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Abstract—The tradeoff between bias and variance is a well-
known problem in machine learning, since algorithms are ex-
pected to achieve a reduced training error without going into
overfitting. In Genetic Fuzzy Systems (GFSs), overfitting is
usually avoided through the control of the number of rules
and/or the number of labels. However, in many machine learning
approaches, variance is reduced through the use of a validation
set. Inspired by this idea, we propose in this paper an Instance
Selection (IS) algorithm for regression problems called Class
Conditional Instance Selection for Regression (CCISR) which is
based on CCIS [1]. The output of CCISR is used in a GFS
to obtain Rule Bases with a low variance, as the rules are
generated with an ad hoc data driven method guided by the
selected instances, but the error is still measured with the full
training dataset. The combined system has been tested over 12
publicly available datasets, and results were compared with other
GFSs. Our approach is capable of achieving a reduction in the
number of rules while maintaining a good accuracy.

Keywords—Instance Selection, regression problems, Genetic
Fuzzy Systems (GFSs), variance reduction

I. INTRODUCTION

Machine learning algorithms try to obtain models with low
bias and variance. The objective is to find a good balance
between the complexity of the model and the reduction in
the training error in order to, finally, get a good test er-
ror. However, when the complexity of the model exceeds a
threshold, although the training error decreases, the machine
learning algorithms generate models with a low bias but a
high variance, i.e., the model overfits the training data. In the
literature, many different techniques, such as regularization
parameters, validation sets, etc. [2], have been described to
reduce the variance. In particular, the validation set approach
consists of learning the model with a part of the training data,
and checking for overfitting with the other part of the training
set.

The use of fuzzy rule base systems to model regression
problems is very extended, since it combines the interpretabil-
ity and expressiveness of the rules with the ability of fuzzy
logic for representing uncertainty. Several machine learning
algorithms have been used to learn fuzzy rules for regression,
like swarm optimization [3], an hybrid with Support Vector
Machines for Regression [4], [5], or the most widely used
Genetic Fuzzy Systems (GFSs) [6]. GFSs are the combination
of evolutionary algorithms and fuzzy logic. Evolutionary al-
gorithms are are endowed with some features that make them
suitable for learning fuzzy rules. In particular, the flexibility of

evolutionary algorithms allows to codify any part of the fuzzy
rule base system and, also, to manage the balance between
accuracy and interpretability of the model in an effective way
[7], [8].

The reduction of the variance in GFSs for regression has
been addressed, principally, through the control of the com-
plexity of the rule base and, particularly, taking into account
the number of rules and/or the number of labels. Traditionally,
the size of the rule base is managed following two approaches:
(i) with a regularization parameter, and (ii) with a multi-
objective evolutionary algorithm that takes into account both
accuracy and complexity. In the first approach, the fitness
function is augmented with a term that penalizes models
with a high number of rules [6]. In the second approach,
although multi-objective evolutionary algorithms can manage
the complexity in an elegant and natural way [9]–[13], if the
most accurate model of the Pareto needs to be selected, the
GFS has to include other conditions to prevent overfitting.
For example, the multi-objective learning in [13] also uses
a threshold for limiting the maximum number of rules.

Inspired by the idea of reducing the variance with a
validation set, we propose in this paper to select a subset of
the examples in the training data to generate the rule base,
while still measuring the training error with the full training
set. In order to implement this idea, an Instance Selection (IS)
algorithm is needed for getting the most adequate instances
to guide the rules generation. IS is the process of selecting a
subset of representative examples from the original data. The
aim is to obtain a representative training set with a lower size
than the original one that can accomplish tasks with little or no
performance deterioration. This data reduction simultaneously
faces the computational complexity, storage requirements, and
noise tolerance.

Currently, there are many different methods of IS and sev-
eral reviews [14]–[16] that summarize the progress in the field.
More recently, [17], [18] describe a taxonomy and an empirical
study of IS algorithms. Furthermore, in [19] the application of
several IS methods to a GFS for classification was described.
IS methods can be grouped into different categories according
to their common properties and to the description presented
in [18]: type of selection (position of the instances to be
retained with respect to the decision boundaries), the direction
in which the search can proceed (incremental, decremental,
batch,...), and evaluation of search (filter or wrapper). Different
evaluations methods can be selected, being nearest neighbors
(NN) the most widely used to determine the criteria for adding



or removing examples.

There are a few works that apply IS to regression problems.
In [20] the IS method uses the concept of mutual information
to decide which examples should be selected. The proposed
algorithm is tested in simple regression datasets in order to
evaluate the robustness of the approximation models using
noisy training inputs. More recently, in [21] a coevolution-
ary algorithm was presented. IS was implemented through a
single-objective evolutionary algorithm executed after a multi-
objective evolutionary algorithm. This single-objective algo-
rithm aims to maximize a measure of how much the reduced
training set is representative of the overall TS, while the multi-
objective algorithm learns the rule base and the membership
function parameters of the fuzzy sets by maximizing the
accuracy and minimizing the complexity.

In this work we propose a new algorithm for IS in
regression, CCISR (Class Conditional Instance Selection for
Regression), which is based on Class Conditional Instance
Selection (CCIS) [1]. CCIS uses a class conditional nearest
neighbor relation over pairs of points in the training set.
Using this relation, CCIS creates two different graphs and
defines a novel scoring function over the instances by means
of an information-theoretic divergence measure. The scoring
function is employed to develop an effective large margin
instance selection method. CCISR extends CCIS to cope with
regression problems. CCISR modifies the nearest neighbor
definition to construct the graphs, it includes a new error
measure, and it redefines the initial size of the selected set
of instances.

Moreover, the partition of the training set generated by
CCISR can be combined with a GFS in order to get a fuzzy
rule base with low variance. CCISR can be integrated with
any GFS based on a data-driven method for the generation
of the rule base. The GFS requires just a minor modification
for the integration. In this paper we have selected as GFS a
modified version of GLD [6], because this algorithm obtains
rule bases with good accuracy. Specifically, GLD learns the
Data Base (DB) using the number of labels and the lateral
displacement per variable. For each DB generated by the
evolutionary algorithm, an ad-hoc data driven rule generation
process is used to obtain the Rule Base (RB). In summary, the
fuzzy knowledge base learning system for regression has three
modules: K-means, CCISR, and GFS. The first one has been
included in order to improve the reduction in the number of
selected instances.

The main contributions of the paper are: (i) CCISR, a new
IS method for regression that has a good balance between
reduction and accuracy, with a limited computational cost; (ii)
the combination of CCISR with a data-driven based GFS in
order to generate accurate rule bases with low variance. The
paper is structured as follows: Sec. II presents the new IS
method for regression, and Sec. III describes how CCISR is
used within the evolutionary algorithm to learn fuzzy rule base
systems for regression. Sec. IV presents the obtained results
and, finally, Sec. V points out the most relevant conclusions.

II. CLASS CONDITIONAL INSTANCE SELECTION FOR
REGRESSION (CCISR)

CCISR is based on CCIS [1], an instance selection method
for classification problems that achieves a good accuracy and
a high reduction rate, with a reasonable computational cost. In
the next subsection we briefly show the main characteristics
of CCIS—a more detailed description can be found in [1]. In
the remaining subsections we describe the differences between
CCISR and CCIS: (i) we propose a new way to construct the
graphs; (ii) we define an appropriate error measure; (iii) and
we redefine the size of the initial instances set.

A. Class Conditional Instance Selection (CCIS)

CCIS is based on a novelty relation called class conditional
nearest neighbor (ccnn), defined on pairs of points from a
labeled training set as follows: for a given class c, ccnn
associates to instance a its nearest neighbor computed among
only those instances (excluded a) in class c. Thus, this relation
describes proximity information conditioned to a class label.
Two different graphs can be constructed using this relation:

• Within-class directed graph (Gwc): consists in a graph
where each instance has an edge pointing to the
nearest instance of the same class.

• Between-class directed graph (Gbc): is a graph where
each instance has an edge pointing to the nearest
instance of any different class.

These graphs are used to define an instance scoring func-
tion by means of a directed information-theoretic measure
(the K-divergence) applied to the in-degree distributions of
these graphs. The scoring function (named Score) is used to
develop an effective large margin instance selection method,
called Class Conditional selection (Fig. 1).

The IS algorithm starts from a set of training examples:

E = {e1, e2, . . . , en} (1)

where n is the number of examples and each example el is
defined as:

el = (eli, e
l
o), e

l ∈ E (2)

where eli is a vector of the input values of el and elo is a
vector of the output values of el. First, an initial core of
instances is used with size k0 = max(c, d ε

E

2 e) where c is
the number of classes, and εE is the leave-one-out error for
the set of examples in E using 1NN . This choice is motivated
(i) because there is at least one example for each class and (ii)
misclassification in εE can be with equal probability either an
outlier or a regular instance (no prior knowledge is assumed).
After that, the instance selection method iteratively selects
instances, choosing in the first place those with the highest
score and storing them in a set (named S). The process
terminates when the empirical error (εS) of the resulting 1NN
rule increases.

In order to further improve the storage performance of the
method, a post-processing algorithm, called Thin-out selection,
is used (Fig. 2). This algorithm selects points close to the
decision boundary of the 1NN rule. This is achieved by
selecting instances having positive in-degree in the between-
class graph of the actual training set (GSbc) and storing them in



1: {e1, . . . , en} = E sorted in decreasing order of Score
2: S = {e1, . . . , ek0}
3: go on = true
4: ub = n− |{el s.t. Score(el) <= 0}|
5: l = k0 + 1
6: while l < ub ∧ go on do
7: Temp = S ∪ {el}
8: if εS ≤ εE then
9: go on = false

10: end if
11: if εTemp < εS ∧ go on then
12: S = Temp
13: l = l + 1
14: else
15: go on = false
16: end if
17: end while
18: return S

Fig. 1. Pseudocode of Class Conditional selection [1].

1: Sf = {el ∈ S with in-degree in GSbc > 0}
2: Sprev = S
3: S1 = S \ Sf
4: go on = true
5: while go on do
6: St = {e ∈ S1 with in-degree in GS1

bc > 0 and with
in-degree in GSprev

bc > 0}
7: go on = εSf∪St < εSf

8: if go on then
9: Sf = Sf ∪ St

10: Sprev = S1

11: S1 = S \ Sf
12: end if
13: end while
14: return Sf

Fig. 2. Pseudocode of Thin-out selection [1].

Sf . Also, S1 is the subset of examples that are in S but not in
Sf . Then an iterative process is done as follows: points having
positive in-degree in the GS1

bc are added to Sf if they were not
isolated in the previous iteration, that is, if their in-degree was
not zero (line 6). This iterative process terminates when the
empirical error increases (line 7).

In regression problems the outputs are real values instead of
labels and, therefore, CCIS must be modified in three different
ways, leading to CCISR:

• In order to use the Gwc and Gbc graphs, a new
definition of the nearest example of the same and
different class is needed.

• As CCISR is going to be combined with a GFS that
uses a data-driven rule base generation, we include an
error measure based on the Wang & Mendel method
[22], because it is the algorithm used by GDL for the
rule base generation.

• Finally, k0 (line 2, Fig. 1) must be redefined, as
there are infinite classes in regression and, taking into
account the definition in CCIS, this would result in an

initial subset containing all the instances.

These modifications are described, in the following subsec-
tions.

B. Construction of Gwc and Gbc Graphs

This modification changes the way how a pointed example
is selected in both Gwc and Gbc. Instead of using only the
nearest instance to construct these graphs, we can define a
neighborhood that depends on the probability density function
of the examples. First, the distance between two examples is
defined using the Mahalanobis distance:

DM (el, eh) = (ehi − eli)TΣli
−1

(ehi − eli) (3)

where Σli is the covariance matrix calculated over the examples
in S, but using eli as the mean value.

Then we can define the σ-neighborhood (σN ) of an
example el as:

σN l = {eh | DM (el, eh) ≤ αDM
} (4)

where αDM
is a threshold over the Mahalanobis distance that

indicates the percentage of Σli that is going to be used to define
the neighborhood.

Finally, we can build the Gwc and Gbc graphs using the
following definitions:

• σ-within-class directed graph (Gσwc): is a graph in
which each instance el has an edge pointing to the
instance that belongs to σN l, and whose difference in
the output space is the smallest.

• σ-between-class directed graph (Gσwc): is a graph in
which each instance el has an edge pointing to the
instance that belongs to σN l, and whose difference in
the output space is the largest one.

Given this adaptation, the graphs are constructed in the
same way as in the original CCIS.

C. Error Measure

CCISR is going to be combined with a GFS with a data-
driven rule base generation method. In GLD, Wang & Mendel
is the algorithm that generates the fuzzy rule bases, given the
definition of the linguistic labels and the set of examples.
It seems appropriate to guide the instance selection process
with the same error measure as the one used in the GFS. The
error measure is based on the mean squared error of a fuzzy
knowledge base:

MSE (E ) =
1

2 |E |

|E |∑
l=1

(F (e l
i )− e l

o)2 (5)

where |E| is the number of examples, F (eli) is the output of
the fuzzy rule base for example el, and elo is the desired output.
Thus, the error measure for CCISR is defined as:

εS = MSE (E ) (6)

where E is the original set of examples and the rule base is
obtained with the Wang & Mendel algorithm over the selected



Fig. 3. Instance selection process in GLD-IS.

examples S. This error measure could be easily adapted to
other rule base generation methods.

The Wang & Mendel method requires the definition of the
DB. CCISR uses uniform partitions, and to select the most
adequate granularity for each variable, a greedy algorithm is
run prior to CCISR:

1) Set all granularities to maxg (the maximum allowed
granularity) and initialize εEbest.

2) For each variable:
a) Decrement the granularity by one and calcu-

late the error εEnew.
b) If εEnew ≥ εEbest then εEbest = εEnew and go

to the previous step. Else, continue with the
following variable.

3) If εEnew has changed go to step 2. Otherwise, stop and
return the best DB definition.

D. Definition of k0

In regression, the definition of k0 in CCIS cannot be
used, as there are infinite classes, and the error is not a
misclassification one, but a difference between the real output
and the predicted output. Thus, in order to obtain the number
of a priori outliers, first the mean error of the complete training
set is calculated. Then, k0 is defined as the number of examples
that have an error larger than the average:

k0 = |{el ∈ E | εl > εE}| (7)

where εl is the error of example el.

III. GENETIC FUZZY SYSTEM WITH INSTANCE
SELECTION

CCISR can be combined with any GFS with a data-driven
rule base generation method. In this paper we have selected
GLD [6] as the genetic algorithm for learning RBs. The
combination of GLD with CCISR, called GLD-IS, consists of
three different phases (Fig. 3): K-means (Sec. III-A), CCISR
(described in Sec. II) and the GLD adapted to work with
instance selection (Sec. III-B).

A. K-means

In order to improve the reduction capacity of CCISR,
a preprocessing stage was used. This preprocessing method
consists of the execution of the K-means algorithm [23] over
the training examples Etra. The parameter k is selected using
a Quadratic Fit searching process [24] that chooses a k that
minimizes the Davies-Bouldin index [25], defined as:

DBindex =
1

k

k∑
i=1

max
i 6=j

si + sj
d(ci , cj )

(8)

where k is the number of clusters, ci is the centroid of cluster
i, si is the average distance of all elements in cluster i to
centroid ci, and d(ci, cj) is the distance between centroids ci
and cj . Thus, clusters with low intra-cluster distances (high
intra-cluster similarity) and high inter-cluster distances (low
inter-cluster similarity) will have a low Davies-Bouldin index.

After obtaining the best clusters, the example closer to each
cluster centroid is added to the reduced examples set Er. Then,
the CCISR algorithm (Sec. II) is executed over Er in order to
obtain a subset of examples named Es.

B. GLD with Instance Selection

GLD [6] is a genetic algorithm that codifies the granulari-
ties and the lateral displacements of the variables to generate
accurate linguistic fuzzy rule bases. First, we briefly describe
the main characteristics of GLD and, at the end of the section
we define the evaluation process of GLD-IS (GLD combined
with instance selection), which is different from that in GLD.
Figure 4 shows the pseudocode of GLD:

• Chromosome codification: a double-coding scheme
is used: a vector of granularities for each variable
(C1) and a vector of real numbers that represent the
lateral displacement associated for each label (C2).
The second part of the chromosome corresponds to
a 2-tuple representation of the labels, introduced in
[26]. The symbolic translation of a linguistic term is a
number within the interval [−0.5, 0.5) that expresses
the displacement of a label when it is moving between
its two lateral labels.

• Initialization: the initial pool of individuals is gener-
ated by a combination of two initialization procedures.
A half of the individuals are generated with the same
random granularity for each variable, while the other
half is created with a different random granularity for
each variable. The lateral displacements are initialized
to 0 in all cases.

• Rule base generation method: an ad-hoc method is
used to construct the RB from the codified DB. The
Wang & Mendel algorithm is used to create the rule
base for each individual. The method is quick and
simple, and obtains a representative rule base given
the definition of the DB and a set of examples.

• Evaluation: the fitness function is a linear combination
of two measures:

fitness = MSE (Etra) + αf NR (9)

where MSE is the mean squared error (Eq. 5), NR is
the number of rules and αf is a parameter that deter-
mines the tradeoff between accuracy and complexity.

• Recombination: two crossover operations are defined:
one-point crossover for exchanging the C1 parts
and, when the C1 are equal, the parent-centric BLX
(PCBLX) [27] is used for the C2 part.

As the algorithm searches for models with a low number
of rules (compact linguistic models) and the support of the
final membership functions can be displaced, there could be
non-covered zones in the input space. In [6], in order to



1: pop0 = initialization()
2: for all indi ∈ pop0 do
3: RBi = WM (DBi)
4: fitnessi = evaluation(RBi)
5: end for
6: repeat
7: popnew = recombination(popsel)
8: for all indi ∈ popnew do
9: RBi = WM (DBi)

10: fitnessi = evaluation(RBi)
11: end for
12: popt = replacement(popt ∪ popnew)
13: until stopping criteria
14: return {indb ∈ popt / b = argmaxi fitnessi}

Fig. 4. GLD pseudocode [6].

1: Given Es = CCISR(Er)
2: for all indi ∈ pop do
3: RBi = WM (Es , DBi)
4: fitnessi = MSE(Etra)
5: end for

Fig. 5. Evaluation process of GLD-IS.

consider non-covered input data, an interpolation of the two
nearest rules is used to infer the output. Our implementation of
GLD, instead of this new inference method, uses the standard
inference in fuzzy rule base systems: when an example is
not covered by any rule, the RB returns the average output.
Moreover, this classic inference is more interpretable.

1) GLD with instance selection: in this section, the mod-
ifications of GLD to work with an instance selection method
is presented.

Both Es and Etra are used in GLD-IS within a redefined
evaluation function. Thus, the loops in lines 2-5 and 8-11 are
substituted by the loop in Fig. 5. Subset Es is used to obtain
the RB from the codified DB. In this manner, those examples
that are not representative are not taken into account for rules
generation, thus both avoiding the creation of too specific rules
and reducing the time needed to create the RB.

After obtaining the RB, the fitness is calculated as the mean
squared error (Eq. 5):

fitness = MSE (Etra) (10)

where Etra is the full training dataset. Using all the examples
in Etra for evaluation can be seen, in some way, as a validation
process, as the rule base was constructed with a subset of them.

IV. RESULTS

In order to analyze the performance of CCISR and its
integration with a GFS (GLD-IS), we have used 12 real-world
regression problems with different complexity. These problems
were obtained from the KEEL project [28]. Table I shows the
characteristics of the datasets.

A. Performance of CCISR

In order to evaluate the performance of CCISR, two
measures are considered:

TABLE I. CHARACTERISTICS OF THE DATASETS

Dataset Abbr. Variables Examples
Electrical Maintenance ELE 4 1056
Auto MPG6 MPG6 5 398
Auto MPG8 MPG8 7 398
Anacalt ANA 7 4052
Abalone ABA 8 4177
Stock STO 9 950
Weather Izmir WIZ 9 1461
Weather Ankara WAN 9 1609
Forest Fires FOR 12 517
Mortgage MOR 15 1049
Treasury TRE 15 1049
Baseball BAS 16 337
Available at http://www.keel.es [28]

TABLE II. BEST DATA BASES OBTAINED BY THE GREEDY ALGORITHM
(SEC. II-C)

Dataset Granularities MSE tra

ELE [4, 7, 7, 7, 7] 38,388.806
MPG6 [5, 6, 6, 7, 7, 7] 2.669
MPG8 [6, 6, 6, 7, 6, 6, 7, 7] 2.181
ANA [7, 1, 2, 2, 2, 7, 2, 7] 0.012
ABA [7, 6, 7, 5, 5, 7, 7, 7, 6] 2.703
STO [6, 6, 6, 6, 6, 6, 6, 7, 7, 7] 0.505
WIZ [7, 7, 5, 4, 6, 5, 6, 5, 6, 7] 1.789
WAN [6, 6, 7, 5, 5, 6, 6, 7, 6, 7] 2.373
FOR [5, 7, 4, 7, 2, 6, 6, 4, 6, 6, 6, 1, 7] 169.588
MOR [5, 4, 5, 5, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7] 0.050
TRE [4, 6, 6, 6, 6, 6, 5, 6, 6, 7, 7, 5, 6, 5, 7, 7] 0.112
BAS [7, 5, 6, 5, 6, 6, 6, 7, 6, 7, 6, 6, 2, 2, 2, 1, 7] 28,627.247

• Reduction (red): is the percentage of reduction in the
number of examples, defined as:

redEsub
= 1− |Esub|

|Etra|
(11)

where |Esub| is the number of examples in the subset
Esub and |Etra| is the original number of examples
in the training set.

• Increase of error (inc): is the increment of the error
after applying the instance selection process. In order
to compare the different configurations of CCISR,
the MSE error defined in Eq. 5 was used. Thus,
Wang & Mendel was applied to obtain the rules
from the examples, before and after selection, and
the granularities were obtained by the same greedy
algorithm as in CCISR (sec. II-C). Finally, the increase
in the error is defined as:

incEsub
=

MSE sub

MSE tra
(12)

where MSE sub is the MSE obtained when the RB
is built from the examples in Esub, and MSE tra

when all the examples in the training set are used
to construct the RB. The MSE tra obtained for each
dataset, together with the selected granularities for
each variable, are shown in table II.

Table III shows the average values of inc and red with
30 runs for each dataset. The K-means column shows the
results obtained after applying K-means to Etra, while the
CCISR column represents the results when CCISR is applied
directly to Etra, without preprocessing the dataset with K-
Means. Finally, the K-means + CCISR column shows the



TABLE III. AVERAGE RESULTS FOR K-MEANS AND CCISR (SEC. II-C)

Dataset K-means CCISR K-means + CCISR
redEr incEr redEs incEs redEs incEs time (s)

ELE 0.498 1.551 0.672 1.776 0.802 3.610 529.926
MPG6 0.499 1.986 0.555 2.714 0.776 4.730 58.498
MPG8 0.429 2.242 0.588 4.421 0.768 6.449 75.499
ANA 0.446 2.200 0.380 2.693 0.633 4.703 613.526
ABA 0.535 1.084 0.585 1.167 0.806 1.214 14,223.440
STO 0.521 1.264 0.520 1.575 0.779 2.832 470.400
WIZ 0.475 1.723 0.646 4.158 0.823 5.841 1,527.727
WAN 0.512 2.010 0.637 4.310 0.847 6.937 2,049.829
FOR 0.444 287.874 0.550 410.772 0.779 621.148 371.793
MOR 0.528 1.404 0.539 2.568 0.790 6.997 1,025.008
TRE 0.536 1.183 0.535 1.710 0.786 4.615 907.456
BAS 0.472 19.006 0.812 38.816 0.893 48.886 148.269

TABLE IV. AVERAGE RESULTS OF THE DIFFERENT ALGORITHMS

Dataset GLD-IS GLD FSMOGFS [13] FSMOGFSe [13]
Rules Training Test Rules Training Test Rules Training Test Rules Training Test

ELE 31 17,743.610 19,784.872 31 13,041.375 15,147.656 10 16,018.000 16,083.000 9 16,153.000 16,338.000
MPG6 32 3.158 4.375 69 2.560 4.995 38 3.850 4.820 39 3.894 4.866
MPG8 38 3.029 5.036 121 1.932 4.876 40 3.827 4.453 40 3.827 4.453
ANA 78 0.016 0.017 100 0.006 0.008 25 0.006 0.006 23 0.006 0.006
ABA 69 2.487 2.593 29 2.457 2.516 17 2.682 2.697 15 2.670 2.708
STO 113 0.401 0.600 195 0.353 0.499 44 1.361 1.460 43 1.393 1.456
WIZ 70 1.073 1.747 95 0.944 1.249 23 1.469 1.567 17 1.519 1.571
WAN 71 1.610 2.543 142 1.227 1.658 12 1.810 1.823 11 1.897 2.151
FOR 51 1,771.497 3,131.715 356 80.093 58,376.609 34 1,873.000 2,254.000 35 1,892.000 2,449.000
MOR 62 0.032 0.056 83 0.023 0.028 12 0.032 0.033 11 0.033 0.034
TRE 56 0.043 0.061 68 0.035 0.047 17 0.046 0.049 15 0.046 0.052
BAS 18 402,978.818 475,295.087 250 30,954.190 870,956.207 33 167,300.000 257,500.000 28 170,600.000 248,300.000

results when the whole process of instance selection in GLD-
IS (Fig. 3) is performed. The values of the parameters for these
experiments were: αDM

= 0.05 and a relative tolerance with
respect to the Davies-Bouldin index to declare convergence in
K-Means equal to 10−6. Moreover, the results were obtained
in an AMD Opteron 6262 HE 2.10 GHz processor with 128
GB RAM, using only one of the eight cores. The time column
in K-means + CCISR shows the runtime of the whole process
—including the selection of the number of clusters.

The percentage of reduction achieved by K-means is, in
general, under 0.5, while CCISR gets an average reduction
over 0.5 in most of the datasets. Also, the combination of both
methods shows the best reduction rate, with values between 0.7
and 0.9 in all the datasets but ANA. Furthermore, the reduction
rate does not depend neither in the size of the dataset, nor in
the number of variables, but on the complexity of the data.

On the other hand, the increase in error of K-means is low,
so this phase does not modify significantly the information
contained in the examples set. CCISR produces an increase
in the error with respect to K-means, as the reduction is also
higher. Generally, the increase in the error is not very high,
except for FOR and BAS. These two datasets have a low
number of examples combined with a high dimensionality
(table I) and, therefore, reducing the number of examples has
a more direct effect in the increase of the error. However, this
misbehavior does not have a great impact in the subsequent
learning phase with GLD-IS, as we show in the next section.

B. Performance of GLD-IS

In order to analyze the performance of GLD-IS we have
compared the results obtained with different algorithms:

• GLD: an implementation of the algorithm presented
in [6] (sec. III). The only difference with the original

TABLE V. AVERAGE RANKINGS FOR THE NUMBER OF RULES OF
TABLE IV

Algorithm Ranking
FSMOGFSe 1.458
FSMOGFS 2.042

GLD-IS 2.583
GLD 3.917

Friedman p-value: 0.00003

TABLE VI. POST HOC COMPARISON FOR THE NUMBER OF RULES OF
TABLE IV AND α = 0.05

i Comparison z p α/i Hypothesis
4 GLD-IS vs GLD 2.53 0.011 0.013 Rejected
3 FSMOGFSe vs GLD-IS 2.135 0.033 0.017 Accepted
1 FSMOGFS vs GLD-IS 1.028 0.304 0.05 Accepted

TABLE VII. AVERAGE RANKINGS FOR THE TEST ERROR OF TABLE IV
(FRIEDMAN)

Algorithm Ranking
FSMOGFS 2.083

GLD 2.083
FSMOGFSe 2.583

GLD-IS 3.25
Friedman p-value: 0.085

TABLE VIII. POST HOC COMPARISON FOR THE TEST ERROR OF TABLE
IV AND α = 0.05

i Comparison z p α/i Hypothesis
6 FSMOGFS vs GLD-IS 2.214 0.027 0.008 Accepted
5 GLD vs GLD-IS 2.214 0.027 0.01 Accepted
4 FSMOGFSe vs GLD-IS 1.265 0.206 0.013 Accepted

GLD is that we used the standard fuzzy inference
method.

• FSMOGFS [13]: a multi-objective evolutionary algo-
rithm (based on SPEA2) that performs an embedded



genetic DB learning including feature selection, gran-
ularities and lateral displacement of fuzzy partitions
in order to control the dataset dimensionality and
obtain a reduced KB. For each DB definition the
Wang & Mendel method is used to obtain the RB
with a cropping system that stops the method when
the RB reaches a limit of 50 rules. Two minimization
objectives are used: MSE and number of rules.

• FSMOGFSe [13]: a modification of FSMOGFS, where
a fast error-computation mechanism is used to reduce
the long time consumed by error computation in large-
scale datasets. This algorithm takes a small percentage
of the training examples to estimate the error of bad
solutions, and only uses all the examples to evaluate
good candidate solutions.

There is also a version of FSMOGFS, called FSMOGFS+
TUNthat includes a post-processing stage. This second stage
consists in a fine tunning of the fuzzy labels parameters and
a rule selection through an evolutionary process. In this paper
we are only interested in the learning stage and, although
GLD-IS could be run with a tuning stage, for comparison
purposes we have not considered the post-processing stage in
the algorithms.

The following values were used for the parameters of GLD
and GLD-IS: population size of 61, 50,000 evaluations, and
the maximum granularity equal to 7. Moreover, for GLD:
αf = 0.5. Furthermore, in the case of the multi-objective algo-
rithms, we have considered a standard population of 200 and
an external population of 61. For the fast error-computation,
the percentage of examples used is 0.2. For each dataset, we
executed six times the algorithm (with different seeds) and, for
each of them, a five fold cross-validation was done, giving a
total of 30 runs.

Table IV shows the average values for the 30 runs for
each algorithm and dataset. The information shown in the
columns is: the number of rules of the RB, and the training
and test error measured by Eq. 5. Additionally, in order
to compare the experimental results, non-parametric tests of
multiple comparisons have been applied. The Friedman test
[29] with Holm post-hoc test [30] was used as the method for
detecting significant differences among the results. In order to
analyze the comparisons in which GLD-IS was involved, the
multiple comparison approach for the Holm test was used. The
test was performed both for the test error and the number of
rules of table IV. The results are shown in tables V to VIII.

In the case of number of rules (table V), both multi-
objective algorithms have the best performance, as these
algorithms limit the size of the learned RB to 50 rules.
However, the post-hoc results (table VI) show that there are
no statistically significant differences comparing the multi-
objective algorithms with GLD-IS. In particular, in the case
of STO (table IV), the high number of rules in GLD-IS is
a consequence of the complexity of the problem, and for
FSMOGFS and FSMOGFSe the limit in the number of rules
produces a bad test error. Moreover, GLD has the worst rank-
ing in Friedman, and compared with GLD-IS the difference in
number of rules is statistically significant.

Taking into account the test error (table VII), the algorithms
that calculate the error with all the training data (FSMOGFS

and GLD) have the highest ranking, while FSMOGFSe and
GLD-IS have the worst ranking. However, the p-value of the
test in table VII is over 0.05, showing that the significance level
of the Friedman test does not have a high level of confidence.
Furthermore, the post-hoc method (table VIII) shows that there
are no significant differences between GLD-IS and all the other
algorithms.

As a summary of the tests, we can conclude that GLD-
IS offers an alternative to reduce the variance in evolutionary
learning, producing rule bases with a low number of rules.
Moreover, the accuracy of the obtained rule bases is also
good, showing no statistically significant differences with other
methods that control the variance through a regularization
parameter (GLD) or with a multi-objective approach combined
with a threshold in the number of rules (FSMOGFS and
FSMOGFSe).

In relation with the effect of CCISR combined with GLD,
even when using a low number of examples to generate the
RB, the results obtained by GLD-IS are good (table IV). This is
due to three reasons. First, the reduced examples set contains
only the meaningful examples and, therefore, the rule base
does not contain very specific rules or rules generated from
outliers. In second place, the search space is smaller, as the
number of rules bases generated by the examples set is also
reduced. Finally, the use of all the training examples to evaluate
a RB that was generated by a subset of the examples allows
to measure the generalization ability of the learned RB during
the evolutionary process.

V. CONCLUSIONS

In this paper we have presented a new IS method for re-
gression based on CCIS, called CCISR. In order to adapt CCIS
to work with regression problems, three modifications of the
algorithm have been done: (i) the construction of the graphs,
(ii) the error measure and (iii) the k0 parameter. Moreover, we
have integrated CCISR with a GFS in order to obtain fuzzy
rule bases with a low variance. The full system, called GLD-
IS, has three different stages: a preprocessing phase based on
K-means, CCISR and, finally, a genetic algorithm to learn the
knowledge base. The RBs obtained during the evolutionary
process were constructed by an ad hoc data driven method
guided by the selected instances from CCISR, while the error
measure was calculated using the full training dataset.

CCISR has been tested with 12 regression problems, show-
ing a good reduction rate, while keeping the most meaningful
examples. Also, we have compared GLD-IS, the combination
of GLD with instance selection, with three GFS approaches.
The results show that GLD-IS obtains a low number of rules
as RB generation is based on the selected instances, while still
having a good accuracy. Therefore, GLD-IS offers a different
and elegant way to reduce the variance of GFSs, and is an
alternative to the use of regularization parameters or thresholds
in the number of rules.
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