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Abstract. In this paper we present a reliable motion planner that takes
into account the kinematic restrictions, the shape of the robot and the
motion uncertainty along the path. Our approach is based on a state
lattice that predicts the uncertainty along the paths and obtains the
one which minimizes both the probability of collision and the cost. The
uncertainty model takes into account the stochasticity in motion and ob-
servations and the corrective effect of using a Linear Quadratic Gaussian
controller. Moreover, we introduce an adaptive multi-resolution lattice
that selects the most adequate resolution for each area of the map based
on its complexity. Experimental results, for several environments and
robot shapes, show the reliability of the planner and the effectiveness
of the multi-resolution approach for decreasing the complexity of the
search.
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1 Introduction

Motion plans must consider the uncertainty due to the inaccuracy of the motion
model and the measurements. As the uncertainty depends on the current state
and control commands, different paths will have different uncertainties. Safety
and accuracy are critical issues, specially to guarantee the integrity of the robot
and to ensure the successful completion of the task. Stochastic sampling methods
—like probabilistic roadmaps (PRM) [6] and rapidly-exploring randomized trees
(RRT) [7]—, and deterministic sampling techniques —like state lattices [13]—,
have proven to be successful approaches in the field of motion planning. With the
aim to reduce the search space and obtain solutions faster, several state lattice
approaches rely on multi-resolution planning techniques [12]. These proposals
adjust the resolution of the state lattice, using for example high resolutions near
the start and goal states, and lower resolutions in other areas of the environment.
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Fig. 1. To estimate accurately the probability of collision of the robot with an obstacle
it is required to know the PDF at the point of the robot shape closest to the obstacle
(p). The simple translation of the covariance (Σt) from the center of rotation (xt) to
p generates a PDF completely different from the real one —RTαΣtRα, in blue. More
details are given in Sec. 3.3.

Most planners assume, that a full knowledge about the states and possible
actions is available, leaving the uncertainty management to be solved by feed-
back controllers that execute the paths. However, in this way planners do not
take into account hazardous states, e.g. when a small deviation could cause a
collision. Also, the robustness of a solution lies exclusively in the ability of the
controller to follow the path with precision. To solve these drawbacks, several au-
thors have proposed different solutions for stochastic sampling motion planners
[2][15]. These approaches model the uncertainty at planning time with a-priori
probability density functions (PDFs) of the states along the paths generated by
the planner. These distributions allow to evaluate the candidate paths and select
the one that minimizes the probability of collision.

In this paper we present a motion planner based on a state lattice that
models the uncertainty with realistic PDFs that take into account the shape
of the robot, and the controller that executes the paths. Also, the proposal
uses a novel multi-resolution technique to reduce the complexity of the search.
The planner is able to obtain safe and optimal paths, i.e., it maximizes the
probability of success while minimizes the length of the path —its traversal
time. The probability of collision is evaluated in a realistic way, taking into
account the uncertainty in the state and the real shape of the robot, instead of
making an approximation that underestimates the probability of collision (Fig.
1). Our approach handles stochasticity in both controls and observations and
takes into account the corrective effect of using a Linear Quadratic Gaussian
(LQG) controller. The prediction of the PDFs along the paths is done in a
realistic way without making assumptions about the measurements —i.e. we do
not use maximum likelihood observations. We introduce an adaptive approach
for multi-resolution planning that groups the actions used to connect the lattice
according to their length and maneuvering complexity. As each group of actions
allows different kind of motions, each one defines a resolution for the state lattice
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—where the connectivity and the distances between neighbors change. For each
region of the map, our proposal estimates the maneuvering complexity needed to
avoid the obstacles and drive the robot to the goal. Depending on this estimation,
it automatically selects the minimum resolution that can be used in each region
and, therefore, the planner can obtain solutions faster and without a significant
loss in the optimality of the path.

2 Related Work

Successful approaches in the field of motion planning are based in the combi-
nation of a search algorithm and random sampling —probabilistic roadmaps
(PRM) [6] and rapidly-exploring randomized trees (RRT) [7]— or deterministic
sampling techniques —state lattices [13]. Although random sampling methods
provide a very efficient way for the exploration of the state space, the advantage
of state lattices is the possibility to generate offline the set of control actions,
instead of using the motion model to connect the random samples in planning
time.

Motion planning with uncertainty has raised an increased attention in the
last years. Stochasticity in motions arises from different sources: noise in the
controls and measurements, partial information about the state and uncertainty
in the map. Some approaches only take into account uncertainty in controls as
[10], which presents a planner that avoids rough terrain to reduce the differences
between the predictions and the result of the controls. In [1] the probability
of collision avoidance is maximized using a Markov Decision Process (MDP)
approach. Sensor uncertainty can be managed using Partially Observable MPDs
(POMPD), as in [4], but this has scalability issues [11].

Van den Berg et. al. [15] propose an algorithm (LQG-MP) based on RRT
which takes into account both the uncertainty associated to the control and
the measurements and minimizes the probability of collision, but due to the
stochasticity of RRT the generated paths may be non smooth. This is addressed
via Kalman smoothing but it requires additional processing after planning. It
also presents an approach to use LQG-MP in a roadmap with a search algorithm,
but with the limitation of splitting the LQG control in the individual trajectories
instead of using the same for the whole path. Bry et. al. [2] present a similar
approach that uses a user-defined threshold of tolerance to the risk to define
a chance-constrained search. Both methods use a bounding disk and a point
to represent the robot, respectively. The safety and feasibility of the solutions
obtained by the planners may be affected using these approximations, specially
in cases where the shape of the robot is significantly different.

The application of multi-resolution planning techniques over state lattices
was introduced by Pivtoraiko et. al. [12]. The approach uses a low resolution to
represent the state space, except in three defined regions of high resolution: the
initial and goal regions, and the area centered on the robot. This significantly
increases the search performance, but as the robot moves along the path the
resolution of the lattice changes, requiring to replan to keep the solution updated.
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3 Planning With Uncertainty

Our motion planner obtains the path that minimizes the probability of collision
and the time needed to reach the goal. The state space X is sampled using a
state lattice, a deterministic and regular sampling that obtains a set of lattice
states xt ∈ X lat ⊂ X . These states are connected by a finite set of actions U ,
also called motion primitives, which are extracted from the vehicle dynamics.
U is generated offline, and in this paper we have used an iterative optimization
technique based on Newton-Raphson to obtain that set [3].

The motion (f) and measurement (h) models are assumed to be linear or
locally linearizable:

xt = f (xt−1, ut,mt) , mt ∼ (0,Mt)
zt = h (xt, nt) , nt ∼ (0, Nt)

(1)

where xt ∈ X = X free ∪ X obs is a state of the robot, ut ∈ U is a control, zt
is the measurement, mt and nt are the random motion and observation noises,
and X obs is the set of states in which there are obstacles.

Each action belonging to U is composed by a set of control commands (ua:b)
that drive the vehicle from xa ∈ X lat to xb ∈ X lat in a time ta:b:

ua:b =
(
ua:b1 , ua:b2 , ..., ua:bta:b

)
xa:b =

(
xa:b1 , xa:b2 , ..., xa:bta:b

)
xa:b1 = xa, xa:bta:b = xb

xa:bt = f(xa:bt−1, u
a:b
t , 0),∀t ∈ [1, ta:b]

(2)

where the intermediate states (xa:b) are obtained from the motion model (f) in
absence of process noise.

Because of the regularity of the lattice, the primitives are position-independent,
and the same commands can be used to connect every pair of states in X lat
equally arranged. Also, as these actions are extracted from the vehicle dynamics,
it is clear that the lattice observes the kinematic restrictions. It is straightfor-
ward to translate this representation to a directed weighted graph, where the
nodes are the states in X lat and the arcs are the motion primitives U . The so-
lution to a planning problem is obtained executing a discrete search algorithm
over the graph structure.

3.1 Search Algorithm

Our proposal relies on the search algorithm Anytime Dynamic A* (AD*)[9]1. The
algorithm is able to obtain sub-optimal bounded solutions varying an heuristic
inflation parameter (ε). Although AD* typically performs a backwards search,
our proposal uses a forward variant to allow the estimation of the PDFs along
the generated paths.

1 We used the implementation included in Hipster4j [14].
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Algorithm 1 Path planning algorithm main loop

1: while solution not found do
2: select arg minxa∈X lat(cost(x0:a) + ε · e(xa))
3: for all xb ∈ successors(xa) do
4: xa:b = uncertaintyPrediction(xa, xb, ua:b, ta:b)
5: cost(x0:b) = cost(x0:a) + cost(xa:b)
6: end for
7: end while

An overall approach of the operations done by the motion planning algorithm
is summarized in Alg. 1. Iteratively, the most promising state (xa) is selected.
This is the state that minimizes the aggregated cost from the initial state —
cost(x0:a)—, and the estimated cost to goal —ε·e(xa)— scaled by ε. The heuristic
function —e(xa)— is calculated using the mean of the PDFs and combines two
values: the cost of the path with kinematic constraints under free space —stored
in a Heuristic Look-Up Table [5]— and the cost of the path regardless the motion
model but with information about the environment —calculated in a 8-connected
2D grid [8].

Then, the motion planner (Alg. 1) propagates the uncertainty from xa to its
successors according to Alg. 2 (Sec. 3.2). Finally, the outgoing actions of xa are
evaluated to calculate the cost of the path to each successor (Sec. 3.3).

The planner estimates the PDFs for each state along the generated paths.
As both the noises and the prior probability follow a Gaussian distribution, and
the motion and measurement models can be locally approximated with linear
functions, the PDFs are efficiently estimated using EKF-based methods.

The prediction of the PDFs at planning time using an EKF assumes that the
observations are those with the maximum likelihood. This underestimates the
uncertainty and also ignores the corrective effect of using a feedback controller.
To solve these drawbacks, our planner uses the EKF-based method presented
in [2]. This method poses that the system will execute the paths using a LQR
controller, so the true state and the estimated one are dependent reciprocally.
Combining the LQR control policy and the EKF allows to analyze their joint
evolution as functions of each other, so the prediction of the PDFs can be done
without making assumptions about the observations in planning time.

3.2 Uncertainty Prediction

Alg. 2 details the estimation of the PDFs along a trajectory xa:b. The cal-
culation starts with the PDF at the initial state of the trajectory (N (x̄a, Σa)),
and iteratively calculates the PDFs of the intermediate states along the mo-
tion primitive that connects them. Lt, At, Bt and Ht represent respectively the
gain of the LQG controller, the Jacobians of the motion model and the Jaco-
bian of the measurement model. The PDFs are calculated based on the state
estimations given by an EKF —lines 3, 4, 6 and 7— which return the distri-
bution P (xt|x̃t) = N (x̃t, Σ̃t), where x̄t and Σ̄t are the mean and covariance of
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Algorithm 2 uncertaintyPrediction(xa, xb, ua:b, ta:b)

1: x̄0 = x̄a; Σ0 = Σa; Λ0 = Λa; xa:b = ∅
2: for all t ∈ [1, ta:b] do
3: Σ̄t = AtΣt−1A

T
t +Mt

4: Kt = Σ̄tH
T
t (HtΣ̄tH

T
t +Nt)

−1

5: Λt = (At +BtLt)Λt−1(At +BtLt)
T +KtHtΣ̄t

6: x̄t = x̃t = f(x̄a:bt−1, u
a:b
t , 0)

7: Σ̃t = (I −KtHt)Σ̄t
8: Σt = Σ̃t + Λt
9: xa:b =

{
xa:b ∪ xt ∼ N(x̄t, Σt)

}
10: end for
11: return xa:b

the predicted state of the EKF, and x̃t and Σ̃t are the mean and covariance
of the true state of the EKF. The algorithm also calculates P (x̃t) = N (x̄t, Λt),
which models the uncertainty due to the estimation of the state without the
real observations —lines 4 and 5. These two distributions are used to obtain the
joint distribution of the real state of the robot and the true state of the EKF,
P (xt, x̃t) = P (xt|x̃t)P (x̃t). This distribution allows to obtain the PDF of the

real state, P (xt) = N (x̄t, Σ̃t+Λt), which can be used by the motion planner as:

xt ∼ N (x̄t, Σt) (3)

3.3 Path Evaluation

The planner minimizes the probability of collision and the minimum length (rep-
resented by the traversal time). The cost function returns a vector with three
elements: a safety cost (cs) related to the probability of traversing the path
without collisions, the traversal time of the path (ta:b), and the uncertainty at
the goal (Σb). Each element of the cost defines an objective to minimize in the
search. To prioritize the different objectives, the algorithm compares the cost of
two paths in the following way:

cost(x0:a) < cost(x0:b)⇔ (c0:as < c0:bs )∨
(c0:as = c0:bs ∧ t0:a < t0:b)∨

(c0:as = c0:bs ∧ t0:a = t0:b ∧Σa < Σb)
(4)

We developed a new method to obtain the probability of successfully travers-
ing a path without collisions. The method avoids the sampling of the PDFs —
which allows to our planner to have a deterministic behavior— and takes into
account the shape of the vehicle. Alg. 3 describes the procedure to evaluate the
cost of the path between the states xa and xb, xa:b. Given a PDF estimated
by our planner, we use an efficient approximation of the probability of collision
based on the number of the standard deviations that the vehicle can afford be-
fore colliding at the stage t of the path [15]. The algorithm obtains from the
PDF xt ∼ N(x̄t, Σt) the eigenvalues and eigenvectors of Σt, and calculates the
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Algorithm 3 cost(xa:b)

1: cs = 0
2: for all t = 1 : ta:b do
3: dm =∞
4: for all obstacles in confidence region do
5: D = distance between vehicle at xa:bt and obstacle
6: dm = min(dm, D

T (RTαΣtRα)−1D)
7: end for
8: cs = cs − log(Γ (1, dm/2))
9: end for

10: return
[
cs, t

a:b, Σb
]

2D region of the map for which the PDF has an accumulated probability close
to the 100%. Then, it obtains the minimum Mahalanobis distance (dm) between
the vehicle and the obstacles. dm is calculated taking into account the real robot
shape —as D is the vector and the border of the robot with minimum dm (Fig.
1)— and the relative angle α between the point in the border and the heading
of the vehicle —which requires the transformation of the covariance with ma-
trix Rα, the Jacobian of the transformation function of the point in the border
respect to the state. For a multivariate Gaussian distribution, a lower bound
for the probability of a sample being within m standard deviations is given by
Γ (n/2,m2/2), being Γ the regularized Gamma function, n the dimensions of
the distribution and m the number of standard deviations. The probability of
successfully traversing the path is the accumulation of all the probabilities along
the intermediate states (line 8).

4 Adaptive Multi-Resolution Planning

The computational efficiency of the motion planner is very dependent on the
resolution of the state lattice. Lower resolutions result in a faster search, but de-
creasing the diversity of maneuvers at higher resolutions. However, in some cases
low resolutions could generate paths with higher costs. Multi-resolution planning
techniques can manage this trade-off between computational efficiency and per-
formance. Our proposal uses an adaptive selection of the resolution depending
on the complexity of each area of the environment. Those regions that require
complex maneuvers should be explored with a higher resolution, whereas if sim-
ple motions can drive the vehicle to the goal, the resolution could be reduced
without a significant loss of performance.

The aim of the proposed adaptive multi-resolution technique is to repre-
sent the state lattice with low resolution in those regions where the absence of
obstacles allows to drive the vehicle to the goal using long and simple motion
primitives. When the search algorithm —Alg. 1, line 3— selects the next state to
be expanded (xa ∈ X lat), it must obtain its neighborhood. The neighborhood of
xa depends on its resolution. Alg. 4 describes the generation of the successors of
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Fig. 2. A multi-resolution state lattice. U is divided in U1 and U2 to define two reso-
lutions. Applying U1 on the gray state generates the successors in blue, and applying
U2 on the black one generates the successors in orange.

a state xa through the selection its resolution. U contains the motion primitives
sets for the γ different resolutions of the lattice. Each set —Uk, the lower the k
the higher the corresponding resolution— has several motion primitives subsets
for different neighborhoods (U(ηkj )), where ηkj is the j-th neighborhood for the
k-th resolution (see Fig. 2 for an example).

The resolution of a state xa is obtained by searching in a 2D grid —where the
positions match the states belonging to the highest resolution of the lattice—
the path in the direction given by the heading. This allows to check the presence
of obstacles in the moving direction —Alg. 4, lines 1-3). Given the path for the
2D grid, the method counts the number of complex maneuvers for each of the
resolutions using the closer neighborhood for that resolution —it checks if there
is a complex maneuver (based on the turning angle) in the next ηi1 steps of the
2D grid path. The algorithm ends when there is a complex maneuver at a given
resolution. Finally, it selects the motion primitives of the previous resolution, and
generates the neighbor states of xa using the corresponding primitives (U i−1).

This approach allows to work with several resolutions which are automatically
selected depending on the estimated motions. The 2D search is an optimistic

Algorithm 4 successors(xa)

Require: U = {U1, ...,Uγ}
where Uk = {U(ηk1 ), ...,U(ηkδ )}

1: xa:g = path2D(xa, xg)
2: for all i = 2 : k do
3: β = ]complexMove(xa:g, ηi1)
4: if β > 0 then
5: return {xb1 , xb2 , ..., xbn} given by U i−1

6: end if
7: return {xb1 , xb2 , ..., xbn} given by Uk
8: end for
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(a) High resolution primi-
tives (UH).

(b) Low resolution primi-
tives (UL).

(c) Resolution map (gray
is low) when heading is
θ = 0.

Fig. 3. Different sets of actions (U) are used for each resolution.

approximation to the real path, as it does not take into account the motion
model or the real shape. This may lead to pick a resolution higher than necessary.
Nevertheless, the opposite is not possible; this ensures that the adaptive selection
of the resolution does not underestimate the complexity of the maneuvers in that
area of the path. Our proposal reuses the 2D heuristic described in Sec. 3.1. This
search is executed once before the planning process, and whenever a change in
the environment occurs. Therefore, the adaptive multi-resolution technique does
not require any new operations at planning time.

5 Experimental Results

This proposal has been tested with a differential drive robot, which state is a
5-dimensional variable described by the pose at its center, the linear and the
angular speeds: xt = (xx, xy, xθ, xv, xω)T . Commands are described by the lin-
ear and the angular velocity controls, ut = (uv, uω)T . The trajectories of the
motion primitives (U) were generated for neighborhood distances: 1, 2, 4 and 8
—each unit is 0.5 m— resulting in trajectories between 0.5 m and 4 m long. The
primitives have been divided in two resolutions (γ = 2) as seen in Fig. 3: high
(UH) and low (UL) containing trajectories up to 2 m and longer, respectively.

We tested different configurations for the planner: with and without multi-
resolution —MR and SR—, with and without estimating the covariance at the
border of the robot —TC and NC—, two different shapes —S1 and S2— and
two uncertainty conditions —U1 and U2. Detailed results are given in Table
1: number of expansions of the search algorithm, number of nodes evaluated
(insertions), planning time, cost of the solution path (traversal time), probability
of collision estimated by the planner and the real one. This one was obtained
simulating the execution of the planned path 100 times using a LQG controller
and introducing stochastic noise in controls and observations with covariances:

M = diag

(
0.12,

π2

602

)
, N = diag

(
0.12, 0.12,

π2

602

)
, N ′ = diag

(
0.32, 0.32,

π2

92

)
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0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

x (m)

x 
(m

)

S G

(c) PDFs for execution S2,
SR, TC, U1.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

x (m)

y 
(m

)

S G

(d) PDFs for execution S1,
SR, TC, U1.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

x (m)

y 
(m

)

S G

(e) PDFs for execution S1,
SR, TC, U2

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

x (m)
y 

(m
)

S

G

(f) Trail for execution S2,
SR, TC, U1.

Fig. 4. Planning results for different shapes and uncertainty conditions. Executions
of the planned paths are in blue, the PDFs of the rotation center in black, and their
transformation to the border of the robot in red. Regions with higher uncertainty in
observations are in gray—lower localization precision. Environment is 17 m× 18 m.

A comparison of the planning results for different uncertainty conditions and
robot shapes is shown in Fig. 4. Performing several simulations for the planned
path also allows to validate the good performance of the a-priori PDFs (in black)
to the paths obtained in execution time (in blue). Translating the PDFs from the
rotation center to the border of the shape does not reflect the real distribution in
that point. Figure 4(c) stands out those situations in which the PDF estimated
at the border provides a more realistic estimation of probability of collision,
while the last two rows in Table 1 compare the results of the planner with and
without using the correct PDFs at the border. Our method to predict the real
PDFs at the border achieves a better performance when turning near obstacles
at the sides of the robot. This results in a lower cost of the solution and a better
estimation of the probability of collision along the planned path.

The experiments also show the reliability of our planner to work with several
robot shapes. While S1 can safely cross the first door (Fig. 4(a)), for S2 this
becomes unfeasible and the planner selects the longest —but safest path in the
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Table 1. Summary of the tests. MR and SR mean multi and single-resolution, while
TC indicate the estimation of the PDF at the border of the robot. U1 and U2 are
different uncertainty conditions. S1 dimensions are 0.5x0.5 m and S2 2.5x0.5 m.

Execution Expansions Insertions Time (s) pcol (est) Cost (s) pcol (real)

S1, MR, TC, U1 422 2326 13 0.0 50.82 0.0

S1, SR, TC, U1 1566 8356 40 0.0 49.50 0.0

S1, MR, TC, U2 1164 5376 32 0.0 77.88 0.0

S1, SR, TC, U2 3591 19489 39 0.0 71.28 0.0

S2, MR, TC, U1 1990 9627 97 8.099E-9 117.81 0.0

S2, SR, TC, U1 4285 23068 180 1.404E-12 111.87 0.0

S2, SR, NC, U1 4423 23433 519 1.738E-11 113.19 0.0

environment (Fig. 4(c)). The coverage of shape S2 when executing the maximum
likelihood path in this experiment is shown in Fig. 4(f). Moreover, Fig. 4(a) and
Fig. 4(b) also show how the planner selects a different path for shape S1 to avoid
crossing the first door because of the high probability of collision when adding
uncertainty to the environment.

Fig. 3(c) shows the resolution assigned to each region of the environment
when the robot heading is θ = 0. The complexity in each state xa is estimated
counting the number of turnings of the 8 first steps —maximum neighborhood
distance in the set of primitives U— of the 2D path in the direction given by
the heading. Figs. 4(a), 4(b), 4(d) and 4(e) compare the paths obtained with
and without multi-resolution. The adaptive selection of the resolution decreases
the average neighborhood of the lattice and reduces the branching factor of the
search —related to the number of insertions. It also decreases the operations re-
quired to propagate the uncertainty along the candidate paths. As table 1 shows,
our multi-resolution approach obtains a significant reduction in the number of
nodes managed by the search algorithm —62% in expansions and 66% in inser-
tions, on average—, while the cost of the planned paths increases only in a 5.6%.
Also, it does not affect to the estimation of the probability of collision, which is
similar to the one obtained from the executions of the paths.

6 Conclusions

We introduced an adaptive multi-resolution state lattice approach for motion
planning. The proposal selects automatically the resolution of each state accord-
ing to the estimated complexity of the maneuvers in the next steps. The planner
also predicts at planning time the motion uncertainty due to the imprecision
in controls and observations and takes into account the corrective effect of exe-
cuting the paths with a LQG controller. Moreover, the algorithm evaluates the
probability of successfully traversing the path by taking into account the real
shape of the robot, i.e., the PDF is calculated for the point of the robot closer to
the obstacles. The experiments show a reduction in the number of explored states
due to the adaptive multi-resolution technique. Also, the prediction of the PDFs
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along the paths has proved to be a very good approximation to the real PDFs.
As future work, we expect to use the information of a multi-resolution map in
the selection of the lattice resolution in order to achieve a better reduction of
the search space. This will significantly reduce the planning time.
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