiTIUS), Universidade de Santiago de Compostela, Santiago de
Compostela, Spain

Abstract
We present a motion planner for the autonomous navigation of UAVs that manages motion and sensing uncertainty at planning
time. By doing so, optimal paths in terms of probability of collision, traversal time and uncertainty are obtained. Moreover, our
approach takes into account the real dimensions of the UAV in order to reliably estimate the probability of collision from the
predicted uncertainty. The motion planner relies on a graduated fidelity state lattice and a novel multi-resolution heuristic which
adapt to the obstacles in the map. This allows managing the uncertainty at planning time and yet obtaining solutions fast enough
to control the UAV in real time. Experimental results show the reliability and the efficiency of our approach in different real
environments and with different motion models. Finally, we also report planning results for the reconstruction of 3D scenarios,
showing that with our approach the UAV can obtain a precise 3D model autonomously.

Keywords: autonomous navigation, motion planning, motion uncertainty, UAVs, scene reconstruction

1. Introduction

The popularity of Unmanned Aerial Vehicles (UAVs)
has significantly increased in the last years. Currently,
most of the times a human operator supervises and usually
controls the UAV during the flight. However, the benefit
of using an autonomous navigation system is clear when
it comes to help the operator to accomplish tasks that
can be automated. In this sense, a motion planning ap-
proach that minimizes the probability of collision of the
paths can guarantee a safe navigation, leaving the opera-
tor more time to focus on the goals or other key aspects of
the mission. Examples of applications that could benefit
from this are: exploration [1], surveillance [2], tracking of
mobile targets [3] or traffic monitoring [4, 5]. However,
the interest is even clearer in other contexts in which hu-
man intervention is hazardous or too expensive, like in
infrastructure inspection [6] or the reconstruction of 3D
scenarios [7].

In order to reliably estimate the safety of the planned
paths, it is essential to take into account the dynamics of

∗Corresponding author.
Email addresses: adrian.gonzalez@usc.es (Adrián

González-Sieira), daniel.cores@usc.es (Daniel Cores),
manuel.mucientes@usc.es (Manuel Mucientes),
alberto.bugarin.diz@usc.es (Alberto Bugaŕın)

the UAV. This allows obtaining plans which comply with
its kinematic constraints. However, it is equally important
to consider that, under certain circumstances, a significant
amount of motion uncertainty may arise during the flight.
This is due to the imprecisions in the UAV motions and
the noisy or incomplete measurements of the on-board sen-
sors, which make the uncertainty to be different for each
path. Estimating it at planning time allows selecting the
best path according to its safety. This would allow obtain-
ing solutions adapted to the uncertainty conditions —e.g.
the accuracy of the localization measurements—, this way
fulfilling the flight safety requirements.

Planning efficiency is also relevant to allow operat-
ing the UAV without noticeable delays. Although there
are motion planning approaches based both on stochas-
tic and deterministic sampling strategies, the latter —
e.g. the state lattices [8]— allow distributing the sampled
states in a regular manner, which results in a very efficient
representation of the state and action spaces. Moreover,
their structure resembles a graph in which the vertices
and the edges are the discrete states and the motions con-
necting them, respectively. Thus, optimal paths between
states can be found with an informed search algorithm,
using heuristics to improve the search efficiency. Despite
this, managing motion uncertainty at planning time can
be computationally expensive, so fluent autonomous navi-
gation can only be achieved by using strategies to improve

1

A. González-Sieira et al. / Robotics and Autonomous Systems (2020) 1–14 2

the planning efficiency. On the one hand, multi-resolution
maps can be helpful to get a better representation of the
environment, since they adapt the resolution to the ob-
stacle cluttering, a strategy which is also applicable to
obtain the heuristics faster. In this sense, octree based
maps [9, 10] can deal with large environments very effi-
ciently. On the other hand, the efficiency of state lattice
based motion planners can be boosted by reducing the fi-
delity —the resolution of the sampled states—, although
this cannot be done without sacrificing the optimality and
feasibility of the planner —the capacity to obtain valid
solutions given the constraints. Notwithstanding, gradu-
ated fidelity lattices [11] can manage the trade-off between
planning efficiency and performance, since they vary the
resolution of the sampled states in different areas of the
map. This way the uncertainty can be managed while
keeping reasonable runtimes, making this strategy suitable
for navigating autonomously in a safe manner.

The contributions of this paper are: (i) a motion plan-
ning algorithm adapted to the autonomous navigation of
UAVs which manages the motion and sensing uncertainty
with the goal of obtaining optimal solutions in terms of
probability of collision and traversal time; and (ii) the in-
tegration of the proposed motion planner in a real system,
which was applied to the autonomous reconstruction of 3D
scenes with a RGB-D camera. The uncertainty is man-
aged at planning time, in such a way that the probability
of collision of each path is estimated before the UAV starts
moving. Thus, the best path in terms of probability of col-
lision and traversal time is obtained, so that the UAV can
navigate autonomously in a safe manner, even in cluttered
environments.

The motion planner is based on the algorithms detailed
in [12], which in this paper are presented as a whole system
for planning and navigation of UAVs that includes flight
control and state estimation. In this regard, this work
does not consist in a mere 3D extension of the existing
planner, which would result in unsuitable planning times
that would prevent its integration in real systems. Instead,
an adaptation of the underlying algorithms that addresses
the increased complexity due to the higher dimensionality
of the problem is presented. In this context, we propose a
deterministic sampling method to obtain the probability of
collision reliably, taking into account the real dimensions of
the UAV and also the uncertainty in heading. Moreover, to
improve the efficiency of the motion planner, we propose
H3DMR, a novel heuristic which takes advantage of the
multi-resolution map to efficiently estimate the cost to the
goal in 3D environments. This heuristic, together with the
graduated fidelity lattice of the motion planning algorithm,
allows obtaining solutions fast enough to operate the UAV
in real time.

2. Related work

As mentioned before, the efficiency of the motion plan-
ning algorithms is essential for navigating autonomously.

In order to achieve this, some techniques obtain collision
free routes disregarding the dynamics model of the UAV,
and then rely on a PD [13] or PID [14] controller to track
the paths focusing on the stability of the flight. Other
approaches use these paths as initialization for a low level
planner which obtains a similar solution that observes the
kinematic restrictions, like [15], which uses Potential Fields
to obtain the velocity commands that would drive the
robot through free space. Similarly, in [16] they presented
an architecture based on a high level planner, which ob-
tains the waypoints for navigation; and a low level planner,
which deals with trajectory tracking and obstacle avoid-
ance. However, the main issue shared by these approaches
is that they cannot guarantee the feasibility of the global
route once the UAV starts to move, since the initial so-
lution disregards the kinematic restrictions. Despite this,
approaches of this kind reported good results in particular
domains that rely on local planning solutions, like [17].

This is addressed obtaining collision free paths taking
into account the dynamics model, something that can be
achieved using different techniques. In this regard, the pro-
posal of [18] uses Potential Fields and deals with the local
minimums. However, this method relies on computing the
control commands in real time, which might be not pos-
sible in large environments due to scalability issues. The
proposal of [19] uses the Fast Marching Square method to
produce smooth paths for navigating at a fixed altitude.
Despite not being explicitly considered, the kinematic re-
strictions of the UAV can be fulfilled if the parameters of
the algorithm are properly tuned.

Sampling based methods have proved successful for
dealing with global motion planning under kinematic re-
strictions, achieving good results in high dimensional spaces.
There have been efforts for applying these algorithms to
the autonomous navigation of UAVs, using both stochastic
[20, 21] and deterministic sampling methods [22, 23]. In
[20] they use Rapidly-exploring Random Trees (RRT) [24],
to obtain a global plan very efficiently. However, the paths
obtained by RRT usually have smoothness issues and re-
quire post-processing to avoid undesirable maneuvers dur-
ing flight, especially when the number of samples is low.
Informed RRT* [25], a variant of RRT, was used in [21]
in combination with a local planner which performs tra-
jectory optimization to deal with these smoothness issues.
This local planner is constantly updating the path to deal
with unseen obstacles, which allows navigating in unknown
environments. Despite the good results reported, this ap-
proach uses a smooth cost function for collision avoidance
which does not scale well with the size of the environment.

Among the approaches based on deterministic sam-
pling, state lattices [26] are noteworthy for their good re-
sults when combined with graph search algorithms, like
Anytime Dynamic A* [26]. In [22] and [23] they reported
results for multi-rotor autonomous navigation in partially
known environments. In addition, the latter proposal deals
with robots with non-circular shapes, which is very inter-
esting for navigating in cluttered environments. However,

2

A. González-Sieira et al. / Robotics and Autonomous Systems (2020) 1–14 3

Figure 1. Architecture of the autonomous navigation system. The modularity of the different software components allows running the system
with different configurations.

all the approaches mentioned above rely on feedback con-
trollers to track the planned path accurately, a strategy
which does not guarantee that the planned paths will be
collision free under all circumstances.

In regards to motion planning under uncertainty, some
authors pointed out the suitability of taking it into account
for UAV navigation [27] in order to address the motion im-
precisions or the sensing inaccuracies that might affect the
reliability of the solutions. In this context, the state of the
art for dealing with the uncertainty at planning time are
the approaches in [28] and [29]. Both methods work in
a similar manner, which consists in predicting the uncer-
tainty throughout all the candidate paths —considering
the inaccuracies in the controls and the observations—
that the robot would have in execution time with the goal
of retrieving the one that maximizes a safety criterion.
The former achieves this in such a way which minimizes
the probability of collision using RRT, although due to
this method not being asymptotically optimal [30] there
is no guarantee that the path with the lowest cost will be
retrieved. The latter addresses this issue using RRT* in-
stead, albeit in this case with the goal of obtaining the
path which minimizes the amount of uncertainty.

In spite of the suitability of considering the uncertainty
at planning time, the high complexity of this problem and
the limited computing power of the on-board computers
have cause very high planning times, which make it impos-
sible to integrate these algorithms in real systems. Hence,
most prior research in the field of UAV navigation has so
far focused on algorithms capable of computing fast solu-
tions [13, 15, 16, 21], relying on multi-level architectures
that deal with the risky situations in execution time, e.g.

how to approach the obstacles or when a blocking situation
occurs. Thus, the initial plan is assumed to be collision free
and it is locally modified in execution time to keep a secu-
rity distance with the obstacles. While these approaches
might still be key to deal with certain situations, they
cannot guarantee neither the feasibility nor the optimality
of the paths before the UAV starts moving. Instead, our
proposal manages the uncertainty at planning time and se-
lects the best path in terms of probability of collision and
traversal time. To achieve this while retaining reasonable
planning times, our proposal relies on a state lattice with
graduated fidelity which is able to deal with the overhead
caused by taking into account the uncertainty. Moreover,
in this work we present a strategy for reliably estimating
the probability of collision of the candidate solutions tak-
ing into account the real dimensions of the UAV, as well as
a multi-resolution heuristic which adapts to the obstacles
in the map. The efficiency and reliability of our approach
makes it suitable for autonomous navigation purposes.

3. System overview

Our system has a modular and extensible architecture,
detailed in Fig. 1, in which each component works inde-
pendently and can be developed or replaced without af-
fecting the rest. Concretely, it is formed by several in-
dependent software modules which work in parallel and
communicate between them: the waypoint generator, the
motion planner, the UAV state estimation and the flight
controller. For the implementation we used the widely
extended Robotic Operating System —ROS— framework

3

A. González-Sieira et al. / Robotics and Autonomous Systems (2020) 1–14 4

[31], which facilitates the communications between the dif-
ferent software modules and the use of different hardware
configurations. Moreover, the modular and flexible archi-
tecture allows adapting the different components without
affecting the rest.

The state estimation module combines the UAV pose
with the information of the inertial unit. The pose can
be obtained from an external source, like a GPS, or be
estimated by other means, such as a visual odometry al-
gorithm which uses an on-board camera. Any localiza-
tion method can be used with our system, provided that
its error is bounded in time and it can be represented by
a Gaussian distribution. Independently of the source, an
Extended Kalman Filter combines the localization and the
inertial unit measurements to improve the reliability of the
estimated state. Moreover, this enhances the robustness
of the system when dealing with inaccuracies and partial
information.

The controller tracks the planned paths, minimizing
the deviations that might occur during the flight. To
achieve this, it adjusts the velocity commands in real time
according to the estimated state of the UAV. The design
of our system is not tied to a specific vehicle. For this
reason, our approach assumes that a low level controller
calculates the suitable throttle for each motor given the
velocity commands.

3.1. Motion planner
The input for planning is the set of waypoints that the

UAV has to visit. These waypoints can be obtained in dif-
ferent manners depending on the nature of the mission: for
autonomous navigation purposes only the current location
and the goal are needed, while for scene reconstruction a
set of waypoints allowing to collect data without leaving
unseen areas is required.

The motion planner obtains the path that minimizes
the probability of collision and the flight time between con-
secutive waypoints. The result is the list of velocity com-
mands that the robot has to execute to follow the plan,
which are sent to the flight controller. Our approach: (i)
manages the motion and sensing uncertainty at planning
time using the method of [29], predicting the probability
distributions of the robot being in each state of the path
during its execution; (ii) estimates the probability of col-
lision for each path given the predicted uncertainty; (iii)
uses a state lattice and graduated fidelity strategy which
adapts to the obstacles in the map.

The lattice states are connected by a set of motion
primitives, that are obtained from the dynamics model of
the UAV, and that can be computed offline for the sake of
efficiency. This way of representing the state space can be
seen like a graph, so the optimal path between any pair of
lattice states can be found with a search algorithm. This
path, due to the construction of the state lattice, is formed
by the set of feasible actions connecting them. As search
algorithm we used Anytime Dynamic A* (AD*) [26, 32],
which allows obtaining sub-optimal solutions faster than

Algorithm 1 Main operations of the motion planner
Require: x0 and xG, initial and goal states, and ε0

1: function main (x0, xG, ε = ε0)
2: initializeH3DMR(x0, xG) ⊲ See Alg. 2
3: while ε >= 1 do
4: OPEN = {x0}
5: repeat
6: xa = arg minx∈OPEN(cx + ε · hx)
7: for all xb ∈ successors(xa) do
8: hxb = heuristic(xb) ⊲ See Alg. 2
9: cxb = cxa+ cost(xa, xb) ⊲ See Alg. 3

10: OPEN = OPEN ∪ {xb}
11: OPEN = OPEN − {xa}
12: until xa = xG

13: publish path(x0, xa) and decrease ε

14: return

the optimal one. The parameter ε acts as boundary for
the cost of the sub-optimal solutions, which are refined
iteratively with the information previously calculated. ε
can be initially set to any sufficiently high value, which
depends on the desired upper bound to the cost of the
sub-optimal solutions, in order to compute the first path
quickly.

While this planning approach is based on [12], this
prior work was proposed for planning under uncertainty
for 2D mobile robots. Its applicability to 3D systems is not
straightforward due to the increased computational com-
plexity caused by the higher dimensionality of the problem.
In this regard, Sec. 4 details: (i) a novel multi-resolution
3D heuristic, and (ii) a new algorithm for the estimation
of the probability of collision of the UAV. These modifi-
cations allow applying the motion planning algorithm to
the autonomous navigation of UAVs while retaining rea-
sonable planning times.

Algorithm 1 outlines the main steps of the motion plan-
ner —a more detailed explanation can be found in [12].
AD* explores the lattice states in an iterative manner, for
which a list containing the states yet to be explored is
maintained —OPEN. The states in this list are ordered
according to their current cost from the start and their es-
timated cost to the goal, which is given by the heuristics.

Our motion planner uses two different heuristics, com-
bined by their maximum, to estimate the cost between
each state and the goal. The first one, FSH (Free Space
Heuristic) [33], copes with the kinematic restrictions of
the UAV considering free space, while the second one is a
low-dimensional heuristic which copes with the obstacles
in the map, H3DMR. Since this heuristic depends on the
map, it has to be initialized every time the planner is run
—Alg. 1:2—, so its efficiency is key for obtaining low run-
times. This is achieved using multi-resolution techniques
which adapt the resolution of this heuristic to the obsta-
cles in the map and reduce its obtention time to the lowest
possible, as detailed in Sec. 4.1.

4

A. González-Sieira et al. / Robotics and Autonomous Systems (2020) 1–14 5

The inputs of the search algorithm are the initial state
of the UAV, x0, and the goal, xG. AD* is initialized pro-
cessing x0 in the first place —Alg. 1:4. Then the algo-
rithm processes other states iteratively until the goal is
found. Firstly, the state xa for which the sum of its cost
and heuristic —cx and hx, respectively— is minimum, is
pulled from OPEN —Alg. 1:6. As the heuristic solely in-
forms about the traversal time, only this term is considered
for combining cx and hx, and the rest of the information
is taken unchanged from cx. Secondly, in Alg. 1:7 the
successors of xa are obtained from the motion primitives,
using the graduated fidelity strategy that was described in
[12]. For each successor, xb, its heuristic and cost are cal-
culated —Alg. 1:8-9—, and the state is inserted in OPEN
to be explored in subsequent iterations. The optimal so-
lution for the current value of ε is available after reaching
the goal, xG, after which the value of ε is decreased —Alg.
1:13. This process is repeated to refine the current plan
until the optimal one is found —this is, ε = 1. Although
there is no rule for decreasing the value of ε, better results
are achieved if it is done at small steps [34].

4. Motion planning for UAVs

In this section we describe the contributions of this
paper, which adapt the motion planning algorithm intro-
duced in [12] to the autonomous navigation of UAVs. In
Sec. 4.1 we introduce a novel multi-resolution heuristic
which copes with the obstacles in the map, and in Sec. 4.2
we describe a method to estimate the probability of colli-
sion of the UAV in a reliable manner taking into account
its real dimensions and the uncertainty in heading.

4.1. Multi-resolution 3D heuristic
H3DMR is a multi-resolution heuristic for motion plan-

ning in 3D environments. It estimates the cost to the goal
taking into account the obstacles in the map, for which
a 3D low-dimensional grid containing the estimated cost
between each position in the map and the goal is built.
To increase the efficiency of the heuristic and improve its
scalability in large environments, the resolution of the grid
adapts to the obstacles in the map. Since the precision of
the heuristics affects the efficiency and the performance
of the motion planner, the resolution of the H3DMR also
takes into account the fidelity of the lattice used for plan-
ning. Moreover, as already mentioned in Sec. 3, this
heuristic is combined with FSH, which improves the pre-
cision of the estimations due to coping with the kinematic
restrictions of the UAV.

Alg. 2 details how H3DMR is calculated. The inputs
are the beginning position and the goal state of the UAV,
q0 and qG; and the maximum fidelity of the state lattice,
f+. The grid is obtained applying the Dijkstra’s algo-
rithm, starting in qG. Generating the grid backwards al-
lows storing the estimated cost between every position and
the goal, which is easily queried later and used as heuristic

Algorithm 2 H3DMR
Require: f+, highest fidelity of the state lattice
Require: q0 and qG, initial and goal positions of the UAV

1: function initializeH3DMR(q0, qG)
2: cqG = 0; cq0 = ∞
3: q = qG

4: while cq > 2 · cq0 do
5: q = arg minq∈OPEN(cq)
6: OPEN = OPEN − {q}
7: κ = cell(q)
8: for all κ′ ∈ adjacent(κ) do
9: if size(κ′) > f+ then

10: insertSubcells(q, κ′)
11: else
12: κ′′ = adjust(κ′, f+)
13: q′ = position(κ′′)
14: if collisionBetween(q, q′) then
15: insertSubcells(q, κ′′)
16: else
17: c(q′) = cq + ‖q′ − q‖
18: OPEN = OPEN ∪ {q′}
19: function insertSubcells(q, κ)
20: for all k′′ ∈ subcells(κ′) do
21: if κ′′ not adjacent to κ then
22: continue
23: q′ = position(κ′′)
24: cq′ = cq + ‖q′ − q‖
25: OPEN = OPEN ∪ {q′}
26: function h3dmr(x)
27: κ = cell(x)
28: K = {κ ∪ adjacent(κ)}
29: Q = {q inside K | q position of the grid }
30: return arg minq∈Q(‖x − q‖ + cq)
31: function heuristic(x)
32: return max(h3dmr(x), fsh(x))

for planning. As stopping condition we used the double of
the cost between the starting position, q0, and the goal
—Alg. 2:4. This is done for efficiency purposes, since the
areas with higher costs are unlikely to be interesting for
planning.

The algorithm stores all the positions to be explored
in the OPEN queue, and iteratively it selects the position
with the lowest cost from qG —Alg. 2:5-6— to generate
its neighbors, which are processed in subsequent iterations.
The neighbors of a position q are obtained from the free
space cells adjacent to κ, the one containing q —Alg. 2:7.
This way they go in accordance with the resolution of the
map. Moreover, with the goal of adapting the resolution
of the grid to the maximum fidelity of the state lattice, f+,
each cell κ′ adjacent to κ is processed differently depending
on its size. Fig. 2 represents the two situations that are
considered. On the one hand, those cells that are larger
than f+, like the one labeled as “A” in the image, are
split into subcells of equal size —Alg. 2:9-10— to avoid

5

A. González-Sieira et al. / Robotics and Autonomous Systems (2020) 1–14 6

Figure 2. Neighbors of a point q of the multi-resolution grid, in
green. κ is the cell which contains q, and the free adjacent cells used
for obtaining the neighbor points are highlighted in blue. The large
cell labeled as “A” is split into equal subcells, while “B” is used as
it is, since its resolution is already adjusted to f+. The cells on the
right are smaller due to the obstacles —the occupied cells are colored
in gray—, so they are adjusted to a lower resolution and represented
by the larger cell containing them, labeled as “C”.

obtaining neighbors at distances much greater than f+,
thus obtaining more precise estimations. For the sake of
efficiency, only those subcells of κ′ that are adjacent to κ
are considered.

On the other hand, the resolution of the cells is limited
to f+, since obtaining neighbors at lower distances would
affect the efficiency of the heuristic. Cells smaller than f+

are not considered for the purpose of generating the grid.
Instead, H3DMR adjusts the resolution according to f+,
like in cell “C” of Fig. 2, so that the neighbor point q′ is ob-
tained from the larger cells —Alg. 2:12-13. Although the
general rule is to decrease the resolution whenever possi-
ble, an exception is made when there are obstacles between
q and q′. In this case, faced the impossibility of using the
occupied cell for generating neighbors of q, its subcells are
considered instead —Alg. 2:14-15. As some of these sub-
cells might be free space, this way the H3DMR copes with
the obstacles in a more precise manner and the optimistic
nature of the heuristic is retained.

Finally, each neighbor position q′ is inserted into the
OPEN queue to be explored by the search algorithm in
subsequent iterations, using the Euclidean distance as the
cost between q and q′ —Alg. 2:17-18.

The multi-resolution grid obtained by H3DMR allows
estimating the cost between each point of the map and the
goal, which is used by the motion planning algorithm as
heuristic. A direct match between the states of the gradu-
ated fidelity lattice and the positions of the grid may exist,
but this is not guaranteed. For this reason, we obtain the
heuristic of a state x from the position of H3DMR for
which the estimated cost to the goal is minimal, consid-
ering those which are inside the cell containing x and the
adjacent ones —Alg. 2:26-30.

The strategy for obtaining H3DMR takes into account
the fidelity of the lattice used for planning and also the

obstacles in the map. The cluttered areas are represented
in the map with cells of lower sizes, for which the resolution
of the H3DMR grid increases. Conversely, the free space
areas are represented with larger cells, resulting in lower
resolutions for the H3DMR grid. This allows estimating
the cost to the goal very efficiently. Despite decreasing
the resolution in some areas of the map, the estimations
are precise due to taking into account the fidelity of the
motion primitives.

4.2. Probability of collision estimation
The candidate paths are evaluated in terms of prob-

ability of collision, traversal time and the uncertainty at
the final state, following the procedure detailed in Alg. 3.
These elements are compared hierarchically, so the mo-
tion planner minimizes, in the first place, the probability
of collision. Among the safe paths, it gets the one with
the minimal traversal time, and if several alternatives ex-
ist, it chooses the one with the lowest uncertainty at the
goal. While the traversal time of the path is given by the
motion primitives, estimating the probability of collision
—with the purpose of obtaining the best plan in terms of
safety— requires to predict the probability distributions
of the UAV state during the execution of that path —Alg.
3:2.

Estimating the probability of collision reliably is cru-
cial for the robustness of the motion planner. To achieve
this, from each predicted distribution xt ∼ N (x̄t, Σt) we
obtain a set of samples —Alg. 3:4—, which we use to check
collisions with the surrounding obstacles, as shown in Fig.
3(a). The strategy of sampling the distributions allows
considering the uncertainty in heading, in such a way that
each sample represents a different pose of the UAV. In this
way, the real dimensions of the UAV are taken into account
centering the real shape in each sampled pose for the pur-
pose of checking collisions with the obstacles in the map.
Then, the probability of collision is estimated calculating
the ratio between the weights of the colliding samples and
the total —Alg. 3:6-7. The weight of each sample xs ∈ Xs

is obtained according to its likelihood:

wxs = 2π− n
2 |Σt|−

1
2 exp {−1

2(xs − x̄t)′Σ−1
t (xs − x̄t)} (1)

and the cost for the entire path, ca:b, is then obtained from
the individual estimations —Alg. 3:7. Although by doing
so we assume that they are independent, this is reasonable
for practical purposes.

Despite the benefits of sampling the distributions, the
high number of stochastic samples that would be needed
to represent the distributions may severely impact the ef-
ficiency of the motion planner. For this reason, our ap-
proach uses a deterministic sampling strategy that repre-
sents the distributions with a limited number of samples,
making it possible to use it in a real setup.

1predictUncertainty is explained in detail in [12]
6

A. González-Sieira et al. / Robotics and Autonomous Systems (2020) 1–14 7

(a) Estimation of the probability of collision of a
path taking into account the real shape and the un-
certainty in heading —2D view.

(b) The samples —in blue— are obtained with a deterministic strategy which dis-
tributes them regularly according to the maximum direction of spread of the distri-
butions —3D view.

Figure 3. Probability of collision estimation.

Algorithm 3 Path evaluation
Require: xa and xb, beginning and final states

1: function cost(xa, xb)
2: P a:b = predictUncertainty(xa, xb) ⊲ See1

3: ca:b = 0
4: for all xt ∼ N (x̄t, Σt) ∈ P a:b do
5: Xs = sample(xt) ⊲ See Alg. 4
6: wc =

!
{xs∈Xs | collides(xs)}(wxs) ⊲ See Eq. 1

7: ca:b = ca:b − log(1 − wc/
!

{xs∈Xs}(wxs))
8: return

"
ca:b, time(xa, xb), tr(Σb)

#
⊲ xb ∼ (x̄b, Σb)

Our strategy relies on, for each one of the predicted dis-
tributions, obtaining a set of samples arranged in a regular
manner within the limits of a confidence region. The con-
fidence region represents the volume of the space in which
the UAV might be, with a certain probability, during the
execution of the path. Arranging the set of samples fol-
lowing a regular pattern, as shown in Fig. 3(b), allows
representing the distributions in a way which is suitable
for collision check purposes, as well as retaining the deter-
ministic nature of the planner.

Given a distribution for the state of the UAV, xt ∼
N (x̄t, Σt), the eigenvectors and eigenvalues of Σt represent
the directions and magnitude of maximum spread of xt

in each dimension, which allow distributing the samples
accordingly.

The volume of the confidence region depends on the
probability that a random sample of xt would fall in it. In
our approach, the motion uncertainty is represented with
multivariate Gaussian distributions, for which the confi-
dence region consists in those values of x satisfying:

(x − x̄t)′Σ−1
t (x − x̄t) ≤ χ2

n(p) (2)

where χ2
n(p) is the quantile function for a Chi-Square dis-

tribution with n degrees of freedom, and p is the probabil-

ity that the confidence region encompasses the state of the
UAV. In the 3D space, this confidence region can be repre-
sented by an ellipsoid, whose implicit equation —without
considering any rotation given by the eigenvectors— is:

n$

i

x2
i

λ2
i

= χ2
n(p) (3)

where λi is the i-th eigenvalue of Σt. From Eq. 3 follows
that the length of each semi-axis of this ellipsoid is:

ai =
%

χ2
n(p) · λi (4)

Our goal is to obtain a minimal set of samples which
represent the distribution well enough for estimating the
probability of collision reliably. We use the ai values from
Eq. 4 to obtain samples at l different levels, all equally
spaced. While most of them are in the directions of maxi-
mum spread due to their likelihood, we also sample in the
diagonals to avoid leaving gaps which might be relevant
for collision check purposes. This is achieved by combin-
ing the direction of maximum spread in different dimen-
sions, given by the corresponding eigenvectors. However,
in order to limit the number of samples and avoid obtain-
ing poses with very low likelihoods, we only combine two
dimensions at the same time.

Alg. 4 details the sampling process for a distribution
xt ∼ N (x̄t, Σt). First, in Alg. 4:2, we factorize the covari-
ance matrix into a canonical form, obtaining its represen-
tation in terms of eigenvectors and eigenvalues —Ut and
Vt, respectively. Ut is a n × n matrix whose i-th column
—Ut[i]— is the i-th eigenvector, and Vt is a diagonal ma-
trix containing the eigenvalues —λi, ..., λn. Then, in Alg.
4:3 we obtain the quantile of the chi-square distribution
which satisfies Eq. 2, and we initialize the set of samples,
XS , with the mean of the distribution —Alg. 4:4.

XS is populated iterating over the different dimensions
of xt. We obtain samples aligned with the directions of

7

A. González-Sieira et al. / Robotics and Autonomous Systems (2020) 1–14 8

Algorithm 4 Regular sampling of the distributions
Require: xt ∼ N (x̄t, Σt)
Require: p, probability of the confidence region

1: function sample(xt)
2: UtVtU

−1
t = Σt ⊲ Eigendecomposition of Σt

3: χp = χ2
n(p) ⊲ Quantile of the chi-square

4: Xs = {x̄t}
5: for l in 1, ..., L do
6: for i in 1, ..., n do
7: ai =

%
χp · λi

8: di = l/L · ai

9: x+
s = x̄t + di · Ut[i]

10: x−
s = x̄t − di · Ut[i]

11: Xs = Xs ∪ {x+
s , x−

s }
12: for j in 1, ..., n; j ∕= i do
13: aj =

%
χp · λj

14: dj = l/L · aj

15: Xs = Xs ∪{x+
s +dj ·Ut[j], x+

s −dj ·Ut[j]}

16: Xs = Xs ∪{x−
s +dj ·Ut[j], x−

s −dj ·Ut[j]}

17: return Xs

maximum spread, given by the corresponding eigenvector,
Ut[i] —Alg. 4:7-10. These samples are combined with the
direction of spread of the j-th dimension to obtain samples
also in the diagonals —Alg. 4:13-16. The parameter l
allows obtaining L samples with different distances to the
mean —Alg. 4:8 and Alg. 4:14—, which are equally spaced
in their direction axis and with the maximum distance
which is given by the corresponding eigenvalue and χ2

n(p),
as shown in Eq. 4 —Alg. 4:7 and Alg. 4:13.

5. Results

In this section we report planning results for 2D and
3D autonomous navigation, and also for the generation
of trajectories for autonomous scene reconstruction. The
UAV is an Asctec Pelican2 equipped with a RGB-D cam-
era, the Orbbec Astra Pro3, which has VGA resolution at
30 FPS for both the depth and RGB information. For col-
lision check purposes we have approximated the UAV as a
0.5 × 0.5 × 0.4 m cuboid, which includes the space occu-
pied by the RGB-D sensor and the propellers. During the
experiments we used several localization techniques with
different uncertainties. In Sec. 5.1 we relied on a motion
capture system, while in Sec. 5.2 and 5.3 we used the
RGB-D camera and the publicly available implementation
of ORB-SLAM2 [35], a visual-based SLAM system which
uses loop closure to limit the long term drift and to keep
the localization errors bounded. Moreover, in Sec. 5.3

2 http://www.asctec.de/en/uav-uas-drones-rpas-roav/
asctec-pelican/

3 https://orbbec3d.com/product-astra-pro

KinectFusion [36] was used to obtain a dense 3D model
from the data gathered with the RGB-D camera during
the flight.

The UAV controller and the state estimation algorithm
are run in the on-board computer, which has a CPU Intel
Atom™ x5-Z8300 at 1.84 GHz, while the motion planner,
the visual odometry and the 3D reconstruction algorithms
are run in a laptop with CPU Intel Core™ i7-4720 at 2.6
GHz.

The state vector of the UAV contains the position of its
center of rotation (x, y, z), the Euler angles (φ, θ, ψ) and
the current linear (ẋ, ẏ, ż) and angular speeds (φ̇, θ̇, ω) in
each axis:

"
x, y, z, φ, θ, ψ, ẋ, ẏ, ż, φ̇, θ̇, ω

#
(5)

The control vector, on the other hand, contains the vari-
ables that can be managed for a multi-rotor system. These
are the desired linear speeds in each dimension (ux, uy, uz),
and the angular speed in the vertical axis (uω):

[ux, uy, uz, uω] (6)

The UAV motions are represented with acceleration
based equations. The dynamics model was obtained from
24 min and 18 sec of real flight data, recorded prior to
the experiments described in this section, as described in
[37]. Thus, the real behavior of the UAV to the different
velocity commands was learned. Finally, the set of motion
primitives used for planning purposes was obtained from
the dynamics model, following the method described in
[38]. In order to represent a variety of maneuverability
restrictions, different motion primitives were used for each
experiment despite the fact that the UAV dynamics model
was the same.

5.1. 2D autonomous navigation
We tested the reliability and the precision of the au-

tonomous navigation approach in a cluttered environment
of 5 × 4 m with several narrow passages. For this ex-
periment the set of motion primitives was comprised of
3, 316 actions which connected states between 0.2 m and
0.8 m. With these motion primitives the UAV was allowed
to move forward and laterally at a maximum of 0.7 m/s,
and rotate at a maximum of 30◦/s. Motion and sensing
uncertainty were Mt = 0.08 · I and Nt = 0.006 · I, re-
spectively. The UAV state was estimated combining the
information of the inertial unit with the position given
by an external motion capture system. The use of the
RGB-D camera for this experiment was discarded due to
the limitations of the depth sensor —its optimal range is
from 0.6 m to 5 m. Moreover, in this experiment the UAV
navigates at a minimum distance to the obstacles of only
0.11 m, which requires a very precise localization.

There are several waypoints in the map that the UAV
has to visit, ordered by number, starting and ending the
route in the number 0. The maximum altitude was limited

8

http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-pelican/
https://orbbec3d.com/product-astra-pro

A. González-Sieira et al. / Robotics and Autonomous Systems (2020) 1–14 9

Figure 4. 20 different executions of our autonomous navigation ap-
proach in a cluttered environment. The followed routes are in blue,
obstacles are in black, and waypoints are in yellow. The UAV takes
off in 0, then visits 1, 2, 3, goes back to 0 and lands. Ellipses show
3 · Σ of the predicted distributions.

to 1.0 m, so that the planned paths go through the obsta-
cles instead of surpassing them from above. The controller
makes a request to the motion planner to calculate the
path to the next waypoint when the UAV is approaching
the current goal. Due to the efficiency of the motion plan-
ning approach, these paths can be obtained on-demand
during the flight without causing delays.

Fig. 4 shows the route followed by the UAV in 20
different executions of the experiment. As it can be seen,
the predicted distributions adjust well to the real UAV
state. The average deviation of the UAV during the 20
executions was 6.4 cm.

This scenario is challenging because of the proximity
between the UAV and the obstacles. The minimum dis-
tance between them is as low as 11 cm in some points of the
route, so reliable plans —in terms of estimated probabil-
ity of collision— and precision in the control are required
to avoid collisions. Our motion planner achieves this by
reducing the speed of the UAV in those maneuvers which
could affect the safety of the flight, e.g. just before pass-
ing between the obstacles in the middle of the map. This
way the UAV stabilizes itself and can approach the obsta-
cles in a safe manner, minimizing the overall probability
of collision. In fact, in the 20 executions of this experi-
ment no accidental collisions were reported. However, this
would not be possible if both the kinematic restrictions
and the uncertainty were not considered at planning time.
In fact, in this kind of narrow passages those approaches
that obtain a coarse high level solution would have to eval-
uate in situ the feasibility of the operation and either rely

Table 1. Planning results for the navigation experiment of Fig. 4.
Column “Iter.” is the number of iterations of AD*, “Inser.” is the
number of nodes inserted in OPEN, and “Time” is the planning time.
“Cost” is the traversal time of the planned path, and “Min dist.” is
the minimum distance to the obstacles.

Planning Solution
Path Iter. Inser. Timea Costa Min Dist.b

0-1 194 1,584 2.4 18.5 0.11
1-2 160 1,549 2.9 17.2 0.16
2-3 428 3,540 7.3 29.0 0.15
3-0 385 2,906 6.1 16.9 0.18
TOTAL 1,167 9,579 18.7 119.6 —

a In seconds.
b In meters.

on their low level planner or being conservative and find
an alternative path, if it exists. For both approaches the
safety and cost of the solution cannot be quantified in ad-
vance, which might limit their suitability in some cases.
In a similar manner, those approaches that consider the
kinematic restrictions but not the uncertainty at planning
time cannot offer any optimality guarantees regarding the
safety of the plans. Instead, our approach is able to obtain
reliable solutions that are optimal both in terms of safety
and traversal time before the UAV starts moving.

Table 1 details the planning results for this experi-
ment. All the solutions are obtained within seconds, so
the UAV can navigate between points without noticeable
delays. The total cost of the route —the time the UAV
is navigating between waypoints— is 119.6 s, although the
execution time is slightly higher because the UAV stabi-
lizes itself for a couple of seconds at each waypoint4.

5.2. 3D autonomous navigation
We have also tested our autonomous navigation ap-

proach in an environment of 8 × 4 × 2 m with obstacles
at different altitudes, which compelled the UAV not only
to navigate between them, but also to change its altitude
while moving. For this experiment the UAV state was
estimated from the on-board RGB-D camera, using ORB-
SLAM2 [35] with loop closure, combined with the inertial
unit using an Extended Kalman Filter. Due to the min-
imum range of the RGB-D camera, the UAV cannot ap-
proach the obstacles closer than 0.6 m on its front side. For
this reason, for motion planning purposes we have defined
the UAV shape taking into account the additional distance
which is needed for data acquisition. In this experiment
the set of primitives used for planning included 1, 700 mo-
tions which allowed the UAV to move forward, rotate and
change its altitude. These motions connected states of dis-
tances 0.25 m, 0.5 m and 1 m, so the maximum fidelity is
0.25 m. Motion uncertainty was that of Sec. 5.1, while for
this experiment sensing uncertainty was Nt = 0.05 · I.

4A video recording of this experiment is available at https://
youtu.be/HTCd3cwix60.

9

https://youtu.be/HTCd3cwix60

A. González-Sieira et al. / Robotics and Autonomous Systems (2020) 1–14 10

(a) 2D view of the executions of this experiment. The obstacles
are in black, while the waypoints are numbered in yellow. Ellipses
show 3 · Σ of the predicted distributions.

(b) 3D view of the executions, in orange, focusing on the path
between waypoints 0 and 1.

(c) Detail of the executions of the planned route between waypoints
1 and 2.

(d) Executions of the planned path between waypoints 2, 3 and 4.

Figure 5. Executions of the planned paths in a 3D environment, avoiding obstacles at different altitudes. The different routes followed by
the UAV are in orange, while the waypoints and directions of motion are in yellow. The cells of the map are colored between blue and green,
depending on their altitude. Detailed planning results are shown in Table 2.

The map of the environment was obtained beforehand
from a handheld RGB-D camera, using ORB-SLAM2 and
OctoMap [10] to store the result. In execution time, the
map was updated at 1 Hz with the latest measurements
of the RGB-D camera. Fig. 5(a) shows a 2D view of the
final map and the distribution of the waypoints. More-
over, it details the results of 20 different executions of the
UAV following the planned paths, and how well the pre-
dicted distributions adjust to the true UAV state. The
average deviation of the UAV during these executions was
12.3 cm. There are several structures formed by vertical
columns that the UAV has to cross. These columns are
bonded by horizontal strips placed at different altitudes,
and the planned paths have to surpass them from above or
from below depending on their position and the predicted
motion uncertainty.

Fig. 5(b) shows the path to the first waypoint, which
avoids the horizontal strip from above to take advantage
of the vertical speed acquired during the takeoff. After
that, the UAV descends again to reach the first waypoint,
which is located between the two first obstacles. The sec-

ond path, shown in Fig. 5(c), goes through the second
pair of columns, but before crossing them the UAV has to
change its heading, because only motions in the direction
of the camera view are allowed. These kinds of turnings are
challenging because of the motion and sensing uncertainty.
In fact, the UAV does not remain in a stable position while
executing these maneuvers because of the inaccuracies of
the estimated state, so the controller has to correct the
possible deviations to avoid collisions. This is taken into
account by the motion planner, which copes with this sit-
uation leaving enough time to stabilize the UAV before
approaching the obstacles.

As shown in Fig. 5(d), after going through the sec-
ond pair of columns, the UAV goes to the third waypoint,
which is on the top of an obstacle with irregular shape. Fi-
nally, it goes to the goal, which is beyond the final struc-
ture. To achieve it, the UAV changes its heading again
and then descends enough to surpass the horizontal strip
from below.

Table 2 contains the detailed planning results for this
experiment. The map used for planning purposes was ob-

10

A. González-Sieira et al. / Robotics and Autonomous Systems (2020) 1–14 11

Table 2. Planning results for the 3D autonomous navigation experi-
ment of Fig. 5. Column “Iter.” is the number of iterations of AD*,
“Inser.” is the number of nodes inserted in OPEN, and “Time” is
the planning time. “Cost” is the traversal time of the resulting path.

Planning Solution
Path Iter. Inser. Timea Costa

0-1 24 297 2.78 15.08
1-2 23 569 4.63 15.13
2-3 55 841 6.70 15.97
3-4 86 1,569 9.4 20.98
TOTAL 188 3,276 23.51 67.16

a In seconds.

tained a priori and updated in real time at 1 Hz while
the UAV was moving. There were several waypoints that
the UAV had to visit consecutively, and each path was
obtained before reaching its starting point. The reported
planning times allowed the UAV to execute all the routes
without delays5.

5.3. Autonomous navigation for scene reconstruction
In this section we report results for the generation of

trajectories to achieve the autonomous reconstruction of
a real scene. The goal is to obtain an accurate 3D model
without manually controlling the UAV. Like in the exper-
iment of Sec. 5.2, the UAV state was estimated with the
on-board RGB-D camera, using ORB-SLAM2 with loop
closure, and the inertial unit. For the scene reconstruction
we used the KinectFusion [36] algorithm. The uncertainty
conditions were the same as in the experiment of Sec. 5.2.

The autonomous navigation module takes as input the
dimensions of the scene to be reconstructed and obtains a
set of waypoints for the data acquisition. These waypoints
guide the flight of the UAV in horizontal layers from one
side of the scene to another, increasing the altitude at
regular intervals. Like in the other experiments, the paths
between waypoints are planned on demand, so the next
one is obtained just before arriving to the current goal.
However, in this case the navigation is done without prior
knowledge of the map. The occupancy data, stored in the
multi-resolution map, is updated in real time and used not
only for planning purposes, but also to check collisions in
the current path. If this is the case, the motion planner
would obtain a new collision free plan taking into account
the new obstacles.

The UAV has to move in a smooth and consistent
manner to successfully obtain the reconstruction. This
is because KinectFusion [36], like many other reconstruc-
tion algorithms, relies on Iteratively Closest Point (ICP)
techniques —matching the current depth scan with the
previous ones to incrementally build a consistent model.
Our autonomous navigation approach is key to guarantee
a successful reconstruction as, unlike other strategies, it

5A video recording of this experiment is available at https://
youtu.be/xephfR35PYo.

(a) Real environment for the autonomous reconstruction experiment.
The green labels are the distance measurements to show the accuracy
of the obtained model, as detailed in Table 3.

(b) Render of the point cloud resulting from the dense reconstruction
algorithm applied to the real environment in a).

Figure 6. Autonomous dense reconstruction of a scene with a UAV
and a RGB-D camera.

manages the uncertainty, the kinematic restrictions and
the controller all together, generating paths that ensure
smooth camera motions.

This experiment consisted in the autonomous recon-
struction of an environment of 2.5 × 0.75 m with objects
of different sizes, which is shown in Fig. 6(a). The re-
construction algorithm was able to obtain a dense model
with a high level of detail, shown in Fig. 6(b), with no
holes in the surfaces that were directly seen by the RGB-
D camera. The accuracy of the reconstruction is shown in
Table 3, which compares some distance measurements of
the objects in the real scene —labeled in Fig. 6(a)— to
their counterparts in the obtained model. The error was,
on average, of 1.08% with a standard deviation of 0.71%.
The overall accuracy of the reconstruction is very high,
with errors as low as 1 mm. The highest error was mea-
sured in the height of the orange columns —which were
overestimated between 2.5 and 4 cm, which is around a
2% of their real size. This was caused by limiting the al-
titude of the flight, which prevented the RGB-D camera
from taking measurements from above the columns.

The set of motion primitives of this experiment was
comprised of 492 actions which allowed the UAV to change

11

https://youtu.be/xephfR35PYo

A. González-Sieira et al. / Robotics and Autonomous Systems (2020) 1–14 12

Table 3. Distance measurements taken in the real scene compared to
their counterparts in the reconstructed model, showing the accuracy
of the 3D scene reconstruction. The highlighted measurements are
those with the minimum and maximum error.

Distance Reconstructiona Reala Error
A 30.9 31.0 0.32%
B 203 200.5 1.25%
C 59.7 60.0 0.50%
D 31.1 31.0 0.32%
E 204.5 200.5 2.00%
F 29.6 30.3 2.31%
G 203.7 200.5 1.60%
H 23.7 24.0 1.25%
I 54.3 53.2 2.07%
J 34.1 34.6 1.45%
K 177.3 177.5 0.11%
L 33.6 34.3 2.04%
M 107.8 106.5 1.22%
N 24.9 25.0 0.40%
O 24.8 25.0 0.80%
P 30.2 30.3 0.33%
Q 130.4 129.8 0.46%
R 30.8 31.0 0.65%
S 203.5 200.5 1.50%
a In centimeters.

its altitude, move forward and laterally. The speed was
limited to 0.3 m/s, which was suitable for the purpose of
scene reconstruction. Several routes were planned to ac-
quire the data for the reconstruction. Concretely, the UAV
went from side to side three times and changed its altitude
twice. Planning results are detailed in Table 4. The to-
tal cost of the obtained routes was 34.09 s, although the
duration of the flight is longer because of stabilizing the
UAV at the end of each path6.

Something to take into consideration is that the heuris-
tic H3DMR has to be re-calculated every time the map
changes, although operating in real time is not an issue
due to the reduced planning times. In fact, due to its ef-
ficiency, H3DMR is obtained on average in 94 iterations
and less than 40 ms.

As mentioned before, a smooth flight is key for get-
ting a good 3D model. The consistency of the reconstruc-
tion benefits from a stable flight, so we measured this in
the experiment. We have recorded the state of the UAV,
discarding those measurements which did not correspond
with the planned paths —the takeoff, the landing and the
moments in which the UAV is holding its position in the
air. The distribution of the real speed during the execu-
tion of the planned routes is shown in Fig. 7. The average
speed is 0.289 m/s, almost in the upper bound of 0.3 m/s.
More importantly, the standard deviation is only of 0.053,
resulting in a navigation which is smooth enough for ob-
taining a consistent model.

6A video recording of this experiment is available at https://
youtu.be/1UAwEXGYBOA.

Table 4. Planning results for the autonomous reconstruction envi-
ronment of Fig. 6. Column “Iterations” is the number of iterations
of AD*, “Insertions” is the number of nodes inserted in OPEN, and
“Time” is the planning time. “Cost” is the traversal time of the
resulting path.

Planning Solution
Path Iter. Inser. Timea Costa

1 6 120 0.73 9.89
2 3 113 0.52 2.21
3 6 125 0.52 9.89
4 3 116 0.62 2.21
5 6 125 0.49 9.89
TOTAL 24 599 2.88 34.09

a In seconds.

A drawback of using visual odometry to estimate the
state of the UAV is the increased delay with respect to
other localization systems. Since the LQG controller uses
these estimations to adjust the controls and minimize devi-
ations from the expected state, there might be convergence
issues in certain situations. However, our motion planner
takes into account the dynamics model of the UAV, ob-
tained from navigation data which is acquired with this
localization system. Thus, the delay in the estimations is
implicitly taken into account, overcoming this issue and
guaranteeing the stability of the controller.

6. Conclusions and future work

In this work we have presented a motion planning algo-
rithm for UAV autonomous navigation that manages mo-
tion and sensing uncertainty at planning time. Due to

Figure 7. Histogram of the UAV linear speed during the execution of
the autonomous 3D scene reconstruction experiment. Speed target
was 0.3 m/s. The mean was µ = 0.289, and the standard deviation
was σ = 0.053, which resulted in a stable flight.

12

https://youtu.be/1UAwEXGYBOA

A. González-Sieira et al. / Robotics and Autonomous Systems (2020) 1–14 13

taking into account the real dimensions of the UAV and
the uncertainty in heading, the probability of collision is
estimated reliably, and optimal paths in terms of safety,
traversal time and uncertainty at the goal are selected.
We have tested our proposal in 3 different experiments and
with different maneuvering limitations to show the safety
of the planned paths, repeating the experiments several
times to validate the estimation of the probability of col-
lision. No collisions were reported during the execution of
the planned routes, and the LQG controller was able to
produce a stable flight while tracking the planned routes
with accuracy.

The detailed planning results showed the efficiency of
the planning approach, which allowed the UAV to navigate
autonomously in real time, and to reconstruct 3D scenes.
This is due to our heuristic H3DMR, which deals with
the obstacles in the map, and the graduated fidelity lat-
tice. Videos for all the experiments are available, showing
the autonomous navigation capabilities on a real platform.
Finally, we also reported results for the autonomous recon-
struction of a 3D scene. The UAV collected data during
the flight, which was used to obtain a precise dense model.
The average measured error of the reconstruction was of
1.08%, with a standard deviation of 0.71%.

A subject of future work would be extending this ap-
proach to use sensors of other kinds. The proposed archi-
tecture is flexible enough to allow doing so without intro-
ducing substantial changes in the controller and planning
modules. Thus, using stereo or monocular cameras would
allow operating the UAV in environments where the use
RGB-D cameras is constrained due to their limited range,
the interference of natural light or the excessive power con-
sumption.

Acknowledgments

This research was funded by the Spanish Ministry for
Science, Innovation and Universities (grant TIN2017-8479
6-C2-1-R) and the Galician Ministry of Education, Uni-
versity and Professional Training (grants ED431C 2018/29
and “accreditation 2016-2019, ED431G/08”). These grants
were co-funded by the European Regional Development
Fund (ERDF/FEDER program).

References

[1] F. Ropero, P. Muñoz, M. D. R-Moreno, Terra: A path planning
algorithm for cooperative UGV–UAV exploration, Engineering
Applications of Artificial Intelligence 78 (2019) 260 – 272.

[2] E. Semsch, M. Jakob, D. Pavlicek, M. Pechoucek, Autonomous
UAV surveillance in complex urban environments, in: Proceed-
ings of the 2009 IEEE/WIC/ACM International Joint Con-
ference on Web Intelligence and Intelligent Agent Technology-
Volume 02, 2009, pp. 82–85.

[3] M. Shirzadeh, H. J. Asl, A. Amirkhani, A. A. Jalali, Vision-
based control of a quadrotor utilizing artificial neural networks
for tracking of moving targets, Engineering Applications of Ar-
tificial Intelligence 58 (2017) 34 – 48.

[4] A. Puri, A survey of unmanned aerial vehicles (UAV) for traffic
surveillance, Department of computer science and engineering,
University of South Florida (2005) 1–29.

[5] B. Coifman, M. McCord, R. G. Mishalani, M. Iswalt, Y. Ji,
Roadway traffic monitoring from an unmanned aerial vehicle,
in: IEE Proceedings-Intelligent Transport Systems, Vol. 153,
2006, pp. 11–20.

[6] R. Almadhoun, T. Taha, L. Seneviratne, J. Dias, G. Cai, A
survey on inspecting structures using robotic systems, Interna-
tional Journal of Advanced Robotic Systems 13 (6) (2016) 1–18.

[7] F. Nex, F. Remondino, UAV for 3D mapping applications: a
review, Applied Geomatics 6 (1) (2014) 1–15.

[8] M. Pivtoraiko, A. Kelly, Efficient constrained path planning via
search in state lattices, in: 8th International Symposium on
Artificial Intelligence, Robotics and Automation (I-SAIRAS),
2005.

[9] D. Meagher, Geometric modeling using octree encoding, Com-
puter graphics and image processing 19 (2) (1982) 129–147.

[10] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, W. Bur-
gard, OctoMap: An efficient probabilistic 3D mapping frame-
work based on octrees, Autonomous Robots 34 (3) (2013) 189–
206.

[11] M. Pivtoraiko, A. Kelly, Differentially constrained motion
replanning using state lattices with graduated fidelity, in:
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2008, pp. 2611–2616.

[12] A. González-Sieira, M. Mucientes, A. Bugaŕın, Motion planning
under uncertainty in graduated fidelity lattices, Robotics and
Autonomous Systems 109 (2018) 168 – 182.

[13] S. Zingg, D. Scaramuzza, S. Weiss, R. Siegwart, MAV navi-
gation through indoor corridors using optical flow, in: IEEE
International Conference on Robotics and Automation (ICRA),
2010, pp. 3361–3368.

[14] I. Sa, H. He, V. Huynh, P. Corke, Monocular vision based au-
tonomous navigation for a cost-effective MAV in GPS-denied
environments, in: IEEE/ASME International Conference on
Advanced Intelligent Mechatronics (AIM), 2013, pp. 1355–1360.

[15] M. Nieuwenhuisen, D. Droeschel, M. Beul, S. Behnke, Obstacle
detection and navigation planning for autonomous micro aerial
vehicles, in: International Conference on Unmanned Aircraft
Systems (ICUAS), 2014, pp. 1040–1047.

[16] F. J. Perez-Grau, R. Ragel, F. Caballero, A. Viguria, A. Ollero,
An architecture for robust UAV navigation in GPS-denied areas,
Journal of Field Robotics 35 (1) (2018) 121–145.

[17] T. Nägeli, L. Meier, A. Domahidi, J. Alonso-Mora, O. Hilliges,
Real-time planning for automated multi-view drone cinematog-
raphy, ACM Transactions on Graphics (TOG) 36 (4) (2017)
132.

[18] M. Iacono, A. Sgorbissa, Path following and obstacle avoidance
for an autonomous UAV using a depth camera, Robotics and
Autonomous Systems 106 (2018) 38–46.

[19] V. González, C. A. M. Micharet, L. Moreno, C. Balaguer,
UAVs mission planning with flight level constraint using Fast
Marching Square Method, Robotics and Autonomous Systems
94 (2017) 162–171.

[20] H. Yu, R. Beard, A vision-based collision avoidance technique
for micro air vehicles using local-level frame mapping and path
planning, Autonomous Robots 34 (1-2) (2013) 93–109.

[21] H. Oleynikova, M. Burri, Z. Taylor, J. Nieto, R. Siegwart,
E. Galceran, Continuous-time trajectory optimization for on-
line UAV replanning, in: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2016, pp. 5332–5339.

[22] M. Pivtoraiko, D. Mellinger, V. Kumar, Incremental micro-
UAV motion replanning for exploring unknown environments,
in: IEEE International Conference on Robotics and Automation
(ICRA), 2013, pp. 2452–2458.

[23] B. MacAllister, J. Butzke, A. Kushleyev, H. Pandey,
M. Likhachev, Path planning for non-circular micro aerial vehi-
cles in constrained environments, in: IEEE International Con-
ference on Robotics and Automation (ICRA), 2013, pp. 3933–
3940.

13

A. González-Sieira et al. / Robotics and Autonomous Systems (2020) 1–14 14

[24] S. M. LaValle, J. J. Kuffner, Randomized kinodynamic plan-
ning, The International Journal of Robotics Research 20 (5)
(2001) 378–400.

[25] J. D. Gammell, S. S. Srinivasa, T. D. Barfoot, Informed RRT*:
Optimal sampling-based path planning focused via direct sam-
pling of an admissible ellipsoidal heuristic, in: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS),
2014, pp. 2997–3004.

[26] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, S. Thrun,
Anytime dynamic A*: An anytime, replanning algorithm, in:
Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), 2005, pp. 262–271.

[27] N. Dadkhah, B. Mettler, Survey of motion planning literature in
the presence of uncertainty: Considerations for UAV guidance,
Journal of Intelligent and Robotic Systems 65 (1-4) (2012) 233–
246.

[28] J. Van den Berg, P. Abbeel, K. Goldberg, LQG-MP: Optimized
path planning for robots with motion uncertainty and imper-
fect state information, The International Journal of Robotics
Research 30 (7) (2011) 895–913.

[29] A. Bry, N. Roy, Rapidly-exploring random belief trees for mo-
tion planning under uncertainty, in: IEEE International Confer-
ence on Robotics and Automation (ICRA), 2011, pp. 723–730.

[30] S. Karaman, E. Frazzoli, Incremental sampling-based algo-
rithms for optimal motion planning, Robotics Science and Sys-
tems VI 104.

[31] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,

R. Wheeler, A. Y. Ng, Ros: an open-source robot operating
system, in: ICRA workshop on open source software, Vol. 3,
2009, p. 5.

[32] P. Rodriguez-Mier, A. Gonzalez-Sieira, M. Mucientes, M. Lama,
A. Bugarin, Hipster: An open source java library for heuristic
search, in: 9th Iberian Conference on Information Systems and
Technologies (CISTI), 2014, pp. 1–6.

[33] M. Likhachev, D. Ferguson, Planning Long Dynamically Fea-
sible Maneuvers for Autonomous Vehicles, The International
Journal of Robotics Research 28 (8) (2009) 933–945.

[34] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, S. Thrun,
Anytime search in dynamic graphs, Artificial Intelligence
172 (14) (2008) 1613–1643.

[35] R. Mur-Artal, J. D. Tardós, ORB-SLAM2: An open-source
SLAM system for monocular, stereo, and RGB-D cameras,
IEEE Transactions on Robotics 33 (5) (2017) 1255–1262.

[36] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, A. Fitzgibbon,
KinectFusion: Real-time dense surface mapping and tracking,
in: 10th IEEE international symposium on Mixed and aug-
mented reality (ISMAR), 2011, pp. 127–136.

[37] P. Abbeel, Apprenticeship learning and reinforcement learning
with application to robotic control, Stanford University, 2008.

[38] T. M. Howard, A. Kelly, Optimal rough terrain trajectory gen-
eration for wheeled mobile robots, The International Journal of
Robotics Research 26 (2) (2007) 141–166.

14

