
Business & Information Systems Engineering manuscript No.
(will be inserted by the editor)

Repairing Alignments of Process Models

Sebastiaan J. van Zelst · Joos C.A.M. Buijs · Borja Vázquez-Barreiros ·
Manuel Lama · Manuel Mucientes

Received: date / Accepted: date

Abstract Process mining represents a collection of

data driven techniques that support the analysis, un-

derstanding and improvement of business processes. A

core branch of process mining is conformance checking,

i.e., assessing to what extent a business process model

conforms to observed business process execution data.

Alignments are the de facto standard instrument to com-

pute such conformance statistics. However, computing

alignments is a combinatorial problem and hence ex-

tremely costly. At the same time, many process models

share a similar structure and/or a great deal of behavior.

For collections of such models, computing alignments

from scratch is inefficient, since large parts of the align-

ments are likely to be the same. This paper presents

a technique that exploits process model similarity and

repairs existing alignments by updating those parts that
do not fit a given process model. The technique effect-

ively reduces the size of the combinatorial alignment

problem, and hence decreases computation time signi-

ficantly. Moreover, the potential loss of optimality is

limited and stays within acceptable bounds.

Sebastiaan J. van Zelst
Fraunhofer Institute for Applied Information Technology
Fraunhofer Gesellschaft, Sankt Augustin, Germany
E-mail: sebastiaan.van.zelst@fit.fraunhofer.de

Joos C.A.M. Buijs
Department of Mathematics and Computer Science
Eindhoven University of Technology, Eindhoven, The
Netherlands
E-mail: j.c.a.m.buijs@tue.nl

Borja Vázquez-Barreiros, Manuel Lama, Manuel Mucientes
Centro Singular de Investigación en Tecnolox́ıas da In-
formaćıon (CiTIUS)
Universidade de Santiago de Compostela, Santiago de
Compostela, Spain
E-mail: {borja.vazquez, manuel.lama,
manuel.mucientes}@usc.es

Keywords Process mining, Conformance checking,

Alignments, Process trees, Workflow nets

1 Introduction

Process mining (van der Aalst, 2016) has emerged as

a means to analyse, understand and improve the beha-

vior of an organization, based on the analysis of event

data, i.e., known as event logs, stored during the exe-

cution of the process. We identify three main process

mining areas: process discovery, conformance checking

and process enhancement. In process discovery, the goal

is to discover a process model that accurately describes

the behavior recorded in an event log, i.e., a model

describing the real process followed during process ex-

ecution. In conformance checking, a process model is

compared with the recorded behavior of the process to

check whether there exist deviations between the model

and the observed behavior. In process enhancement, a

process model is dynamically enriched, with new in-

formation about the process based on new analysis of

the process model and/or event log, e.g., detecting crit-

ical paths, predicting process performance indicators,

repairing/simplifying of process models, etc.

Both in conformance checking and process enhance-

ment techniques, alignments (van der Aalst et al., 2012;

Adriansyah et al., 2015; van Zelst et al., 2018a) have

rapidly developed to a cornerstone technique and are

often used heavily. Alignments quantify to what extent

a process model and event data conform to each other.

In order to do so, an alignment maps the behavior cap-

tured in an event log to a process model, relating each

observed sequence of events, i.e., each trace, to a cor-

responding execution path of the process model. As

an example of their use, consider the development of



2 Sebastiaan J. van Zelst et al.

process mining algorithms such as evolutionary process

discovery algorithms (Buijs, 2014; Vázquez-Barreiros

et al., 2016a), where replay-fitness and precision (calcu-

lated on the basis of alignments) are used to evaluate the

quality of a newly generated process model; model repair

techniques (Polyvyanyy et al., 2017; Fahland & van der

Aalst, 2015), where alignments are used for detecting

the points in which a process model must be repaired

such that it is accurately adapted to the observed be-

havior; or the Inductive Visual Miner (Leemans et al.,

2014b), which uses alignments to visualize the flow of
cases through a given process model.

Computing an alignment is an NP-hard problem.

Several techniques have been proposed for alignment

computation based on shortest-path search or optim-

ization algorithms that look for optimal alignments,

i.e., alignments with a minimal deviation cost (Adri-

ansyah et al., 2011, 2013; Alizadeh et al., 2014; de Leoni

et al., 2012; de Leoni & van der Aalst, 2013; van Don-
gen, 2018; de Leoni & Marrella, 2017; van Zelst et al.,

2018a; Carmona et al., 2018). However, using these tech-

niques in combination with realistically sized event logs

and process models typically results in poor runtime

performance. As a solution, some authors propose to

decompose the process model into sub-models before

applying search-based or optimization algorithms (Song

et al., 2017; van der Aalst, 2013; Munoz-Gama et al.,

2014). However, these decomposition techniques provide

solutions for sub-problems, which in aggregated form

provide lower bounds, i.e., underestimations of the true

alignment costs.

The previously mentioned process mining techniques

compute alignments from scratch for new process models.
However, in a variety of cases, these models are similar

to one another. Relevant examples of such situation are:

– Evolutionary process discovery. This kind of algorithms

lead to good results, discovering high quality pro-

cess models, even in the presence of noise (van Eck

et al., 2014; Vázquez-Barreiros et al., 2016a). In

evolutionary process discovery there exists an ini-

tial population of process models that evolves over

a number of iterations in which a new generation

of process models is created by introducing slight

modifications (crossover and mutation of the current

generation of process models). In order to decide

which process models are ruled out between two iter-

ations, each one of them needs to be evaluated based

on replay-fitness and/or precision, and therefore in

each iteration there are a high number of evaluations.

It is clear that this evaluation should be as efficient

as possible to make evolutionary process discovery

applicable to medium-large size event logs.

– Visualizing trace executions. The Inductive Visual

Miner has a graphical interface that allows users

to visualize a simulation of the execution of the

traces (Leemans et al., 2014b). This simulation is

based on alignments, as it highlights model paths

related to trace executions. Furthermore, the graph-

ical interface allows users to interactively filter noise.

Such filtering often results in a similar process model

compared to the current model. Consider Fig. 1,

which shows the result of the Inductive Visual Miner

twice, using a slightly different filtering setting. The
only difference between the models is the absence

of two activities highlighted by circles. Therefore,

increasing the efficiency of alignment computation is

a critical point for this algorithm in order to improve

the user experience by changing thresholds and sim-

ulating trace runs. Observe that, a technique that

allows us to repair alignments, can in principle be ex-

ploited in all interactive visualizations of alignments

on process models.

– Scenario Based Prediction. Observe that, using align-

ments as a basis, i.e., explaining the event data in

terms of a model, we are able to compute perform-

ance metrics on top of a given process model as well.

In case a business owner aims to assess the expected

impact of a certain change in his/her process, he/she

usually changes small parts of the model, e.g., chan-

ging a parallel operator to a sequence operator, etc.

Again in such a case, the models being compared

are very similar to one-another.

Hence, the question arises whether we can use pre-

viously computed alignments as a basis for computing

new alignments of similar process models, and thus po-

tentially reduce alignment computation time. Therefore,

in this paper, we propose an alignment repair method

that computes alignments by repairing parts of existing

alignments. The technique identifies fragments of the

existing alignment that do not correspond to the process

model and replaces them with new alignment fragments

that do correspond. Because the method only focuses on

those alignment fragments that do not fit, computation

time decreases significantly. Moreover, we show that the

loss of optimality is limited and stays within accept-

able bounds. The proposed method is only applicable to

sound process models, since the internal representation

of the process models considered in this paper is based

on process trees. We do so, since process trees allow us to

represent sound models through a hierarchical structure

in blocks, enabling a more efficient comparison between

different models and, therefore, the location of those

parts that have effectively change in relation to a similar

model. Observe that, this feature prevents the applica-



Repairing Alignments of Process Models 3

(a) Process model with case visualization before filtering.

(b) Process model with case visualization after filtering.

Fig. 1: Application of filtering in the Inductive Visual Miner (Leemans et al., 2014b,a).

tion of our algorithm in unstructured processes, which

are usually represented through non-sound models.

The main contributions of this paper are:

– The development of a novel and efficient method

that computes alignments by reusing existing align-

ments for different, though similar, process models.

The proposed method consists of three phases: scope

of change detection, where the alignment part cor-

responding to the sub-model of the process model
that has changed is identified; realignment, where

the alignments related to the changes of the pro-

cess model are computed; and alignment reassembly,

where the alignments computed in the previous step

are assembled as part of the original alignment. This

method is specially interesting for complex, but sim-

ilar, process models and when the size of traces is

large.

– A validation of the method which shows that it re-

trieves alignments in a significantly lower, worst-case

equal, time when compared to computing optimal

alignments from scratch.

The remainder of this paper is structured as follows.

Section 2 discusses related work. In Section 3, we present

background concepts such as process trees, event data

and alignments. In Section 4, we present our proposed

alignment repair technique. In Section 5, we prove the

correctness of our approach. In Section 6, we present an
evaluation of the approach, whereas Section 7 concludes

the paper.

2 Related Work

A broad overview of work in the field of process mining is

outside the scope of this paper, hence we refer to (van der

Aalst, 2016). Here, we primarily focus on related work
in conformance checking.

Early work in conformance checking focuses on token-

based replay techniques (Rozinat & van der Aalst, 2008).

In token-based replay, markings and firing sequences

of Petri nets (Murata, 1989) are used to computing

conformance statistics. The techniques simulate traces

through the model and produce, and keep track of,

missing tokens in order to be able to fire transitions that

are not enabled. The main disadvantage of token-based

replay techniques is the fact that produced tokens are

potentially used to enable future transitions, allowing for

behavior that originally could not be performed within

the model.



4 Sebastiaan J. van Zelst et al.

Alignments were introduced in (van der Aalst et al.,

2012). The main challenge of alignments is their compu-

tation, which is an NP-hard problem. To deal with this

issue two kind of approaches have been proposed: search-

based techniques, which look for the alignment with

minimum cost, and decomposition-based techniques,

which decompose models into sub-models before apply-

ing search-based algorithms. We briefly review these

approaches.

In (Adriansyah et al., 2011) the authors convert the

alignment computation problem to a shortest path prob-

lem, based on the marking-based reachability graph of

the Workflow net. Moreover, the authors propose the

use of the A∗-algorithm (Hart et al., 1968), i.e., an al-

gorithm that exploits a heuristic distance function to
find a path with minimum cost in a weighted graph.

In (Adriansyah et al., 2013) the authors improve the

efficiency of the A∗ approach of (Adriansyah et al., 2011)

by defining a heuristic function based on the solution

of the marking equation of the Workflow net through

Integer Linear Programming (ILP). In (van Zelst et al.,

2018a), a large scale experimental evaluation of the dif-

ferent parameters of the aforementioned A∗ approach

is presented. In (van Dongen, 2018) an alternative, A∗-

inspired, search strategy is presented that exploits an

extended version of the aforementioned marking equa-

tion. In (Alizadeh et al., 2014) the authors propose an

alternative cost function based on information extracted

from past process executions. The cost of an alignment

depends on the move type and the activity involved in

the move though, differently from (Adriansyah et al.,

2013), it also depends on the position in which the move

is inserted.

In (Song et al., 2017), the authors propose to analyse

the structural and behavioral features of process mod-

els to reduce the search space by (1) decomposing the

process model in a set of independent sub-models where

a trace follows only one of the sub-models and (2) by

simulating the execution of each trace in the sub-model

to which it belongs to. Taking this into account, the

authors present an algorithm based on effective heur-

istics relying on the trace to reduce the search space

for computing the optimal alignment. Simple heurist-

ics are considered for models with both iterative and
alternative routing.

All the previous approaches calculate alignments

solely based on the control-flow perspective. In (de Leoni

& van der Aalst, 2013) the authors present a method

for alignment calculation taking all perspectives into

account: control-flow, data, time and resources. The first

step of the proposal finds the control-flow alignment

through A∗ based on (Adriansyah et al., 2011). Then,

an ILP problem is constructed to obtain an optimal

alignment which also considers other perspectives of the

process.

A different problem is conformance checking in de-

clarative models. A declarative model lists constraints

that specify the forbidden behavior, as opposed to im-

perative models, such as Workflow nets, which only

describe allowed behavior. In (de Leoni et al., 2012) the

authors propose calculation of alignments using A∗ for

declarative models. As the authors point out, the applic-

ation of A∗ for declarative models is more challenging

than for procedural models, as the set of admissible

behavior is far larger. Thus, the method implements

a search space reduction based on the equivalence of

partial alignments. Moreover, the approach provides
metrics to measure the degree of conformance of single

activities and constraints.

Decomposition techniques allow to approach con-

formance checking from another perspective (van der

Aalst, 2013; Munoz-Gama et al., 2014). For instance,

in (van der Aalst, 2012), the authors present an ap-

proach to decompose a model into net fragments which

correspond to minimal passages. A passage is formed

by two sets of nodes of a process model where the out-

puts of the first set are all inputs of the nodes in the

second set, and the inputs of the nodes of the second
set are all outputs of the nodes in the first set. Given

this decomposition, it is possible to calculate the con-

formance in a distributed way. In (Fahland & van der

Aalst, 2012, 2015), the authors propose a methodology

to repair a process model through alignments. Based

on alignment information, they decompose the log into
several sub-logs that do not fit the original model. Fi-

nally, for each sub-log, a sub-process is derived and

added to the original model in the appropriate location.

In (de Leoni et al., 2014), the authors present a proposal

for decomposing large data-aware conformance checking

problems into smaller problems that can be solved more

efficiently. The approach uses the Single-Entry Single

Exit (SESE) decomposition (Munoz-Gama et al., 2014)

to split the data-aware process model into smaller model

fragments. These fragments are created by selecting a

particular set of SESEs in the Refined Process Struc-
ture Tree (RPST) (Vanhatalo et al., 2009). To check

the conformance of each fragment, the authors used the

technique presented in (de Leoni & van der Aalst, 2013).

The main difference of this work compared to related

work is the fact that the technique presented in this

paper results in an alignment for the whole trace and

the whole process model reusing previously computed

alignments.



Repairing Alignments of Process Models 5

a b

c

d

(a) The process model in BPMN notation.

∧

×

dc

→

ba

v1

v2

v3

v4

v5

v6

v7

(b) The process model visualized as a process tree (which we
refer to in the remainder as PT1).

Fig. 2: Two process models describing the parallel execution of a sequence of activities a and b, together with a

choice between activities c and d.

3 Background

In this section, we present background material used

throughout the remainder of this paper. We focus on

process trees as a modelling formalism as well as the

notion of alignments.

3.1 Process Trees

In this paper, we focus on hierarchical process models,

i.e., process trees (Buijs, 2014; Leemans et al., 2013),

which are known to be sound by design. A process tree
is a compact tree-like representation of a Workflow

net (van der Aalst, 1998). Process trees allow us to

represent sound process models through a hierarchical

structure in structured blocks, which makes the com-

parison between two different models relatively efficient.

Consider Fig. 2, in which we present a simple process

model in both BPMN notation and its corresponding

process tree visualization.

The models describe that activities a and b need

to be executed in sequence, i.e., first activity a, then

activity b. Moreover, either activity c or activity d is

executed. This can be done concurrently with executing

the sequence of activities a and b. The leafs of a process

tree always represent (possibly unobservable by means

of τ -labels) activities, whereas internal vertices always

represent operators used to specify the relation between

their children. Each vertex within a process tree defines

a process tree itself.

In this paper we consider five standard operator

types, similar to the work of (Buijs, 2014), defined for

process trees: the sequential operator (→), the parallel

execution operator (∧), the exclusive choice operator

(×), the non-exclusive choice operator (∨) and the re-

peated execution (loop) operator (	). Operators have

an arbitrary number of children in arbitrary order, ex-

cept for the sequence and loop operators. The sequence

operator has an arbitrary number of children, though

the order of the children specifies the order in which

they must be evaluated, i.e., from left to right. Loop op-

erators always have three children. The left child is the

do-child of the loop and is always executed, the middle

child is the redo-child and is optional, the right child

is the exit-child and is also always executed. Whenever

the redo-child is executed, it has to be followed by the

do-child. Whenever the exit-child is executed the op-

erator terminates. For example given a simple process

tree 	 (a, b, c), example behavioral sequences described

by the tree are 〈a, c〉, 〈a, b, a, c〉, 〈a, b, a, b, a, c〉, etc. Fur-

thermore, example behavioral sequences described by

the process tree depicted in Fig. 2, are: 〈a, b, c〉, 〈a, b, d〉,
〈c, a, b〉, 〈a, d, b〉, etc.

3.2 Event Data and Alignments

Modern information systems track the execution of busi-

ness processes within a company. These systems store

the execution of business activities in context of a case,

i.e., an instance of the underlying process. Such data

is often stored in the form of an event log. An event

log records the actual execution of activities within a

business process. Consider Table 1 depicting a snapshot

of an event log of a loan application process.

The actual execution of a business process activ-

ity is referred to as an event, which is unique. A se-

quence of events is referred to as a trace. In the context

of this paper we are merely interested in the sequen-

tial ordering of the business process activities recor-

ded in traces, i.e., the control-flow perspective. Observe

that, when adopting the control-flow perspective, we

obtain the trace of activities 〈Check application form,

Check credit history, ...,Reject application〉 for the pro-

cess instance identified by case-id 3554.

Alignments (van der Aalst et al., 2012; Adriansyah,

2014) allow us to explain observed behavior, during

the execution of a process, in terms of a given process

model. Alignments map the observed business process



6 Sebastiaan J. van Zelst et al.

Table 1: Event log fragment based on a simple fictional loan application process (Dumas et al., 2018).

Case-id Activity Resource Time-stamp
... ... ... ...

3554 Check application form John 2015-10-08T09:45:37
3555 Check application form Lucy 2015-10-08T10:12:37
3554 Check credit history Harold 2015-10-08T10:14:25
3555 Check credit history Harold 2015-10-08T10:31:02
3554 Appraise property Pete 2015-10-08T10:45:22
3554 Assess loan risk Harold 2015-10-08T10:49:52
3555 Assess loan risk Harold 2015-10-08T11:01:51
3556 Check application form Lucy 2015-10-08T11:05:10
3555 Assess eligibility Harry 2015-10-08T11:06:22
3554 Assess eligibility Harry 2015-10-08T11:33:42
3554 Reject application Harry 2015-10-08T11:45:42
3557 Check application form Lucy 2015-10-08T13:48:12
3555 Prepare acceptance pack Sue 2015-10-08T14:02:22

... ... ... ...

− − a b − − c − − d e
vs1 vs2 v3 v4 ve2 vs5 v6 ve5 ve1 − −

(a) Alignment γ1
− − − a b − c d − − e
vs1 vs5 vs2 v3 v4 ve2 − v7 ve5 ve1 −

(b) Alignment γ2
− − − − a b − c d − − e
vs1 vs5 vs2 v3 − v4 ve2 − v7 ve5 ve1 −

(c) Alignment γ3

Fig. 3: Three possible ways to align σ1 = 〈a, b, c, d, e〉 to

PT1.

events to the activities in a process model. Such an

individual mapping is referred to as a move. We observe
three types of moves, i.e., synchronous moves, mapping

observed behavior onto activities described by a process

tree, model moves, referring to behavior in the process

tree that is not observed in the data, and log moves,

indicating that we are not able to map observed behavior

onto an element of the process tree.

As an example, consider Fig. 3, in which we depict

three possible alignments of the trace 〈a, b, c, d, e〉 and

the process tree depicted in Fig. 2b. The first move of

Fig. 3a, i.e., (−, vs1), refers to enabling/starting the root

vertex of the tree, i.e., vertex v1.1 Since v1 is an internal

vertex, we are not able to observe it, hence, (−, vs1)

always represents a model move. We use the − symbol

to indicate that we are not able to construct a mapping.

Similarly, the second move of the alignment, i.e., (−, vs2),

is a model move, referring to enabling/starting internal

vertex v2. The third move represents a synchronous

move on activity a, which is mapped to the execution

of vertex v3, which indeed has label a. Similarly, the

1We use vs and ve to represent the start, respectively end
of an internal vertex of a process tree.

fourth move represents a synchronous move on activity

b. After this, we observe move (−, ve2), indicating that
the execution of the subtree formed by vertex v2 has

ended. The last two moves of Fig. 3a are log moves,

i.e., we are not able to map d onto the execution of

vertex v7, because it is in a choice construct with vertex

v6 of which we chose to map observed activity c on.

Furthermore, since label e is not present in the model,

it is guaranteed to always show up as a log move.

A sequence of moves, i.e., such as presented in Fig. 3a,
is an alignment, if the “top part”, when excluding the −
symbols, equals the input trace. Secondly, the “bottom

part”, again when excluding the − symbols, needs to

correspond to a feasible execution of the process tree.

Observe that, indeed, the sequence of moves depicted

in Fig. 3a, is an alignment. Note that, for a given trace,

several different alignments exist. Consider Fig. 3b, in

which we show an alternative alignment of trace 〈a, b, c,
d, e〉 and process tree PT1. W.r.t. Fig. 3a, vertex v5 is

started prior to vertex v2. Observe that this is allowed

due to the fact that vertex v1 describes a parallel oper-

ator. Moreover, the alignment synchronises on activity

d, rather than activity c.

Observe the alignment in Fig. 3c, in which we de-

scribe a model move on vertex v3 and a log move on

activity a. Furthermore, observe that this is again a

proper alignment of trace 〈a, b, c, d, e〉 and process tree

PT1. However, this is a less desirable alignment com-

pared to the alignments presented in Fig. 3a and Fig. 3b,

i.e., since it is possible to synchronize on a. For align-

ments γ1 and γ2 it is less obvious which one is favoured

over the other one or if both alignments are equally

favourable. Thus, we need a means to grade/score align-

ments in terms of their quality. Therefore, we typically

use a cost-function, defined on top of the different types

of possible moves, which allows us to find the most desir-



Repairing Alignments of Process Models 7

able alignment (also referred to as optimal alignment).

Usually we adopt the following cost function (known as

the standard cost function):

– synchronous moves/internal model moves/invisible

leaf model moves: cost 0.2

– log moves/visible leaf model moves: cost 1.

Observe that, using the cost function as presented,

the cost of the alignments in Fig. 3a and Fig. 3b is 2 (two

log moves), whereas the cost for the alignment in Fig. 3c

is 4 (three log moves and one leaf-based model move).

The problem of computing an optimal alignment can be

translated to a shortest path problem. In (Adriansyah,

2014) a solution to this shortest path problem, for the

purpose of arbitrary Petri nets, is presented by applying

the A∗ algorithm (Hart et al., 1968), i.e., an algorithm

that exploits a heuristic distance function to find a path

with minimum cost in a weighted graph. As this solution

method trivially applies to process trees, in the context
of this paper, we assume that we are able to compute

an optimal alignment for arbitrarily given trace and

process tree.

4 Repairing Alignments

Several process discovery techniques build on top of

alignments and use process trees as a process model-

ling formalism. These techniques compute alignments

for a given (set of) process model(s) and subsequently
(re)compute alignments for very similar process models.

Moreover, the fact that these techniques use process

trees as a process model formalism, as opposed to ar-

bitrary Workflow nets, allows us to efficiently pinpoint

the similarity between two given process models. We

therefore propose a method that allows us to repair

readily available alignments of a given trace and process

model, for newly obtained, preferably similar, process

trees.

In the remainder of this section, we describe the

proposed repair algorithm. In this context, we assume

that we are given a trace σ, a process tree PT and an

alignment γ of the trace and the process tree. Moreover,

we assume that we are given an alternative process tree

PT ′ which is the result of changing a sub-tree of PT

with some alternative sub-tree. The proposed alignment

repair technique exploits the process models’ similarity

and produces an alignment γ′ for trace σ and process

tree PT ′. A global overview of the approach is presented

in Fig. 4.

The approach consists of three main stages:

2If a leaf vertex v has label τ , it is unobservable by defini-
tion, which always leads to model move (−, v).

1 Scope detection γ:
... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ...

2 Realignment

y
↓ y

↓ yrealign realign

↓ ↓

3 Reassembly γ′ :
... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ...

Fig. 4: Schematic overview of the repair approach.

∧

×

dc

→

ba

v1

v2

v3

v4

v5

v6

v7

v5 → v′5

∧

∧

dc

→

ba

v1

v2

v3

v4

v′5

v′6

v′7

Fig. 5: Modification of sub-tree PT1 into PT2 by repla-

cing v5.

1. Scope of change detection. In this step we identify

moves in the existing alignment that correspond

to behavior of the changed sub-tree. In particular,

we identify what label-based-moves, i.e., log and/or
synchronous moves, are likely to become/stay syn-

chronous moves based on the new sub-tree.

2. Realignment. In this step we compute new alignment

fragments based on the labelled moves identified in

the previous step and the new sub-tree.

3. Alignment reassembly. In this step we replace the

moves related to the changed sub-tree in the original

alignment by their corresponding new alignment

fragments obtained in the previous step to form the

new, repaired, alignment.

In the upcoming subsections we describe each step in

more detail. Prior to this, we present a running example

that we use throughout this section to clarify each step.

Running Example We use the modification of process

tree PT1 into PT2, shown in Fig. 5, as a running example.

We change vertex v5, which is a × operator, into vertex

v′5, which is a ∧ operator. The new nodes generated by

the change are v′5, v′6 and v′7. Note that vertices v′6 and

v′7 have the same label as vertices v6 and v7. The change

enforces us to always fire both branches corresponding

to leaf nodes v′6 and v′7 concurrently. Reconsider trace

σ = 〈a, b, c, d, e〉. We reuse the optimal alignment γ1 for

the sequence and process tree PT1 presented in Fig. 3a,

to compute a new alignment of 〈a, b, c, d, e〉 and PT2.



8 Sebastiaan J. van Zelst et al.

− − a b − − c − d e −
vs1 vs2 v3 v4 ve2 vs5 v6 ve5 − − ve1

Fig. 6: Identification of the moves that trivially belong

to the scope of v5.

4.1 Scope of Change Detection

The first step in reusing γ1, involves detecting what

moves in γ1 refer to the changed sub-tree, i.e., the sub-

tree defined by v5. We refer to the collection of these

moves as the scope of change of v5. We do so by collecting

all moves in the alignment that directly relate to the

changed subtree, combined with adjacent log moves. In

particular, for these adjacent log moves, only model

moves are allowed to be in-between the moves related

to the changed subtree and the log moves themselves.

Consider that a naive way to construct the scope

of change is to only include moves of the form (x, v)

within γ1 s.t. v ∈ {vs5, ve5, v6, v7}, i.e., both synchronous

and model moves, as part of the scope of change. In

Fig. 6, these type of moves are highlighted in terms of

γ1. However, if we only use such trivial moves, we obtain

sub-optimal results. The second step of the approach

concerns computing a new alignment based on the activ-

ities present in the scope of change. Since in this case the

only activity present in the scope of change is c, we com-

pute an alignment of sequence 〈c〉 and the new sub-tree

defined by v′5. Observe that such an alignment contains

a synchronous move (c, v′6) and a model move (−, v′7),

i.e., a model move on the vertex labelled with activity

d. However, in alignment γ1, the move next to (−, ve5)

is a log move on d, i.e., (d,−). If we assign the log move

to the scope as well, we end up with sequence 〈c, d〉. In

such case both vertices v′6 and v′7, after aligning 〈c, d〉
with the sub-tree defined by v′5, relate to synchronous

moves, i.e., (c, v′6) and (d, v′7). Thus, it is beneficial to

include adjacent log moves within the scope of change.

Let ms and me denote the moves related to the

unique start- and end transition of the changed sub-tree,

i.e., (−, vs5) and (−, ve5) in case of the running example.

Consider log moves in-between ms and me. We know

that within that position of the alignment, behavior

of the subtree is allowed. If we assign log moves in-

between ms and me to the scope of change and in step

2 use their labels to compute a new alignment based on

the new sub-tree, these moves either stay log moves or

become synchronous. Thus, the overall contribution of

these log moves to the alignment cost can only decrease,

which is desirable. We therefore deduce that any log

move in-between ms and me is eligible to be part of the

scope.

... − d − e ...

... t15 − ve5 − ...

Fig. 7: In any alignment, we are able to swap log and

model moves, without jeopardizing the alignment, e.g.,
swapping (−, ve5) and (d,−) in the context of Fig. 3a.

However, our previous example shows that log moves

that are not in-between ms and me are also interesting

to use within the scope, i.e., (d,−) in case of alignment

γ1. Observe that when swapping a log- and a model

move within an alignment, none of the two requirements

as presented in Section 3.2 is violated, i.e., the activity

sequence (top part) still describes the trace, and the

behavioral sequence (bottom part) is still a feasible

execution of the process tree. Hence, trivially, we deduce

that we are able to swap log-moves and model moves in

any alignment. Thus, in the context of alignment γ1, if

we swap the moves (−, ve5) and (d,−) (cf. Fig. 7), the

newly obtained sequence of moves is still an (optimal)

alignment.

By applying such a swap, move (d,−) is positioned

in-between the moves related to the unique start- and
end transition and thus eligible for inclusion in the scope.

Obviously, we are able to apply the same trick for move

(e,−). However, in general, we are not able to swap all

possible moves, i.e., we are not able to swap:

1. Log moves with log moves, as we have to respect the

order of the events in the trace.

2. Model moves with model moves, as the process model

demands a specific execution ordering.3

3. Synchronous moves with any other type of move, i.e.,

synchronous moves, log moves or model moves.

For example, we are not allowed to swap (c, v6) with (−,
ve5). Based on the previous observation, we observe that

any log move ml that occurs after move me s.t. there

are only model moves in-between me and ml can be

swapped such that it precedes me. Moreover, an other

log move m′l that occurs after ml, and, due to swapping

of ml now only has model moves in-between me and

itself can subsequently be swapped such that it precedes

me. As an example consider moves (d,−) and (e,−), i.e.,
after swapping (d,−) with (−, ve5) we are subsequently

able to swap (e,−) and (−, ve5). Symmetrically, this also

holds for moves ml that precede move ms, i.e., we are

also able to swap these move in-between ms and me.

Thus, given aforementioned move ms and corres-

ponding move me at position i, respectively j in some

3Due to parallelism, in some cases we are allowed to swap
model moves with other model moves or synchronous moves,
as the process model allows several execution orderings. This
does however not hold in the general case.



Repairing Alignments of Process Models 9

− − a b − − c − d e −
vs1 vs2 v3 v4 ve2 vs5 v6 ve5 − − ve1

Fig. 8: Final result of scope of change detection.

− c d − e
v′s5 v′6 v′7 v′e5 −

Fig. 9: Alignment of 〈c, d, e〉 on the new sub-tree formed

by v′5.

alignment γ, the following moves belong to the scope of

change:

1. Model/synchronous moves at position i′ s.t. i < i′ <

j that relate to the changed sub-tree.

2. Any log move at position i < i′ < j.

3. Any log move at position i′ < i s.t. there is no

synchronous move at position i′′ with i′ < i′′ < i.

4. Any log move at position i′ > j s.t. there is no

synchronous move at position i′′ with j < i′′ < i′.

In Fig. 8, we illustrate the final result of scope iden-

tification for γ1.

4.2 Alignment Recalculation

In this section, we describe step 2 of the approach,

i.e., alignment recalculation, which is trivial. We obtain

the log moves and the synchronous moves part of the

scope of change and we project these moves onto their

label values. Subsequently we simply compute a new

alignment for the generated subsequence of behavior. In
case of our running example, this results in the alignment
depicted in Fig. 9. Subsequently, the main challenge

concerns placing the moves of the new alignment back

into the old alignment at adequate positions.

4.3 Alignment Reassembly

In this section, we describe the final step of the approach,

in which we replace the scope of change by parts of the

newly obtained alignment. When the scope of change

is not within a parallel construct, such reassembly is

trivial, i.e., we simply paste the new fragment starting

at the same position as the scope of change. However,

in case the scope of change resides in a parallel block,

i.e., one of its ancestors in the tree is an ∧- or an ∨-

operator, it is likely that the moves of the scope of

change are interleaving with moves outside of the scope.

Hence, when replacing the scope of change with the

newly obtained alignment fragment, we need to ensure

that each move of the new alignment fragment is placed

on the right position, i.e., in order not to break the

overall alignment.

We replace the scope of change by the newly com-

puted alignment fragment, on the basis of pointers. We

store a pointer for each move m in the scope of change

that relates to an activity observed in the trace, and,

the first move in the scope of change that relates to

behavior in the subtree, e.g., vs5 in case of our running

example. We do so, as we are able to relate moves in the

newly obtained alignment fragment back to these moves

in the scope of change. For each move in the scope of

change, the pointer structure is constructed as follows:

1. If it is the first model/synchronous move related

to the changed subtree, e.g., (−, vs5) in the context

of the running example, we store a pointer to the

closest preceding move, i.e., (−, ve2) in the context of

our example.

2. If it is a log/synchronous move, e.g., (c, v6) and (d,

−) in the context of the running example, we store
a pointer to the closest preceding log/synchronous

move. For example, for (c, v6), we store a pointer to

(b, v4).

Consider the upper alignments of Fig. 10 and Fig. 11

respectively, in which we visualize the aforementioned

pointer structure in the context of the running example.

We use double-headed arrows to represent such pointers.

When replacing the scope of change by the new align-

ment fragment, we walk through the new alignment

fragment step-by-step. For each move we encounter, we

check whether there exists a pointer stored in the cor-

responding move in the scope of change. For example,

in Fig. 10, the first move of the new alignment frag-

ment is (−, v′s5 ). Clearly, this move relates to the first

model/synchronous move in the scope of change, i.e.,

(−, vs5). Based on the pointer stored for (−, vs5), i.e.,

pointing to (−, ve2), we start inserting the newly ob-

tained alignment fragment in the original alignment.

We subsequently inspect the next move in the newly

obtained alignment fragment. In case this is a model

move, it does not have a corresponding counter part in

the scope of change, and we append it to the previously

inserted move. However, if this either a synchronous or

a log move, there exits a corresponding pointer in the

scope of change. For example, in Fig. 10, the second

move in the new alignment fragment is (c, v′6), for which

its corresponding move in the scope of change has a

pointer to move (b, v4). Hence, we need to make sure

that when placing (c, v′6) into the alignment, it is the

next synchronous/log move after (b, v4). Observe that,

in Fig. 10, this is indeed the case, i.e., (c, v′6) is the first

log/synchronous move occurring after (b, v4), hence, we



10 Sebastiaan J. van Zelst et al.

− − a b − − c − d e −

vs1 vs2 v3 v4 ve2 vs5 v6 ve5 − − ve1

− − a b − − c d − e −
vs1 vs2 v3 v4 ve2 v′s5 v′6 v′7 v′e5 − ve1

Fig. 10: Repositioning of the new alignment fragment in the existing alignment, in case there is no interference

with parallel behavior. Since there is no interleaving between the scope of change and other parts of the model, we

are able insert the new alignment fragment as a consecutive block.

− − a − b c − d − e −

vs1 vs2 v3 vs5 v4 v6 ve5 − ve2 − ve1

− − a − b c d − e − −
vs1 vs2 v3 v′s5 v4 v′6 v′7 v′e5 − ve2 ve1

Fig. 11: Repositioning of the new alignment fragment in the existing alignment, in case there is interference with

parallel behavior. After pasting the first move of the new alignment fragment, we need to skip move (b, v4) and

paste (c, v′5) directly after it.

do not need to shift the insertion point and can pro-

ceed to the next move. For the next move in the newly

obtained alignment fragment, we repeat the procedure.

In Fig. 10, the scope of change is a consecutive block

of moves. As a result, we are able to insert the newly

obtained alignment fragment as a consecutive block as

well. However, as indicated, this is not always the case.

Consider Fig. 11, in which we present an alternative

alignment of trace 〈a, b, c, d, e〉 and PT1. In this case,

move (−, vs5) occurs prior to move (b, v4). Furthermore,

move (−, ve2) occurs in-between moves (d,−) and (e,−).

When inserting the new alignment fragment, we start

with its first move, i.e., (−, v′s5 ), which we, on the basis

of the stored corresponding pointer, position directly

after (a, v3). The next move in the fragment is (c, v′6). As

the corresponding move (c, v6) occurs after move (b, v4),

we start inserting from there, rather than directly after

(−, v′s5 ). All subsequent moves are in the right position

and are therefore inserted in a consecutive manner.

Note that, the procedure described, i.e., consisting

of scope detection, realignment and reassembly, works

for every described execution of the changed subtree. In

case the changed subtree is in a loop structure, i.e., on

the path from the root of the process tree to the root

of the changed subtree there occurs an 	 operator, it

is potentially executed multiple times. Hence, we ex-

ecuted the aforementioned procedure for each individual

execution of the subtree.

5 Correctness and Optimality

In the examples used in Section 4, the repaired align-
ments are in fact alignments, i.e., they respect the

requirements laid out for alignments in Section 3.2.

Moreover, they are optimal. In this section we show

the correctness of the general approach, i.e., that a re-

paired alignment is always an alignment. Moreover we

show, by means of a counter example, that we are not

able to guarantee optimality.

5.1 Correctness

The basic correctness requirement of the presented ap-

proach is that, after reusing an existing (optimal) align-

ment, the repaired alignment itself is an alignment. To

prove that a repaired sequence of moves γ′ is an align-

ment, we need to prove that the two basic requirements

presented in Section 3.2 hold for γ′. In this section, we

show that his indeed holds.

Consider the first requirement, i.e., projection of the

moves onto activities yields the trace. Observe that the



Repairing Alignments of Process Models 11

repair method inserts alignment fragments back into

the original alignment based on pointers. Observe that,

due to the use of the pointers, a move is never placed at

a relative earlier position, i.e., if the insertion index is

too small, we use the pointers to shift it to the correct

position, e.g., as exemplified in Fig. 11. Thus, the only

problem that potentially jeopardizes the property, is a

label-based move ml that is placed relatively too far back,

i.e., there appears (at least) one label-based move m′l in-

between ml and ml’s actual preceding event in the trace.

However, this only happens if we shift the pointer too far,
which in turn only happens if two label-based moves are

swapped by the underlying alignment algorithm. This

contradicts that the underlying alignment algorithm

guarantees to return alignments. Thus, the moves are

always placed back in correct order.

For the second requirement, we need to show that

projection on the model-part of the alignment is in the

newly created process tree’s language. Let ms denote the

first move of the scope of change, that relates to starting

behavior of the changed subtree, e.g., (−, vs5) in Fig. 10

and Fig. 11, i.e., the first non-log move of the scope of

change. Furthermore, let m′ be the closest non-log move

preceding ms, i.e., relating to execution of some other

behavior in the tree, e.g., (−, ve2) in Fig. 10 and (a, v3)

in Fig. 11 respectively. Symmetrically we define me as

the final move of the scope of change relating to the

behavior in the changed subtree, and we let m′′ denote

the first non-log move succeeding me, e.g., (−, ve5) and

(−, ve1) in Fig. 10.

Since move m′ and m′′ do not relate to the scope of

change, they remain present in the resulting alignment.

Furthermore, all the moves within the scope of change

that relate to behavior in the changed subtree, occur

in-between moves m′ and m′′. Due to using the explicit

pointer related to the start of the changed subtree, the

first move in the new alignment related to behavior

of the newly inserted subtree, occurs directly after m′.

Furthermore, it is impossible to insert some moves of the

new alignment, related to behavior of the new subtree,

after m′′. Observe that this is the case, because we only

shift the insertion of the alignment fragment due to the

existence of a pointer on the basis of a log/synchronous

move. Assume that such a pointer exists to a move

mp that occurs after m′′. Move mp can only be a log

move, if there is no synchronous move in-between m′′

and mp. However, in that case, mp itself is part of the

scope of change, which contradicts the possibility of the

existence of a pointer to mp. If mp is a synchronous

move, we have assigned log moves occurring after the

synchronous move to the scope of change, which is not

allowed, i.e., the scope of change stops when we observe

the first synchronous move occurring after me. Hence,

∧

d∧

ba

∧

d	

τba

Fig. 12: Example change of a process tree from a con-

current operator to a loop operator.

we are guaranteed that the newly generated alignment

fragment is reinserted in-between m′ and m′′.

Since the original alignment is a proper alignment,
we know that the behavior of the changed subtree is al-

lowed to occur in-between the moves m′ and m′′. Hence,

by construction of process trees, the behavior of the

newly generated subtree is also allowed to occur at

that position. In case there exists, due to parallelism,

interleaving of moves outside of the changed subtree in-

between m′ and m′′, we are allowed to arbitrary shuffle

that interleaving behavior (subject to not shuffling label-

based moves). Hence, any interleaving occurring after

inserting the newly generate alignment fragment relates

to the existence of parallelism and is allowed as well.

5.2 Optimality

In this section, we show that we are not able to guarantee

optimality of the proposed approach. We show this by

means of a simple counter example, which also shows

that optimality is partially depending on the form of

the original alignment.

Consider the simple process tree in Fig. 12. Assume

we align the trace 〈a, b, a, d, b, a, b〉 on the left process

tree in Fig. 12. Observe that a possible optimal align-

ment of 〈a, b, a, d, b, a, b〉 and the left process tree of

Fig. 12, is constructed by making the first three events

log moves, making the d event the first synchronous

move, the subsequent b event a log move again, and the

final two events, i.e., 〈a, b〉 synchronous. Additionally

we require that, in the underlying alignment, the start

of sub-tree ∧(a, b) occurs after the synchronous move

on the d event.

We now change the process tree and obtain the

process tree depicted in the right-hand side of Fig. 12.

When we apply the proposed repair algorithm, the log

moves prior to the d-event, i.e., the first three events 〈a,
b, a〉 are not incorporated in the scope of change. These

moves therefore stay log moves. However, the given

trace perfectly fits the new process model in Fig. 12.

This shows that the proposed technique is not able to

guarantee optimality of the resulting alignments.



12 Sebastiaan J. van Zelst et al.

Simulated LogRandom Tree

Mutated Tree

(Base) Optimal Alignments

(Mutated) Optimal Alignments

(b)

Repaired Alignments

(a) (c)

(d)

Fig. 13: Process followed during the experimentation.

6 Evaluation

To evaluate the proposed technique, we answer two main

questions: (1) What is the time needed to align a model

and a log with the presented technique? and (2) How

close/far is the repaired alignment from the optimal

alignment? In this section we answer these questions by

comparing the time needed for alignment repair with the

time expended to compute a new, optimal alignment and
by measuring the quality of the repaired alignments w.r.t.

the new, optimal alignment. Finally, we investigate the

actual impact of the proposed approach on evolutionary
process discovery using a real event log.

Implementation Part of the experimental results shown

in this section are based on experiments performed

for (Vázquez-Barreiros et al., 2016b). Moreover, the

newly added experiments for the purpose of this paper

are based on the code-base of (Vázquez-Barreiros et al.,

2016b)4. In the code-base, the number of log moves

that are adopted in the scope are only those log moves

that directly border a synchronous/model move that

belongs to the changed sub-tree. Moreover, also pointers

are stored if there are model moves in-between two

scope moves. Thus, as opposed to the more generic

approach presented in this paper, within the code some

log moves may be left out of the scope. This has an

expected negative impact on the alignment optimality

of the implementation, i.e., we expect it to be equal or

slightly worse w.r.t. the general approach.

6.1 Experimental Set-Up

In Fig. 13 we depict a schematic overview of the exper-

imental setup. We generate an initial random process

tree of random size. Based on this model, we simulate a

non-fitting event log, i.e., the event log contains noise,

consisting of 2000 traces. We then calculate the optimal

alignments of all traces in the event log w.r.t. the initial

model. As a second step, we perform a set of random

4https://svn.win.tue.nl/repos/prom/Packages/

EvolutionaryTreeMiner/Branches/BorjaImp/experiments/

changes on the base model (step a in Fig. 13), generat-

ing a total of 150 different mutated process trees. We

enforce that every mutated model is unique. The pos-

sible changes applied over the base model are: randomly

adding a new node, randomly removing a node and

randomly changing a node of the tree. Then, we calcu-

late two different types of alignments for each mutated

tree: optimal alignments based on the simulated log

(step b in Fig. 13) and repaired alignments reusing the

optimal alignments previously calculated on the base

model (step c in Fig. 13). Finally, we compare both

outputs (step d in Fig. 13).

Following this process, we created a set of 50 initial

random trees with arbitrary sizes between 21 and 47

vertices. Thus, we applied the presented technique over

50× 150× 2000 ≈ 1.5 · 106 alignments5.

6.2 Running Time

As the time needed to compute alignments varies sig-

nificantly between runs, we grouped the results of the
experiments based on the size of the initial random pro-

cess trees. We created a bucket with initial trees of sizes

between 21 and 28 vertices (12 trees in total), a bucket

with sizes between 29 and 31 vertices (12 trees in total),

a bucket with sizes between 32 and 34 vertices (13 trees

in total) and a bucket with sizes greater than 35 vertices

(13 trees in total).

Fig. 14 shows the time comparison, using box plots,

for each bucket of experiments. Due to the high disper-

sion of the data, on the right-hand side of Fig. 14 we

also show the box plots zoomed into the domain 0-100

seconds.

Consider results shown in Fig. 14a. When inspecting

the time needed for computing optimal alignments, i.e.,

Time Optimal, we observe that in the middle 50% of

the runs (Q2,Q3) it roughly took between 25 and 145

seconds to align an event log and a model. The fastest

25% of the experiments (Q1, left whisker) took less than

30 seconds, whereas the slowest 25% of the experiments

5All results can be found at https://svn.win.tue.nl/

repos/prom/Packages/EvolutionaryTreeMiner/Branches/

BorjaImp/experiments/bpmds2016/.

https://svn.win.tue.nl/repos/prom/Packages/EvolutionaryTreeMiner/Branches/BorjaImp/experiments/
https://svn.win.tue.nl/repos/prom/Packages/EvolutionaryTreeMiner/Branches/BorjaImp/experiments/
https://svn.win.tue.nl/repos/prom/Packages/EvolutionaryTreeMiner/Branches/BorjaImp/experiments/bpmds2016/
https://svn.win.tue.nl/repos/prom/Packages/EvolutionaryTreeMiner/Branches/BorjaImp/experiments/bpmds2016/
https://svn.win.tue.nl/repos/prom/Packages/EvolutionaryTreeMiner/Branches/BorjaImp/experiments/bpmds2016/


Repairing Alignments of Process Models 13

0 1000 2000 3000 4000 5000 6000 7000 8000

Time Repair

Time Optimal

Seconds
0 10 20 30 40 50 60 70 80 90 100

Time Repair

Time Optimal

Seconds

(a) Trees of size with less than 28 vertices.

0 1000 2000 3000 4000 5000 6000 7000 8000

Time Repair

Time Optimal

Seconds
0 10 20 30 40 50 60 70 80 90 100

Time Repair

Time Optimal

Seconds

(b) Trees of size between 29 and 31.

0 1000 2000 3000 4000 5000 6000 7000 8000

Time Repair

Time Optimal

Seconds
0 10 20 30 40 50 60 70 80 90 100

Time Repair

Time Optimal

Seconds

(c) Trees of size between 32 and 34.

0 1000 2000 3000 4000 5000 6000 7000 8000

Time Repair

Time Optimal

Seconds
0 10 20 30 40 50 60 70 80 90 100

Time Repair

Time Optimal

Seconds

(d) Trees with more than 35 vertices.

Fig. 14: Box plots showing the time needed to repair an alignment versus computing the optimal alignments for

each bucket of experiments. The right-hand side shows the results zoomed into the domain 0-100 seconds.

(Q4, right whisker) took more than 150 seconds. Thus,

in the 75% of the experiments it took more than 30

seconds to align a log and a model and only in the

remaining 25% less than 30 seconds. On the other hand,

for alignment repair, i.e., Time Repair, the middle 50% of

the experiments (Q2, Q3) roughly took between one and

seven seconds to align an event log and a model. In the

fastest 25% of the experiments it took less than a second

whereas in then the slowest 25% of the experiments

computation time took more than seven seconds. If we

compare both techniques, aligning a log and a tree with

the presented technique took less than seven seconds in

the 75% of the cases, whereas for computing the optimal

alignments, only in the 25% of the experiments this took
less than 30 seconds. The same pattern is visible in the

other results presented in Fig. 14.

In general we observe that there is no overlap in

the second and third quartiles of computing alignments

based on the repair method versus computing an optimal

alignment from scratch. This implies that in nearly all

cases, the time needed to align a model and an event log

by applying alignment repair outperforms computing a

new optimal alignment.

The time needed for alignment repair seems directly

related to the size of the changed sub-tree, which ex-

plains the rather high range of the right whiskers in the

box plots for alignment repair. Clearly, if the change is

performed in the root node of a process tree, the time

needed to apply the presented approach will be roughly

equal to the time needed to compute the optimal align-

ment as there is no room to repair the old alignment.

Thus, we conclude that using the presented technique,

guarantees a lower, or, in worst case equal, running

time compared with computing the optimal alignments

between an event log and a process tree from scratch.

6.3 Alignment Quality

As explained in Section 5.2, alignment repair does not

guarantee optimality. It is not straightforward to assess

how well the repaired alignment scores in terms of op-

timality. To judge the rank of the repaired alignment,

i.e., how many other alignments are closer to the optimal

alignment, we need to traverse all possible alignments

of a trace and a process tree. This is rather involved

from a run-time complexity point and hence hard to

incorporate within the experiments.

We propose a grade measure, that grades the re-

paired alignment, based on the relative distance of the

alignment w.r.t. the optimal alignment. To compute

the distance, we first compute the cost of the optimal

alignment γ∗. Additionally, we create an alignment γw,

consisting of only (a,−)-moves and (−, v)-moves, such

that the log moves form the trace and the model moves



14 Sebastiaan J. van Zelst et al.

Fig. 15: Conceptual example of alignment grading.

form a shortest possible firing sequence of the process

tree. Alignment γw represents the best of the worst align-

ments, i.e., a longer firing sequence is potentially possible

though yields a worse alignment score. Finally, we calcu-

late the cost of the repaired alignment γr. Based on the

difference between the cost of γ∗ and γw we compute
the relative cost of γr. Let c∗, cw and cr denote the costs

for γ∗, γw and γr. We grade the cost of γr as follows:

grade(γr) = 1− cr−c∗
cw−c∗ . Clearly, 0 ≤ grade(γr) ≤ 1. We

used the following cost for move m: z(m) = 5 if m is a

log move, z(m) = 2 if m is a model move and z(m) = 0

if m is synchronous. With these costs the movements

in the model are more probable than the movements in

the log, which is a reasonable assumption for alignments

computation for models generated by process discov-

ery algorithms. Consider Fig. 15 which schematically

depicts the concept of alignment grading.

Fig. 16 shows box plots for the computed average

grades of the repaired alignments. As the figure shows,

we always have a grade above 0.84, and in the top

75% of all experiments is above 0.98. Thus, when the

repaired alignments are not optimal, the difference with

the optimal alignments is minimal. Hence, the loss of

optimality is limited and stays within acceptable bounds.

Again, there is a close relation between the size the

changed sub-tree and the potential loss of optimality. If

the change is performed close to the root node, more log

moves will belong to the scope of change. Consequently,

the probability of retrieving an optimal alignment is

higher. If the root of the point of change is the root

node, we obviously do guarantee optimality.

6.4 Incorporation in the Evolutionary Tree Miner

In the previous sections we evaluated both runtime and

the alignment quality. In this section the practical effects

of the application of alignment repair are evaluated by

running the Evolutionary Tree Miner (ETM) process

discovery algorithm (Buijs, 2014). The ETM is applied

on the real-life 2015 BPI Challenge (van Dongen, 2015)

event log, which is filtered to contain those 30 activities

that cover 50% of all events. This results in an event

log with 1, 199 cases and 26, 208 events, implying that

a trace contains 22 events on average.

Since the ETM can produce variable results, e.g. when

it starts off with a particularly good or bad set of pro-

cess trees, we ran the ETM 30 times. During each run

the ETM created 200 generations of 20 process trees, of

which 2 where kept in the elite, i.e. transferred between

generations. This means that in each run of the ETM

3, 602 process trees were generated and evaluated.

Analyzing the results show that the repaired align-

ment was calculated for 16.45%(±2.16%) of the process

trees, i.e. one out of six process trees is repaired. Fur-

ther analysis into the fraction of process trees repaired

over the generations results in the graph of Fig. 17. The

graph shows that the fraction of repaired trees per gener-

ation fluctuates (even after averaging over the 30 runs).

The fluctuation is also partly caused by the population

size of 20 trees per generation. The graph also clearly

shows that in the first generations few trees are repaired.

Overall there seems to be a slight trend towards a higher

fraction of trees being repaired in later generations.

For the process trees where a repaired alignment

was calculated, also a new optimal alignment was calcu-

lated for comparison. The results are shown in Table 2

where the average values of each run are averaged again.

The results show that both the calculated cost and the

resulting replay-fitness are not significantly different

between the repaired and full alignment variants. The

repaired alignments on average reports only a slightly

worse replay-fitness compared to the a new optimal cal-

culation. The average replay-fitness values are rather

low, but this is typical for the behavior of the ETM in

early runs. The complexity of alignment computation is

measurable in the number of states, i.e., vertices in the

marking-based reachability graph, it visits. When we

consider the number of states visited by the alignment

algorithm however, we see that the repaired version re-

quires significantly less states (roughly a factor 2,000)

to compute the final result.

These results confirm that the performance gains,

as demonstrated by the significant drop in number of

states required by the alignment algorithm, outweigh

the decrease in accuracy, which is insignificant.



Repairing Alignments of Process Models 15

0

0,2

0,4

0,6

0,8

1

nodes < 28 29 < nodes < 31 32 < nodes < 34 35 < nodes

0,8
0,82
0,84
0,86
0,88

0,9
0,92
0,94
0,96
0,98

1

nodes < 28 29 < nodes < 31 32 < nodes < 34 35 < nodes

Fig. 16: Normalized grade of the repaired alignments.

0 20 40 60 80 100 120 140 160 180 200
0.000

0.050

0.100

0.150

0.200

0.250

Generation

F
ra

ct
io

n
o
f

tr
ee

s
re

p
a
ir

ed

Fig. 17: Fraction of repaired trees per generation (averaged over 30 runs).

Table 2: Experimental results of ETM.

Cost Replay-Fitness States
Repair Optimal Repair Optimal Repair Optimal

Average 121, 578.060 120, 993.249 0.11938 0.12359 5.760 10, 846.832
Std. Dev. 1, 913.806 1, 909.323 0.02084 0.02121 1.243 1, 880.271

7 Conclusion

We presented a novel approach to compute alignments

based on an existing alignment, instead of (re)computing

the alignment from scratch. The approach needs a pro-

cess model and an existing alignment in order to com-

pute a new alignment for a similar process model. The

technique extends and generalizes the technique presen-

ted in earlier work (Vázquez-Barreiros et al., 2016b).

We have shown that the technique guarantees to

return sequences of moves which are in fact proper

alignments. The evaluation shows that our approach

always retrieves an alignment in a significantly lower,

or worst-case equal, time than computing optimal align-
ments. Furthermore, we show that the potential loss

of optimality is limited and stays within acceptable

bounds. The approach has been validated with a set

of random trees and event logs, resulting in more than

106 alignments. Furthermore, we show that the poten-

tial loss of optimality is limited and stays within ac-

ceptable bounds. Additionally we have integrated the

approach within the Evolutionary Tree Miner (Buijs,

2014). Using the integration together with a real event

log, we have shown the applicability of the approach in

practice. Moreover the ETM-based experiments confirm



16 Sebastiaan J. van Zelst et al.

that applying alignment repair reduces the complexity

of computing alignments significantly.

Future Work The current approach only focuses on the

changed sub-tree and not on its surroundings and/or the

nature of the root of the changed sub-tree. Depending on

the type of operators in the tree, it might be possible to

extend or shrink the scope of change, allowing to reduce

the loss of optimality. Hence, we plan to more explicitly

the process model into account when computing the

scope. Moreover, we plan to develop means to predict

optimality, allowing us to decide at which point it is

necessary to compute an optimal alignment instead of

reusing an existing one.

The speedup obtained by using alignment repair is

crucial for certain areas, e.g., stream-based process min-

ing (Burattin et al., 2014, 2015; Hassani et al., 2015;

van Zelst et al., 2018b, 2017), where it is necessary to

keep the model up to date based on a real-time stream

of events. New streams might lead to modifications of

the discovered process model (concept drift (Ostovar

et al., 2016)), resulting in new process models which are

not so different from the previous model. This typically
happens for gradual and incremental concept drifts that

are related to changes in the structure of the process

model. Reusing the previous alignments potentially al-

lows us to update conformance checking statistics in

significantly less time compared to recomputing all the

optimal alignments. Therefore, we plan to assess chal-

lenges and the effectiveness of the presented technique

in stream-based process mining.

Acknowledgements This research was supported by the
Spanish Ministry of Economy and Competitiveness (grant
TIN2014-56633-C3-1-R, co-funded by the European Regional
Development Fund - FEDER program), the Galician Ministry
of Education under the projects EM2014/012, CN2012/151,
GRC2014/030, and the DELIBIDA research program suppor-
ted by NWO.

The authors would like to thank Wil M.P. van der Aalst,
Boudewijn F. van Dongen and XiXi Lu for their valuable
feedback and suggestions.

References

van der Aalst, Wil M. P. 1998. The Application of Petri

Nets to Workflow Management. Journal of Circuits,

Systems, and Computers, 8(1):21–66.

van der Aalst, Wil M. P. 2012. Decomposing Process

Mining Problems Using Passages. In Application and

Theory of Petri Nets - 33rd International Conference,

PETRI NETS 2012, Hamburg, Germany, June 25-29,

2012. Proceedings, pages 72–91.

van der Aalst, Wil M. P. 2013. Decomposing Petri Nets

for Process Mining: A Generic Approach. Distributed

and Parallel Databases, 31(4):471–507.

van der Aalst, Wil M. P. 2016. Process Mining - Data

Science in Action, Second Edition. Springer.

van der Aalst, Wil M. P., Arya Adriansyah, &

Boudewijn F. van Dongen 2012. Replaying History

on Process Models for Conformance Checking and

Performance Analysis. Wiley Interdisc. Rew.: Data

Mining and Knowledge Discovery, 2(2):182–192.

Adriansyah, Arya 2014. Aligning Observed and Modeled
Behavior. PhD thesis, Eindhoven University of Tech-

nology, Department of Mathematics and Computer

Science.

Adriansyah, Arya, Boudewijn F. van Dongen, & Wil

M. P. van der Aalst 2011. Conformance Checking

Using Cost-Based Fitness Analysis. In Proceedings

of the 2011 IEEE 15th International Enterprise Dis-

tributed Object Computing Conference, EDOC ’11,

pages 55–64, Washington, DC, USA. IEEE Computer

Society.

Adriansyah, Arya, Boudewijn F. van Dongen, & Wil

M. P. van der Aalst 2013. Memory-Efficient Alignment

of Observed and Modeled Behavior. Technical report,

BPM Center Report.

Adriansyah, Arya, Jorge Munoz-Gama, Josep Carmona,

Boudewijn F. van Dongen, & Wil M. P. van der Aalst

2015. Measuring Precision of Modeled Behavior. Inf.

Syst. E-Business Management, 13(1):37–67.

Alizadeh, Mahdi, Massimiliano de Leoni, & Nicola Zan-

none 2014. History-based Construction of Log-Process

Alignments for Conformance Checking: Discovering

What Really Went Wrong. In Accorsi, Rafael, Paolo
Ceravolo, & Barbara Russo (eds), Proceedings of the

4th International Symposium on Data-driven Pro-

cess Discovery and Analysis (SIMPDA 2014), Milan,

Italy, November 19-21, 2014, volume 1293 of CEUR

Workshop Proceedings, pages 1–15. CEUR-WS.org.
Buijs, Joos C. A. M. 2014. Flexible Evolutionary Al-

gorithms for Mining Structured Process Models. PhD

thesis, Eindhoven University of Technology.

Burattin, Andrea, Marta Cimitile, Fabrizio M. Maggi,

& Alessandro Sperduti 2015. Online Discovery of De-

clarative Process Models from Event Streams. IEEE

Trans. Services Computing, 8(6):833–846.

Burattin, Andrea, Alessandro Sperduti, & Wil M. P.

van der Aalst 2014. Control-flow Discovery from

Event Streams. In Proceedings of the IEEE Congress

on Evolutionary Computation, CEC 2014, Beijing,

China, July 6-11, 2014, pages 2420–2427. IEEE.

Carmona, Josep, Boudewijn F. van Dongen, Andreas

Solti, & Matthias Weidlich 2018. Conformance Check-

ing - Relating Processes and Models. Springer.



Repairing Alignments of Process Models 17

van Dongen, Boudewijn F. 2015. BPI Challenge 2015.

4TU.Centre for Research Data. Dataset.

van Dongen, Boudewijn F. 2018. Efficiently Comput-

ing Alignments - Using the Extended Marking Equa-

tion. In Business Process Management - 16th In-

ternational Conference, BPM 2018, Sydney, NSW,

Australia, September 9-14, 2018, Proceedings, pages

197–214.

Dumas, Marlon, Marcello La Rosa, Jan Mendling, &

Hajo A. Reijers 2018. Fundamentals of Business Pro-

cess Management, Second Edition. Springer.
van Eck, Maikel L., Joos C. A. M. Buijs, & Boudewijn F.

van Dongen 2014. Genetic Process Mining: Alignment-

Based Process Model Mutation. In Business Process

Management Workshops - BPM 2014 International

Workshops, Eindhoven, The Netherlands, September

7-8, 2014, Revised Papers, pages 291–303.

Fahland, Dirk, & Wil M. P. van der Aalst 2012. Repair-

ing Process Models to Reflect Reality. In Business

Process Management - 10th International Conference,

BPM 2012, Tallinn, Estonia, September 3-6, 2012.

Proceedings, pages 229–245.

Fahland, Dirk, & Wil M. P. van der Aalst 2015. Model

Repair - Aligning Process Models to Reality. Inf.

Syst., 47:220–243.

Hart, Peter E., Nils J. Nilsson, & Bertram Raphael 1968.

A Formal Basis for the Heuristic Determination of

Minimum Cost Paths. IEEE Trans. Systems Science

and Cybernetics, 4(2):100–107.

Hassani, Marwan, Sergio Siccha, Florian Richter, &

Thomas Seidl 2015. Efficient Process Discovery From

Event Streams Using Sequential Pattern Mining. In

IEEE Symposium Series on Computational Intelli-
gence, SSCI 2015, Cape Town, South Africa, Decem-

ber 7-10, 2015, pages 1366–1373. IEEE.

Leemans, Sander J. J., Dirk Fahland, & Wil M. P.

van der Aalst 2013. Discovering Block-Structured

Process Models from Event Logs - A Constructive
Approach. In Colom, J. M., & J. Desel (eds), Applica-

tion and Theory of Petri Nets and Concurrency - 34th

International Conference, PETRI NETS 2013, Milan,

Italy, June 24-28, 2013. Proceedings, volume 7927 of

Lecture Notes in Computer Science, pages 311–329.

Springer.

Leemans, Sander J. J., Dirk Fahland, & Wil M. P.

van der Aalst 2014a. Exploring Processes and Devi-

ations. In Business Process Management Workshops -

BPM 2014 International Workshops, Eindhoven, The

Netherlands, September 7-8, 2014, Revised Papers,

pages 304–316.

Leemans, Sander J. J., Dirk Fahland, & Wil M. P.

van der Aalst 2014b. Process and Deviation Explor-

ation with Inductive Visual Miner. In Proceedings

of the BPM Demo Sessions 2014 Co-located with the

12th International Conference on Business Process

Management (BPM 2014), Eindhoven, The Nether-

lands, September 10, 2014., page 46.

de Leoni, Massimiliano, & Wil M. P. van der Aalst

2013. Aligning Event Logs and Process Models for

Multi-perspective Conformance Checking: An Ap-

proach Based on Integer Linear Programming. In

Business Process Management - 11th International

Conference, BPM 2013, Beijing, China, August 26-30,

2013. Proceedings, pages 113–129.
de Leoni, Massimiliano, Fabrizio Maria Maggi, & Wil

M. P. van der Aalst 2012. Aligning Event Logs and De-

clarative Process Models for Conformance Checking.

In Business Process Management - 10th International

Conference, BPM 2012, Tallinn, Estonia, September

3-6, 2012. Proceedings, pages 82–97.

de Leoni, Massimiliano, & Andrea Marrella 2017. Align-

ing Real Process Executions and Prescriptive Process

Models through Automated Planning. Expert Syst.

Appl., 82:162–183.

de Leoni, Massimiliano, Jorge Munoz-Gama, Josep Car-

mona, & Wil M. P. van der Aalst 2014. Decom-

posing Alignment-Based Conformance Checking of

Data-Aware Process Models. In On the Move to

Meaningful Internet Systems: OTM 2014 Conferences

- Confederated International Conferences: CoopIS,

and ODBASE 2014, Amantea, Italy, October 27-31,

2014, Proceedings, pages 3–20.

Munoz-Gama, Jorge, Josep Carmona, & Wil M. P.

van der Aalst 2014. Single-Entry Single-Exit Decom-

posed Conformance Checking. Inf. Syst., 46:102–122.

Murata, Tadao 1989. Petri nets: Properties, Analysis
and Applications. Proceedings of the IEEE, 77(4):541–

580.

Ostovar, Alireza, Abderrahmane Maaradji, Marcello

La Rosa, Arthur H. M. ter Hofstede, & Boudewijn F.

van Dongen 2016. Detecting Drift from Event Streams
of Unpredictable Business Processes. In Proceedings

of the 35th International Conference on Conceptual

Modeling ER’16, volume 9974 of Lecture Notes in

Computer Science, pages 330–346. Springer.

Polyvyanyy, Artem, Wil M. P. van der Aalst, Arthur

H. M. ter Hofstede, & Moe Thandar Wynn 2017.

Impact-Driven Process Model Repair. ACM Trans.

Softw. Eng. Methodol., 25(4):28:1–28:60.

Rozinat, Anne, & Wil M. P. van der Aalst 2008. Con-

formance Checking of Processes Based on Monitoring

Real Behavior. Inf. Syst., 33(1):64–95.

Song, Wei, Xiaoxu Xia, Hans-Arno Jacobsen, Pengcheng

Zhang, & Hao Hu 2017. Efficient Alignment Between

Event Logs and Process Models. IEEE Trans. Services

Computing, 10(1):136–149.



18 Sebastiaan J. van Zelst et al.

Vanhatalo, Jussi, Hagen Völzer, & Jana Koehler 2009.

The Refined Process Structure Tree. Data Knowl.

Eng., 68(9):793–818.

Vázquez-Barreiros, Borja, Manuel Mucientes, & Manuel

Lama 2016a. Enhancing discovered processes with

duplicate tasks. Inf. Sci., 373:369–387.

Vázquez-Barreiros, Borja, Sebastiaan J. van Zelst, Joos

C. A. M. Buijs, Manuel Lama, & Manuel Mucientes

2016b. Repairing Alignments: Striking the Right

Nerve. In Enterprise, Business-Process and Informa-

tion Systems Modeling - 17th International Confer-
ence, BPMDS 2016, 21st International Conference,

EMMSAD 2016, Held at CAiSE 2016, Ljubljana, Slov-

enia, June 13-14, 2016, Proceedings, pages 266–281.

van Zelst, Sebastiaan J., Alfredo Bolt, & Boudewijn F.

van Dongen 2018a. Computing Alignments of Event

Data and Process Models. T. Petri Nets and Other

Models of Concurrency, 13:1–26.

van Zelst, Sebastiaan J., Alfredo Bolt, Marwan Hassani,

Boudewijn F. van Dongen, & Wil M. P. van der Aalst

2017. Online Conformance Checking: Relating Event

Streams to Process Models using Prefix-Alignments.

International Journal of Data Science and Analytics.

van Zelst, Sebastiaan J., Boudewijn F. van Dongen, &

Wil M. P. van der Aalst 2018b. Event Stream-Based

Process Discovery Using Abstract Representations.

Knowl. Inf. Syst., 54(2):407–435.


	Introduction
	Related Work
	Background
	Repairing Alignments
	Correctness and Optimality
	Evaluation
	Conclusion

