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Abstract

In this paper a novel approach to reuse units of learning (UoLs) —such as courses, seminars, workshops, and so on—

is presented. Virtual learning environments (VLEs) do not usually provide the tools to export in a standardized format

the designed UoLs, making thus more challenging their reuse in a different platform. Taking into account that many

of these VLEs are legacy or proprietary systems, the implementation of a specific software is usually out of place.

However, these systems have in common that they record the events of students and teachers during the learning

process. The approach presented in this paper makes use of these logs (i) to extract the learning flow structure using

process mining, and (ii) to obtain the underlying rules that control the adaptive learning of students by means of

decision tree learning. Finally, (iii) the process structure and the adaptive rules are recompiled in IMS Learning

Design (IMS LD) —the de facto educational modelling language standard. The three steps of our approach have been

validated with UoLs from different domains.

Keywords: Learning flows discovery, process mining, adaptive rules mining, IMS Learning Design.

1. Introduction

While designing a course, there are two main concerns that worsen the realization of an educational scenario: (i)

how to model a practical pedagogical scenario to achieve the educational objectives, and (ii) how to reuse this scenario

in another context than the original. Teachers do not only define the learning content to be consumed by the learners,

but they also include the different educational objectives, the order in which the learning activities must be undertaken

to achieve these objectives, the evaluation methods, etc. Hence, to reuse and better validate an educational scenario,

it should be explicitly written. Although these learning designs, i.e., the descriptions of the educational process,

are usually portrayed with documents that use natural language, they can be formally described through Educational

Modelling Languages (EMLs). Moreover, when interacting with a virtual learning environment (VLE), learners also

perform additional activities than the specifically defined by the teachers, such as interacting in the forum, checking

the bibliography, etc. This information should be also highlighted to enable teachers to improve the learning flow,
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i.e., the real workflow of learning activities, as well as the evaluation process [33]. Therefore, the defined educational

scenario is more complex than the learning design explicitly documented by teachers.

In the last decade a great effort has been made for developing EMLs. The main idea underlying these languages is

to describe, from a pedagogical point of view, the learning process of the course, i.e, the sequence of steps the learners

should undertake to achieve the educational objectives of the course, by using the available educational resources

and services. Regarding the wide variety of specifications for representing learning designs, one standard de facto

has jumped into e-learning panorama: the IMS Learning Design (IMS LD) specification [8]. IMS LD enables the

formal description of learning processes for a wide range of pedagogical contexts in a VLE. Although there is some

controversy about whether IMS LD is too complex to be understood by teachers from a practical point of view [11] —

especially with the levels B and C—, most of authors highlight this complexity as a barrier for adopting IMS LD [25].

To deal with this issue, a number of user-friendly authoring tools have appeared [19, 14, 16, 9, 24, 5], but even

with these tools, authoring process of IMS LD units of learning1 (UoLs) is not easy for teachers when these UoLs

are complex or require to use advanced features of this standard. The automatic reconstruction of UoLs could relieve

this issue [25], promoting the use of IMS LD by teachers and instructors. Taking as starting point the event log

files, which stores all the events generated by the learners, it is possible to mine the real behavior undertaken by the

students during the UoL, i.e, what the learners really did, and the rules that constraint the behavior of the model.

Then, by combining these two models, it is possible to reconstruct the UoL to a specific target language. Therefore,

this process facilitates the reuse of defined UoLs no matter the VLE that has been used, as the techniques used for

both mining the variable values and the formal model are totally independent of the domain. Therefore, teachers can

design their courses within their VLE, avoiding the need to use an authoring tool with a specific EML notation, and

still be possible to reconstruct the UoLs from the scratch to a target language — such as IMS LD.

In this paper, we present an approach to automatically reconstruct the IMS LD representation of an UoL from the

events generated by the learners in the VLE. This objective is achieved in three different steps. Firstly, the learning

flow of the UoL is automatically extracted from the logged sequences through a process discovery algorithm. Then

an algorithm based on the knowledge about the IMS LD control structure is applied to determine which IMS LD

components should be created. Finally the adaptive rules of the UoL are automatically extracted form the event logs

—more specifically, from the variable values of the logs— by a decision tree learning algorithm, and integrated into

the IMS LD structure. The contributions of this proposal are: (i) a new framework to facilitate the reuse of UoLs

between different VLEs; (ii) the automatic discovery of learning processes from event logs and its recompilation to

IMS LD; and (iii) the automatic identification of the adaptive rules from event logs.

Notice that IMS LD has a high expressiveness to allow the definition and orchestration of complex activity flows

in a multi-role setting, but at the expense of complexity. In fact, current IMS LD research seems to accept the

1An UoL represents a variety of prescribed activities, assessments and services provided by teachers, in a course or lesson, which is the result

of the learning design.
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assumption that specification’s conceptual complexity difficult the authoring process [11]. Taking this into account,

another objective of this paper is to reduce this barrier and facilitate the adoption of UoLs specified in IMS LD

by instructors. Specifically, the proposed semi-automatic approach hides the complexity of the EML language, so

instructors only have to decide which one of the recompiled processes fits better with the learning objectives of the

UoL, in terms of structure and adaptive criteria. Henceforth, the main research question addressed in this paper is the

automatic reconstruction of UoLs from scratch, as the state of the art heavily relies in the participation and feedback

from all appropriate personnel and users during the whole process, hindering the reuse of UoLs in different platforms.

The remainder of this paper is structured as follows. Section 2 briefly introduces the main features of the IMS LD

specification. Section 3 describes the different approaches that have already been proposed and that motivated our

approach. Then, Section 4 presents the framework that supports the mining of log files and the reconstruction of

IMS LD. Sections 5 and 6 detail, respectively, how the learning flow —through a process discovery algorithm—

and the adaptive rules —through a decision tree algorithm— are mined from the logs. Then, Section 7 details the

transformation from these two models to the actual target language (IMS LD). Section 8 shows the results and, finally

Section 9 points out the conclusions and future work.

2. IMS Learning Design

IMS LD specification is a meta-data standard that describes all the elements of the design of a teaching-learning

process [8]. This specification is based on: (i) a well-founded conceptual model that describes the vocabulary and

the functional relations between the concepts of the learning design; (ii) an information model that details in natural

language the semantics of every concept and relation introduced in the conceptual model; and (iii) a behavioral model

that specifies the constraints imposed to the software system when a given learning design is executed in run-time. In

other words, the behavioral model defines the semantics during the execution phase. Furthermore, IMS LD defines

three levels of implementation depending on whether the learning design is adaptive or not:

• Level A. This first level contains the main components of a UoL: participants (roles), pedagogical objectives,

resources (services and contents), and learning design. This last component is understood as the coordination

of the learning activities to be performed by the participants to achieve the pedagogical objectives, i.e., the

learning design describes the learning flow –or learning path– to be followed by learners in a UoL. To describe

this learning design, the IMS LD specification follows a theater metaphor where there are a number of plays,

that can be interpreted as the runscripts for the execution of the UoL and that are concurrently executed, being

independent of each other. Each one of these plays is composed by a set of acts, which can be understood as a

module or chapter in a course. Acts are performed in sequence and define the activities that participants must

do. This model also allows the assignation of roles to the participants and partitioning the activities of an act

according to those roles. In this case, each one of the partitions can run in parallel. Finally, activities can be

simple or complex, the latter may consist of a sequence or selection of activities (simple or complex).
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• Level B. This level adds properties and conditions to level A. It also adds monitoring services and global

elements which allow users to create more complex structures. The properties store information about people

(preferences, outcomes, roles, etc.), personal information, or even about the learning design itself. Level B also

establishes (i) the visibility of the elements of the learning flow; (ii) if properties are transient or should persist

across multiple sessions; and (iii) the set of operators and expressions that may transform the value of properties

and the visibility of elements. For instance, adaptation is usually based on the visibility of the activities of the

learning flow, since IMS LD does not have control structures such an if-then-else. Therefore, the adaptation

rules use properties, such as a test score, an answer to a specific exercise, and so on, to decide the learning path

of the student through the visibility of the activities.

• Level C. The last level incorporates notifications to level B. Notifications fire automatically in response to events

triggered in the learning process. For example, if a student submits a job, an email to report the event could be

automatically sent to the teacher.

Taking this into account, the objective of this paper can be defined more precisely as recompiling the structure of

the learning process defined at level A and the properties and adaptation rules at level B from event log files.

3. State of the Art

We have focused our analysis of the state of the art in the topics and fields that motivated our approach: (i) IMS LD

authoring tools; (ii) the reconstruction of IMS LD; and (iii) the applications of process mining in education.

For the last years, a number of IMS LD authoring tools have been devloped. These solutions allow a better

analysis of the related educational design approaches by trying to relieve the complexity of this standard to teachers

and instructors. ASK-LDT [19] provides a graphical interface that allows to hide the complexity of the IMS LD control

structure and adaptive components. The authors define an abstract high-level architecture for designing pedagogical

scenarios that can be reused in different virtual learning environments. In [15], the authors offer visual templates or

patterns for creating learning designs based on pedagogical strategies such as collaborative learning or project based

learning. Within this idea, they present Collage, a specialised high-level collaborative learning editor that guides

teachers to create their own collaborative learning design from the existing patterns. However, this tool is not intended

to edit templates, so it is restricted to the predefined set. Other tools such as ReCourse [14] or Prolix GLM [16] made

a great effort by providing the user-friendly graphical notation, however they do not have wide support for level B,

i.e., they have difficulties providing a visual notation for level B properties and conditions [12]. Other tools, such as

LAMS [9] and MOT+ [27], although they are not based on IMS LD, can handle this standard by making a translation

to their internal EML representation. Nonetheless they can lack of flexibility —being difficult to interpret by non-

experts— or face difficult importation/exportation issues in order to interoperate with IMS LD. In summary, although

these approaches try to hide the complexity of IMS LD by using a more user-friendly notation, they share the same
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drawback: real users —teachers and instructors— do not have the technical skills needed for a practical use of these

tools, as they still require to know about IMS LD to use the advanced features of this standard. In fact, this drawback

works as a barrier for the practical use of IMS LD, as teachers are forced to transform their educational scenario into

machine-oriented notation [32].

The automatic reconstruction of UoLs is a novel approach to hide the complexity of the authoring process of

IMS LD. In [25], the authors present an approach that makes a conceptual distinction between exchange EMLs and

authoring EMLs. In this approach, the authors provide graphical notations —authoring EMLs— to the teachers,

which are more user-friendly than the raw XML format. Then, these notations are translated, via an exportation

process. With this classification, they focus on the reengineering of IMS LD UoLs based on a visual language, which

hides the complexity of the model. On the other hand, this approach also requires a close collaboration between

developers and teachers to simplify the gap between the technical and pedagogical point of view of the UoL. In [6],

and later in [5], the authors present a four-step approach for process reenginering in higher education. However,

the reengineering process is not fully automatic, as it requires the participation and feedback from all appropriate

personnel and users. In summary, very valuable results have been achieved in this field, however, the main drawback

of these approaches is that the UoL is not automatically reconstructed from the scratch and needs the supervision of

teachers and even developers. From the point of view of mining the control flow of processes, a recent approach [22]

tries to mine the adaptive rules of the log by using decision trees. In this approach, the authors define a framework for

deriving and correlating process characteristics.

Process mining has emerged as a way to analyze the behavior of an organization based on event logs. Specifi-

cally, process mining focus is on concurrent processes, trying to discover the underlying control flow of the behavior

recorded in a event log: sequences, parallelisms, loops, etc. On the other hand, a second important distinction con-

cerns the unit of analysis, which can be variables or events. Most of the approaches found in the literature use events

for automatically mining the processes; however, this second dimension depends directly on the information available

in the log files. Taking these features into account, and although process mining from log files has been widely ap-

plied [10, 23, 1], its application in education is a relatively new topic with some recent studies. In [20], the authors

present PETRA, a system to extract new knowledge rules about transitions and learning activities in processes from

previous platform executions. However, this tool is not oriented towards process reconstruction and discovery, but

on process extension, i.e., it requieres an already defined process model in order to enrich such process. In [17] a

process mining approach in adult informal learners is presented. Informal learning situations often exhibit high vari-

ability within the learner population, especially when learning experiences and environments offer broad availability.

However, this freedom of navigation has sometimes negative effects of learning experiences, particularly when prior

domain knowledge or learning skills are weak. The experience is developed in two steps: firstly, a process discovery

using hidden Markov models is performed [18], and then a process analysis is done using a standard process mining

approach [3]. A similar approach is presented in [29] but for improving on the objectivity of the assessment as well

as to provide the learners with prompt feedback. A set of software repositories are preprocessed with the FRASR
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tool [30], to produce event logs and then mine them using ProM [13]. The first step of this approach is particularly

interesting and differs from previous proposals. The authors do not start the derivation from a log file but from a

set of repositories that have different structures. Another process mining approach for providing students feedback

is described in [28]. In this case, the objective is to discover a process from the behavior of the students during the

course of a MCQ test. They analyzed the navigation flow of each student when answering the questions, to determine

what kind of feedback is more preferable and more effective for the students. Authors use the α-algorithm [4] for the

process discovery. This three approaches are very similar. In fact they almost use the same process mining techniques.

The main drawback is that the process discovery techniques that they use do not always guarantee feasible results.

In summary, although a wide variety of approaches have tried to provide a IMS LD user-friendly notation by

means of graphical tools, its complex specification, particularly the levels B and C, entails a barrier for adopting this

standard by teachers and instructors. The automatic reconstruction of IMS LD UoLs could relieve this issue, but

it is necessary to deep in the automation of this process from the scratch, avoiding the supervision by teachers and

developers during the whole process, and thereby facilitating the reuse of UoLs in different platforms.

4. Framework

Figure 1 depicts the conceptual framework for reconstructing IMS LD UoLs from the events generated by learners.

It shows all the main parts involved in the reconstruction of the IMS LD UoLs. The first component of this framework

is the educational world. Teachers and learners are the typical participants in any learning activity. On the one

hand, teachers design the learning flows based on some educational methodology, and support the learning activities

of the course. On the other hand, learners are the core of the educational world since they undertake the learning

flow activities by using the resources and services available in the virtual learning environment. The rest of the

components are: the virtual learning environment, the event log system, the learning flow discovery, the the learning

flow hierarchization, and the adaption rules.

• Virtual Learning Environment. From an educational point of view, virtual learning environments (VLEs) pro-

vide the means to carry out the learning activities planned for an UoL, allowing learners to access to the learning

contents and executing the services required to facilitate those activities such as interacting with other learners

or looking for information in libraries. Furthermore, VLEs detect and register all the relevant events generated

by learners when undertake the learning activities. These events are stored in an event log database that contains

data about the activities execution, including who participates in an activity, when it has been performed, the

properties values of the UoL such as a mark of a test, and so forth.

• Event Log System. When a learner undertakes a learning activity, such as answering a test, uploading an

exercise or even asking a question in the forum, the VLE stores in a database the information generated as

result of performing this learning activity. However, in order to be able to extract the needed information for
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Figure 1: Framework for IMS LD UoLs reconstruction.

reconstructing the IMS LD, it is necessary to translate this information into an input format for both the process

mining and the decision tree algorithm. As Figure 2 depicts, this translation is carried out by VLE-specific

adapters that generate an event log register in a standard format for process mining, so-called eXtensible Event

Stream2 (XES) format [37]. XES is a well-known logging standard for process mining, and we have adapted it

with user-defined extensions in order to include in the same file all the outstanding information to both obtain

the learning flow —by storing the sequence of steps undertaken by each learner— and the adaptive rules —by

storing the information generated as result of performing the learning activities. Figure 2 shows an example of

the framework used to translate the event log from any VLE to an event log in XES format3 through specific

VLE-adapters. These adapters and the use of XES standard provide the independence of reconstructing the

IMS LD with the particular VLE in which the learning-teaching process takes place, enabling furthermore to

generalize the proposed architecture to any virtual environment. The only restriction required for the VLE is

that it must register the user activity —along with the variable modifications— that takes place in the learning

2www.xes-standard.org
3Note that we have omitted some of the standard metadata of XES in the event log shown in Figure 2 to make the image more readable.
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Figure 2: Event log infrastructure. Each VLE accesses the event log system through a specific adapter to transform its log format to XES, the

standard format for process mining.

context.

• Learning Flow Discovery. This component implements the algorithm whose aim is to discover the workflow of

learning activities, i.e., the learning flow, that learners undertake during a UoL. Note that this algorithm must

guarantee that all the learning paths followed by learners are represented in the discovered learning flow. Fur-

thermore, this discovered learning flow should be as simple as possible in order to facilitate the hierarchization

of the learning flow into the IMS LD control structure. This component is explained in detail in Section 5.

• Learning Flow Hierarchization. Once the learning flow has been extracted from the event logs, an algorithm

will translate this learning flow to the control structure defined by the IMS LD specification. This algorithm

starts by detecting sequences and selections of learning activities and then uses the knowledge about IMS LD to

create activity structures, acts , and plays. The learning flow hierarchization is explained in detail in Section 7.

• Adaptation Rules. The IMS LD specification has an extensive set of adaptation conditions, but this framework is

focused on extracting the conditions related to the selection of learning activities — show and hide mechanism

— based on the changes in the properties values of the UoL. A decision tree technique was implemented to

automatically obtain these conditions, since it is an effective approach to deal with this kind of problems. This

process is explained in Section 6.

It is important to emphasize that, although we are depicting this framework for IMS LD UoLs reconstruction, in
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fact, the framework described can be applied to reconstruct any UoL to any particular target EML. Both the process

mining step and the adaptive rules mining from variable values, are totally independent from the target language. In

fact, process mining retrieves graph-based structures independent from IMS LD. On the one hand, graphs are based

on Petri nets, which is the most used formalism for modelling processes. On the other hand, a decision tree algorithm

is used to get the adaptive rules that will guide the students along the UoL. The learned knowledge is represented

through binary trees and, thus, not tied to the specificity of IMS LD rules.

The last step of this framework, i.e, the combination of this two models into the target language, is the only

dependency between the reenginering process and the target EML. Nevertheless, the algebra that we are using —

explained in Section 7— in the reconstruction of the IMS LD is not so different from any particular EMLs —if -then-

else, AND, OR, sums, etc—. Hence, it is possible to modify the knowledge applied in the last step of the reeinginering

process in order to reconstruct an UoL from any particular VLE to any particular EML.

5. Mining the learning flow from event logs

The goal of process mining is to automatically obtain a process model that specifies the relations between activities

from concurrent processes. Therefore, the aim of the process discovery algorithm in the reconstruction of the IMS LD

is to identify the workflow that represents the learning flow followed by the learners during the UoL [7]. To achieve

this objective, the process discovery algorithm only needs to consume the log in XES format —as this is the standard

format for process mining— and it will retrieve a learning flow representing the behavior recorded in the event log.

From the perspective of process mining [35], the quality of a learning flow is measured taking into account the

following criteria:

• Fitness replay, which indicates how much of the behavior observed in the event log can be reproduced by the

discovered learning path. A discovered learning path is considered complete when it can reproduce all the events

contained in the log database. In order to guarantee a feasible and correct reconstruction of IMS LD UoLs, all

the activities undertaken by the learners have to be included in the mined learning flow. Additionally, from the

educational point of view, in order to guarantee feasible and correct evaluations of the learning paths, teachers

need to access to all the activities performed by learners. Therefore, the fitness replay of discovered learning

paths is a hard requirement.

• Precision, which measures if the discovered learning path allows an additional behavior that is not represented

in the log, i.e, behaviour never undertaken by the students. Thus, a discovered learning path is considered as

precise when it cannot reproduce events that are not available in the log database. From the point of view of

the learners evaluation, this kind of learning paths are desirable, but it is not a requirement as hard as the fitness

replay: the additional learning paths are not needed for the reconstruction of the IMS LD control structure,

since they did not happen. Our focus is on the exact behavior of the learners, i.e, what they really did, not in the

prediction of their behavior; therefore we want to avoid overly-general models.

9



I

IV

II yes

no

III

ProDiGen

End

Step Description

I Build the initial population

II Evaluate each solution

III Stopping conditions fulfilled?

IV Generate the new population

Figure 3: Main steps of ProDiGen.

• Simplicity, which refers to discovered learning paths with the minimal structure that reflects the behavior con-

tained in the log database. A desirable requirement for process discovery is to obtain simple learning flows,

since the simpler is the discovered learning flow, the easier is to reconstruct the IMS LD control structure.

In general all process discovery algorithms make assumptions regarding the event log and, hence, the emphasis

on these three different quality dimensions. For example, Heuristics Miner [39] usually retrieves models with high

levels of precision, but lacking fitness replay and/or simplicity. Another example is the ILP miner [40] that guarantees

a perfect replay fitness but resulting in very complex models. Inductive Miner [21], on the other hand, can guarantee

a perfect replay fitness and high levels of simplicity, but the precision is, overall, low. Overall, a large amount of work

has been done in this specific area by addressing different algorithms from different points of view. However, in this

paper, and considering the three previous criteria and their importance when mining a learning process, we selected

ProDiGen [36] as process mining algorithm.

ProDiGen is a genetic algorithm for process discovery that focuses its search towards solutions that replay all the

behavior as possible, with high levels of precision and simplicity. In order to better understand how this algorithm

works, Figure 3 shows a simplification of its mains steps: (i) the initialization of the population; (ii) the evaluation

of the individuals; (iii) the stopping criteria; and iv) the generation of the new population. The evolutionary cycle

involves the II, III and IV steps, where the population evolves based on a fitness function. Finally, the algorithm stops

whether it reaches a maximum number of generations, or it gets stuck on a local minimal solution for a certain number

of times.

D

B

C

A E

start end

(a) Example of a Petri net.

Task I(Task) O(Task)
A {} {{D},{C B}}
B {{A}} {{E}}
C {{A}} {{E}}
E {{D},{B,C}} {}

D {{A}} {{E}}

(b) Causal matrix of the Petri net.

Figure 4: Mapping of a Petri net into a causal matrix. This Petri net represents the learning flow of an UoL about polymorphism. The name of the
activities are: Read about polymorphism (A), Exercise 1 (B), Exercise 2 (C), Answer test (D) and Exam (E).
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5.1. ProDiGen

The first step in any evolutionary algorithm is the initialization of the population. In this phase, a population is

created with a group of individuals where each individual is a potential solution, e.g, a learning flow. In ProDiGen,

each individual of the population codifies a learning path using a causal matrix representation, which can be easily

translated into a Petri net [26]. In terms of causality, both the Petri net and the causal matrix represent the same

behavior —which learning activities enable the execution of other learning activities. Figure 4 shows an example of

the mapping between a Petri net (Fig. 4a) and its respective causal matrix (Fig. 4b). This causal matrix has a row for

each learning activity t in the log, and two columns corresponding to the inputs, I (t), and outputs, O (t), of the activity.

The input and output sets are composed of several subsets, modelling the following relations:

• In the same subset:

– Tasks in the same subset of the conditional function O (t) have an OR-split relation.

– Tasks in the same subset of the conditional function I (t) have an OR-join relation.

• Between different subsets:

– Tasks in different subsets of the conditional function O (t) have an AND-split relation.

– Tasks in different subsets of the conditional function I (t) have an AND-join relation.

Once the initial population is created through heuristics based on the local information of the log, the individuals

—causal matrices— of the population are modified through crossover and mutation operations to create new potential

solutions, i.e, learning flows. These operators add and/or remove4 causal dependencies of the individual by modifying

the input and output conditional functions of the tasks. Then, these new individuals are evaluated based on a fitness

function.

In ProDiGen, the quality of an individual is measured taking into account fitness replay, precision, and simplicity,

as ordering criteria, respectively. Hence, when contrasting two possible solutions, fitness replay is the primary order-

ing criteria. When two solutions have the same fitness replay, precision is used to decide the best solution. Finally,

when two solutions have the same fitness replay and precision, simplicity is the decisive criterion.

Thus, when two solutions have to be compared, the individual with highest fitness replay will be the benefited one.

If the values for the fitness replay are equal for both solutions, the second parameter to be checked is the precision,

and, if the same as before occurs, the last one to be compared is the simplicity. Note that if we change the hierarchical

order of the fitness measure, the algorithm may find a different solution, as fitness replay, precision and simplicity are

three opposed objectives [36].

4For example, the mutation operation can add a new subset into the output function of a task t, resulting in an AND-split.
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(3, ’UOLID 201’, ’GeoQuiz3’, ’root’, ’2013-10-14 01:44:51’, ’13193839-3ddf-41e2-a4b8-7af8dc13d059’),

(4, ’UOLID 201’, ’GeoQuiz3’, ’root’, ’2013-10-14 01:44:52’, ’e4901d0f-8232-4cce-a166-20e29133d279’),

(5, ’UOLID 201’, ’GeoQuiz3’, ’root’, ’2013-10-14 01:44:52’, ’e4901d0f-8232-4cce-a166-20e29133d279’),

(6, ’UOLID 201’, ’GeoQuiz3’, ’d9’, ’2013-10-14 01:44:52’, ’e4901d0f-8232-4cce-a166-20e29133d279’),

...

(289, ’OPENET RMI SOID 0’, ’UOLID 201’, ’setproperty’, ’2013-10-14 01:59:30’, ’user 2’, ’d2’, ’Student’, ’ locpers property 12 ’, ’Answer1’,

’locpers property’, ’string’, ’Venezuela’),

(290, ’OPENET RMI SOID 0’, ’UOLID 201’, ’change property value 0’, ’2013-10-14 01:59:30’, ’user 2’, ’d2’, ’Student’, ’ locpers property 1 ’, ’Value1’,

’locpers property’, ’integer’, ’2’),

(291, ’OPENET RMI SOID 0’, ’UOLID 201’, ’change visibility’, ’2013-10-14 01:59:30’, ’user 2’, ’d2’, ’Student’, ’ learning activity 5 ’, ’flow3’,

’locpers property’, ’boolean’, ’false’),

(292, ’OPENET RMI SOID 0’, ’UOLID 201’, ’setproperty’, ’2013-10-14 01:59:33’, ’user 2’, ’d2’, ’Student’, ’ locpers property 13 ’, ’Answer2’,

’locpers property’, ’string’, ’Siria’), ...

Figure 5: Example of a text-based log file

6. Mining adaptive rules from event logs

Using log files of VLEs can help to determine who has been active in the course, what they did, and when they did

it. In this section we use these data to obtain the adaptive rules of the UoLs that determine the learning flow and the

contents and services presented to students. Unfortunately, the log files provided by VLEs do not follow a standard

and therefore a generic solution cannot be formulated for such purpose. In fact, log files are seldom used mainly

because it is difficult to interpret and exploit them. In most of the cases, the data aggregated are incomplete or even

not logged.

Taking this into account, in this section we describe our approach based on the extract of the log file represented

in Figure 5. This log was recorded in OPENET4LD [38], and exemplifies the typical elements saved by VLEs. Of

course, the records formats or even how they are stored may vary —e.g., Moodle saves this information in tables of

a relational database—, but usually VLEs present very similar information. This particular example has two parts.

On the one hand, the first four records represent the execution of activities and contain information about the UoL id,

its name, the user that performed the activity, the execution time, and the specific name of the activity, among other

information. On the other hand, the last four records represent events on the properties used by the UoL. Specifically,

each one of these records contains information about the UoL id, the operator that favor the change, the type of the

property, and the new assigned value.
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6.1. Identification of variables and activities

The identification of variables and activities is highly dependent on the type of events recorded in the log files.

Since each VLE may record the events in a different format, the syntactic patterns used to identify these events are

usually different. For example, the identified variables are highlighted in Figure 5. In this case, a simple regular

expression with the keywords ”setproperty” and ”change visibility” were used to identify the variables, but a different

pattern should be used to identify these same variables in an XML-based log file. However, the main issue in the

identification of variables is that they are not always recorded in the log files. When this situation happens, the

mechanism for learning the adaptation rules presented in this section cannot be applied.

6.2. Determining the variable values for each activity

In the ideal situation, each time an event is produced, (i) the state of the variables is saved in a log file. This

means that, e.g., at the end of an activity the values of the variables of a UoL are stored in the corresponding log file.

Moreover, (ii) in this context a value change is also considered an event and so is also recorded. However, reality is

different and usually both mechanisms are not supported at the same time —e.g., in the log extract of Figure 5 only

variable changes are included.

The variables values are subsequently associated to an activity, so we can determine the state of the properties

before and after the activity is performed. Therefore, each time a variable value changes we must determine when and

by who it was modified. In this procedure, the time of the event is crucial since it will determine the initial value of

variables in the next activity.

6.3. Learning rules with a decision tree

IMS LD rules use the following grammar to define the learning flow adaptation:

rule ::= IF <expression> THEN <action>

| IF <expression> THEN <action> ELSE <action>

| IF <expression> THEN <action> ELSE <rule>

In addition, IMS LD declares three types of actions:

action ::= SHOW <activity_id>

| HIDE <activity_id>

| <property_id> = <value>

The first and second actions are used to make visible or invisible a learning/support activity, activity structure, play,

item, or environment. It’s the main adaptation mechanism of IMS LD used to hide or show a part of the UoL based

on some expression value. The last type of expression is a simple assignment.
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IF T1 <= 40 

THEN visible (Task 1)

IF T1 > 40 AND T1 <= 80 AND T2 <= 50 

THEN visible (Task 2)

IF T1 > 40 AND T1 <= 80 AND T2 > 50 

THEN visible (Task 3)

IF T1 > 40 AND T1 > 80 

THEN visible (Task 4)

T1 <= 40 T1 > 40

T1 <= 80 T1 > 80

T2 <= 50 T2 > 50

Task 1

Task 2 Task 3

Task 4

Figure 6: Transformation of a decision tree to a DNF rule base

IMS LD grammar for expressions include logical operators, and, or, and not, some comparative operators, ≤, <,=

,, . >, and ≥, and some multiplicative and additive operators. Moreover, it also defines operators to check specifics

of UoLs. For instance, to verify if a play, act, or activity has already finished, or, e.g., the specific role of users.

In this paper, the identification of the adaptive rules is performed by means of J48 decision tree algorithm [31].

We selected this type of algorithm because of its simplicity, performance, and especially because adaptive rules can

be transformed to a decision tree. As previously mentioned, IMS LD adaptive rules have an if-then-else structure

very similar to the right part of Figure 6, which can be deduced from the graph structure returned by a decision tree

algorithm. A decision tree is a graph-like structure in which each internal node represents a test on an attribute,

each branch represents the outcome of the test and each leaf node represents the class label —or decision taken after

computing all attributes. A path from the root to the leaf represents classification rules, and in our case, an adaptive

rule.

Transforming a decision tree to an adaptive rule is straightforward since these trees can easily be modelled as DNF

(Disjunctive Normal Form) rules. For instance, the right part of Figure 6 shows the corresponding rules for this tree.

Specifically, each branch is converted into a rule, where:

• The condition is set as the conjunction of the arc tests of a branch.

• The action of the rule is the leaf node of the branch —class/decision.

• The disjunction of all the rules has the semantics of the decision tree.

Notice that the rules extracted by J48 support most of the grammar of IMS LD —logical and comparative operators—

, although this is not the main objective here. In fact, we selected decision trees because they provide a simple but

also generic grammar, that should be compatible with most of the adaptation mechanisms used in legacy systems.

Therefore, it does not make sense to learn, e.g., IMS LD specific operators. There are however some limitations since

we do not cover complex conditions that combine mathematical operators.
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Tree complexity has its effect on the accuracy and is usually determined by the total number of nodes, total number

of leaves, depth of tree, and number of attributes used in the tree construction. The number of variables is therefore a

crucial factor since too many of them may reduce the accuracy of the tree. Moreover, the size of the data required to

learn increases with the number of variables. However, adaptive rules are usually not based on many variables. Thus,

our approach limits the variables considered during the learning of the decision tree, and specifically, only variables

for which the value has changed in the execution of the activity are included.

7. IMS LD reengineering

IMS LD is a well-known EML for adaptive learning which is specified in three different levels of implementation

—levels A, B, and C—, which determine the learning flow, the changes in the environment, and the notifications,

respectively. In this section we describe an algorithm that compiles IMS LD levels A and B from the information

retrieved by the data mining algorithms described in the former sections. On a first step, the proposed algorithm

transforms the flat process structure retrieved by the process mining into an IMS LD-based structure. On the second

step, the identified adaptation rules are associated to the learning flow.

7.1. Pairing the causal matrix with the IMS LD specification

IMS LD learning flow is described as a theatre metaphor where there is a number of plays that are concurrently

performed, being independent of each other. Each of these plays is composed of a set of acts, which represent, for

instance, the modules or chapters of a course. Acts are performed in sequence and define the activities that participants

must do. This model also allows the assignation of roles to the participants and partitioning the activities of an act

according to that roles. In this case, each one of the partitions can run in parallel. Finally, activities can be simple or

complex, the latter may consist of a sequence or selection of activities (simple or complex).

Taking this structure into account, the reengineering process would consist in identifying the different IMS LD

elements from the causal matrix (Petri net) returned by the process mining algorithm. However, this Petri net is a

flatten process while the IMS LD is a tree-based structure in which each layer is composed by a different type of

elements, i.e., first plays, then acts, role-parts, and finally activities. Bearing in mind that the Petri net only identifies

the atomic activities, we decided to structure the search space as a tree in which:

• Each node of the tree represents how learning activities are grouped. Suppose an ordered list of the n activities

that must be performed. This list can be divided in n − 1 parts —one for each consecutive activity. Taking this

into account, each node is identified by n− 1 digits, where a 1 in the position i indicates that the activities in the

positions i − 1 and i are in different groups.

• Each layer of the tree corresponds to a layer of IMS LD. Specifically, the first layer represents plays, the second

acts, the third role-parts, and the remaining layers activities, simple or complex.
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Figure 7: Example of the search space for a UoL composed of three activities

• An edge between a father node and a child node indicates that this child is grouped according to the configura-

tion defined in the father node. Thus, the child node may add additional groups but they must respect the groups

defined in the father node.

Figure 7 depicts the search space for a UoL composed of just tree simple activities, namely A, B, and C, ordered

according to their position in the causal matrix. Let use the notation [A B C] to facilitate the definition of the list

and use the symbol | to indicate a partition. Taking into account our previous definition of the search space, in this

example, nodes can be identified by two digits where: 00 indicates that the three activities are in the same group

—[A B C]; 01 that there are two groups, a first one with the activities A and B, and a second one with C —[A B|C]; 10

also represents a two groups be in this case the activities B and C compose the second group —[A|B C]; and finally,

11 implies that each activity is in a different group —[A|B|C].

Notice that the meaning of the coding is different for each level of the search tree. For instance, a node identified

by 10 at the play level indicates that the activity A is in the first play, while the activities B and C are in the second play.

Thus, the coding defines both the number of plays and how activities are grouped in the plays. If the node identified

by 10 is at the act level, the node still identifies two groups of activities but in this case for the two acts defined in this

coding.

In addition, child nodes must preserve the groups already defined in the father node. Let A and B be two nodes,

where A is father node of B in the search tree, and a,b ∈ Zn
2 denote the coding of size n of A and B, respectively. For

each ai = 1 ∈ a then bi = 1 ∈ b, i = 1 . . . n, i.e., each position i equals to 1 in the father node is also equal to 1 in

the child node. This definition ensures the hierarchical disjointness of groups, that is, that two activities that are in

different groups cannot be joined in the same group in a lower level of the tree. This constraint also reduces the search

space since many father/child combinations are not allowed. For instance, a node 01 can only have two children,

denoted as 01 and 11, since the father node already defines two groups —[A B|C]. Suppose that 10 is a valid child
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Algorithm 1: explore
Input: ni is the node to explore, verify is a list of functions used to check the structure of the nodes.
Output: from np hangs a (sub)tree of possible UoL configurations that can be derived from the causal matrix.

1 verify← function from verifiers used to check the nodes of the level in which (ni) is situated
2 if verify(ni) then
3 if level(ni) < MAX and not solution(ni) then
4 foreach j in expand(ni) do
5 n j ← new node which value is j
6 add n j as children of ni

7 explore(n j, verify)

8 else
9 if ni has a parent then

10 remove ni from parent(ni)

node of 01, this would imply that the activities B and C are in two disjoint groups in the father node but in the same

group in the child node, which is clearly inconsistent with the hierarchical definition of the IMS LD specification.

Algorithm 1 details the main block of the depth-first search procedure. The algorithm receives two inputs: ni

which contains the node that is being evaluated, and the verifiers list which elements are the functions used to check

the structural consistency of the node. Specifically, each function uses the causal matrix obtained during the process

mining step to check if the activities are correctly grouped, that is, (i) if they verify the dependencies of the causal

matrix and (ii) the structure is compliant with IMS LD. Since the structural requirements of each level of the tree

are different, the verifiers list contains a specific verifier for plays, acts, role-parts, and activities. For the sake of

simplicity, the position i of the verifiers list contains the function to check the level i + 1 of the search tree. Since there

are only 4 types of verifiers, nodes which level is greater than 3 will be checked by the last function of the list —i.e.,

as activities.

In the first line, the algorithm used the level of the node in the tree to select the corresponding verifier, and uses

this function to check the node. This is the most complex part of th algorithm and consists in looking for specific

structural patterns in the causal matrix. As we will detail in this section, each IMS LD control construct has structural

constraints that are synthesized in one of these functions. When ni is a solution (i.e., if it is a simple activity) or the

MAX level limit has been reached, then the algorithm backtracks. Otherwise, the node is expanded (lines 4-7) and a

new exploration starts for the children of ni.

7.2. Consistency of plays

The verifier of the first level of the search tree checks if the plays are grouped in conformance with the IMS LD

specification. Specifically, the objective of Algorithm 2 is to verify that the activities contained in each group are in

parallel since each group identifies a play. Therefore, in lines 2-11, each activity a j of the group gi is compared with a

different activity al of a different group gk, until all the activities of the different groups have been compared. In order

to check if two activities are in parallel we use the causal matrix M obtained during the process mining step. In this
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Algorithm 2: plays
Input: n is the node to evaluate
Data: M is the causal matrix obtained during the process mining procedure
Output: A boolean that indicates if the node verifies the constraints of IMS LD for plays.

1 g← the groups defined in n
2 for i = 0 to length(g) − 1 do
3 gi ← g[i]
4 for j = 0 to length(gi) do
5 a j ← gi[ j]
6 for k = k + 1 to length(g) do
7 gk ← g[k]
8 for l = 0 to length(gk) do
9 al ← gk[l]

10 if a j and al are not in parallel in M then
11 return false

start

B

A

C

end

(a) Petri net

Task I(Task) O(Task)
A {} {}

B {} {{C}}
C {{B}} {}

(b) Causal matrix

Figure 8: Petri net with three activities and its causal matrix

case, we just check (i) that a j is not connected to al, (ii) that al is not connected to a j, and (iii) that a j , al.

Let suppose the Petri net depicted in Figure 8 and its corresponding causal matrix, and the previously described

search space depicted in Figure 7. A correct ordering of the activities of the causal matrix would return [A B C].

Taking this into account, Algorithm 2 would process the nodes of the first level and determine that nodes 01 and 11

are not in conformity with the causal matrix. Specifically, in line 10 it would verify for both cases that task B is not in

parallel with C.

7.3. Consistency of acts

Algorithm 3 checks the structural consistency at the level of acts. Specifically, this function is used to verify

that the groups defined at this level are in conformity (i) with the IMS LD specification and (ii) with the causal matrix

obtained from the process mining. In this case, IMS LD requires that the acts of a play must be in sequence. Therefore,

the algorithm has an external loop that iterates the plays identified as consistent, and for each one of these plays it

checks (i) that the activities of an act are isolated from other acts (lines 6-8), (ii) that last activities of an act and the

next ones are not in conflict because of a choice node (lines 12-13), and (iii) that the acts are connected (lines 14-15),

i.e., that the last activities of an act are connected to the first activities of the next act.

Continuing with the example depicted in Figure 8, let suppose that we want to evaluate the node 01 which father

play node is also 01. In the two iterations of the first loop, g0 ← [A] and g1 ← [B C] will both have S o ← {} and
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Algorithm 3: acts
Input: n is the node to evaluate
Data: M is the causal matrix obtained during the process mining procedure
Output: A boolean that indicates if the node verifies the constraints of IMS LD for acts.

1 foreach group k of the parent node of n do
2 g← the groups defined in n that are contained in the father group k
3 for i = 0 to length(g) do
4 gi ← g[i]
5 S o ← set of final activities in gi

6 foreach activity a in gi \ S o do
7 if a is connected to an activity not in gi then
8 return false

9 if i + 1 < length(g) then
10 g j ← g[i + 1]
11 S i ← set of initial activities in g j

12 if there is a shared choice between the activities if S o and S i then
13 return false

14 foreach activity ao in S o do
15 foreach activity ai in S i do
16 if ai and ao are not connected then
17 return false

S i ← {} and thus verify the conditions of the acts’ level. However, let consider that the node to evaluate is 01 and its

parent play node is 00. For the case g0 ← [A B] the algorithm will fail in line 7 since B is connected to an activity that

is not included in g0.

7.4. Consistency of role-parts

In order to check that role-parts are correctly defined we must verify that:

• All the activities included in the role-part have the same role.

• The groups identified in the role part are in parallel.

Since the conditions are similar to those imposed to plays, we will not detail the algorithm used to verify the consis-

tency of role-parts. For instance, the node 10 pointed by the parent node 00 is a valid configuration since the activity

A is in parallel with the activities B and C. As aforementioned, all configurations that are valid at the play level are

also valid at this level, but, in addition, nodes must also be compatible with its parent node. Therefore, if the parent

node is 11, the node 10 would no longer be a valid configuration.

7.5. Consistency of activities

In IMS LD, activities can be simple or structured as sequences or selection of activities. Taking this into account,

Algorithm 4 checks that all the groups verify one of these categories. Specifically, the function activity only checks
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Algorithm 4: activities
Input: n is the node to evaluate
Data: M is the causal matrix obtained during the process mining procedure
Output: A boolean that indicates if the node verifies the UoL constraints of IMS LD.

1 foreach group k of the parent node of n do
2 g← the groups defined in n that are contained in the father group k
3 foreach group gi in g do
4 if not activity(gi) or not sequence(gi) or not selection(gi) then
5 return false

Algorithm 5: selection
Input: g is the group of activities to evaluate
Data: M is the causal matrix obtained during the process mining procedure
Output: A boolean that indicates if the group verifies the selection structure of IMS LD.

1 if length(g) < 2 then
2 return false

3 foreach activity ai in g do
4 if ai is not in a choice with another activity in g then
5 return false

6 if father node is a selection then
7 return false

that the group has q unique element. The function sequence verifies that the elements of the group are in sequence,

in the same way as Algorithm 3 checks that all the acts of a play are in sequence. Finally, the function selection

checks the last activity structure of IMS LD. Notice that selections are a complex structure since they combine two

patterns, such as a choice between several activities (simple or complex), and a loop, so students may select the same

activity more than once. The main issue here is that process mining algorithms are not able to detect this pattern as

it is modelled in IMS LD [38]. Instead they usually detect partial choices and combine them with multiple loops. In

order to identify this pattern from the logs we just need to detect if the activities are in a choice with any other activity

in the selection since the loops spread the choice dependencies, lines 3-5 of Algorithm 5. Finally, we do not allow

the concatenation of selections (lines 6-7) since they do not change the behaviour of the net and just complicate the

design: a subselection can be moved to a father selection without changing the behaviour of the control construct.

For instance, Figure 9 represents different ways in which process mining may retrieve a selection of three activities.

Figure 9a depicts the simplest selection pattern in which the three activities compete for the tokens of their input place

and thus only one of them can be chosen. In Figure 9b, the first branch also includes a loop, and thus students can

select more than one activity. Finally, Figure 9c combines a choice, a loop, and a sequence structure. Notice, that our

algorithm detects both the three cases since activities A, B, and C share the same input.
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A

B
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(a) Choice of activi-
ties

A

B

C

(b) Selection where the activities are
in choice and in a loop

B

A

C

(c) Selection where one of the branches is a sequence of two activ-
ities with two loops

Figure 9: Three different ways of representing a selection. Transitions colored in gray represent the activities of the UoL.

8. Results

The validation of the presented approach has been done with a set of UoLs with different degrees of complexity.

In a first batch, four UoLs of the Degree of Computer Science, at the University of Santiago de Compostela, were

performed in the real environment of OPENET4LD [38] by students. To complete the dataset, we selected another

five UoLs, collected by the Open University in the Netherlands from different European projects5, and simulated their

behaviour in OPENET4LD environment but with virtual students.

All UoLs were generated in IMS LD, half of the units were performed in a real environment by students while

the other half was simulated, and logs were recorded by OPENET4LD6 [38]. The objective of this experiment is to

recompile the UoLs in IMS LD format and minimize information loss. Table 1 lists the nine UoLs tested, on the basis

of their activities, structures of activity, acts, plays, and properties, ranging from UoLs with one only act to UoLs with

several acts and different activity structures:

• AutomatonClass is an adaptative UoL about Automata Theory and Formal Languages.

• TALF is another UoL on the topic of Automata Theory and Formal Languages.

• Boeing is an UoL about the safety regulations when removing certain parts of a Boeing engine (simulated).

• Cam specifies the activities and exercises needed to complete a lecture (simulated).

• Driving specifies the process of a driving school (simulated).

• Programming is about learning imperative programming.

• POO is a UoL about learning object oriented programming.

5http://dspace.ou.nl/handle/1820/16/
6Logs and images of the extracted Petri nets are available at http://tec.citius.usc.es/SoftLearn/Compiling.html
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Activity structures

UoL #LA #ST #AC #PL #RU #PR Sequence Choice Parallelism Loop

PeerReview 14 7 2 1 10 15 X X X

Cam 10 2 3 1 7 13 X X X

POO 9 3 6 1 6 12 X X X X

Driving 7 3 5 1 3 5 X X

Boeing 10 5 4 1 9 12 X X X

AddWork 7 2 3 1 3 8 X X

Automaton 9 2 5 1 7 9 X X X

TALF 11 5 7 1 8 9 X X X

Programming 4 1 2 1 2 4 X X X

#LA, #ST, #AC, #PL, #RU, and #PR stands for the number of activities, structures of activity, acts, plays, rules and properties, respectively.

Table 1: Structural features of the UoLs that have been used in the experiment.

PeerReview Cam POO Driving Boeing AddWork Automaton TALF Programming

# instances 186 186 190 97 134 120 120 144 42

Table 2: Number of instances of each UoL.

• PeerReview explains the interaction in a peer review process (simulated).

• AddWork represents a quiz with different outcomes depending on the results (simulated).

Summarizing, four of the UoLs belong to courses of the Computer Science degree, while the remaining UoLs were

taken from tutorials, seminars, and workshops previously recorded in OPENET4LD.

8.1. Process mining results

In order to check the efficiency of ProDiGen for learning flows discovery, we have conducted an experiment with

the nine UoLs shown in Tab. 1 that have been undertaken in the OPENET4LD environment. OPENET4LD collects

all the events generated by the learners when they perform the learning activities of an UoL, and then, with the

OPENET4LD Adapter, we transform this behavior into a XES log. Although some of these UoLs are designed to

be undertaken by several roles collaborating among them, ProDiGen discovers the learning flow related to each role.

Table 2 shows the number of instances —traces— of each example. As we can see, only Drive and Programming UoL

have less than 100 instances, i.e., students that have participated in the courses. The remaining units are in between

120 and 190 instances, which is enough to perform with a high degree of confidence the mining process —for both

the models and the rules (Section 8.2).
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UoLs

PeerReview Cam POO Driving Boeing AddWork Automaton TALF Programming

C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

P 0.85 0.85 0.90 1.00 0.95 0.82 0.90 1.00 0.86

(#A, #P, #T ) (15,7,6) (38,13,13) (36,12,18) (26,10,11) (24,10,10) (36,15,16) (34,12,17) (34,12,17) (37,13,16)

Table 3: Performance of the genetic algorithm for learning flow discovery.

The performance of ProDiGen over the UoLs has been measured taking into account completeness —fitness

replay—, precision and simplicity with two metrics of the state of the art. For completeness, we use the proper

completion measure [34], which is the fraction of properly completed process instances. Proper completion (C) takes

a value of 1 if the mined model can process all the traces without having missing tokens or tokens left behind. On the

other hand, to measure the simplicity, we used the alignment precision (P) defined in [2]. For the simplicity, we show

the number of arcs (#A), places (#P) and transitions (#T) of the retrieved Petri net.

Table 3 shows the results of ProDiGen over the 8 UoLs. As can be seen, ProDiGen is able to retrieve, for all the

cases, a model that perfectly fits the behavior of the recorded event logs, i.e., the fitness replay is equal to one in all the

UoLs. Moreover the precision of the mined models is high, which indicates that the models do not underfit the log,

i.e. they do not show much more behavior than the actually observed in the logs. Related to these precision levels, in

none of the cases the retrieved model is the overfitted trace model, a solution that creates a path for each trace of the

log, which can be seen with the simplicity measure —the number of actual transitions and arcs.

8.2. Rules mining results

A ten fold cross-validation has been performed for each one of the rules of each UoL detailed in Table 1. Table 4

details the results of the adaptive rules mining. We can see that, in 54.54% of the cases, the rule did classify correctly

the 100% of the instances. In fact, the results are quite good considering that in 77.27% of the cases at least 90% of

instances were correctly categorized, percentage that even grows to 90.91% if we consider the cut level of 80%. Only

four cases obtain less positive results. Specifically, three of them are in the Boeing UoL and one in the PeerReview

UoL. For instance, one of the rules of the Boeing UoL in this situation is defined as follows:

visible_Test_components = false: false

visible_Test_components = true

| visible_Test_hazard = false: true

| visible_Test_hazard = true

| | Lessons_components_counter <= 1

| | | visible_Extra_Lessons_hazards = false

| | | visible_Extra_Lessons_hazards = true

| | Lessons_components_counter > 1: false
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Rule id Correctly

PeerReview

1 100%

2 86.02%

3 100%

4 98.39%

5 88.07%

6 95.70%

7 100%

8 53.22%

9 100%

10 95.70%

Rule id Correctly

Cam

1 100%

2 100%

3 98.82%

4 97.93%

POO

1 100%

2 99.47%

3 100%

4 100%

5 100%

Rule id Correctly

Driving

1 97.93%

2 90.72%

3 86.60%

Boeing

1 89.55%

2 74.62%

3 95.52%

4 79.10%

5 72.39%

6 88.06%

Rule id Correctly

AddWork

1 100%

2 100%

Automaton

1 99.17%

2 100%

3 100%

4 100%

5 100%

6 100%

7 100%

Rule id Correctly

TALF

1 100%

2 100%

3 100%

4 100%

5 100%

6 100%

7 86.81%

Programming

1 100%

2 100%

Table 4: Performance of the adaptive rules mining, where the percentage shows the instances that have been correctly classified by the rule learned

by the decision tree.

As we can see, this rule uses four different variables to correctly classify 72.39% of the instances. In this and the

other cases in which the learning process obtained weaker results, the number of examples were clearly insufficient to

get the convergence of the algorithm. However, it would be misleading to point out that the number of variables is the

unique factor, since most of the other units have rules with a similar number of variables. In these cases, we concluded

that the complexity of the rule has more influence and would require a greater number of examples to obtain better

results.

Finally, it should be mentioned that learning these rules is usually a difficult task, since the criteria used for the

adaptation are not always clear. For instance, in many cases the instructor does manually the adaptation and not

always with a uniform criteria. However, in these cases rules mining may achieve a secondary objective since it will

precisely clarify these criteria from the event logs.

8.3. Reenginering results

Table 5 shows the results of the reengineering part of our proposal. As we can see, the processes were recompiled

successfully for all UoLs. It should be noted the huge number of solutions that can be derived from the causal matrix

in some of the cases. For instance, there are 394 different possibilities to structure a valid UoL from AddWork logs.

There is a simple explanation: IMS LD is mainly structured with parallels and sequences. Plays and role-parts are

parallel structures, while acts and sequences of activities are an ordered list of elements. Therefore, the number of

possible combinations grows as the number of parallels and sequences increases. Notice that there would be even

more solutions if we did not limit the concatenation of selections between a father and a child node.

The time required to obtain all the results depends on two factors. On the one hand, the net complexity, i.e., the

greater is the number of structures, the more combinations. On the other hand, the structures of activities play an
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PeerReview Cam POO Driving Boeing AddWork Automaton TALF Programming

# solutions 2 12 9 90 2 394 44 55 2

Time (ms) 184531 10960 29476 603 1162 2273 7003 65335 144

Table 5: Results of the reengineering process

important role in computational time since they increase the depth of the search tree. Therefore, it is not surprising

that PeerReview and TALF UoLs need more time since the have more structural elements and activities.

It should be noted that, from a practical viewpoint, it does not make sense to show all the reengineering results

to an instructor. For instance, the selection of the most suitable structure from the 394 solutions returned for the

AddWork UoL would be unmanageable for an instructor without a proper way to filter the results. For this reason,

solutions are ordered according to criteria identified in [11]. In this study, participants were asked to transform a given

textual design description into an IMS LD UoL. The analyses identified a number of conceptual structures which

presented challenges to teachers’ understanding, e.g., the management of role-parts. Specifically, in our proposal we

use the following ordering criterion:

• Simplicity. UoLs with fewer structural elements take precedence.

• Plays precedence. Plays and role-parts are used to define parallel structures within a UoL, but plays have

precedence over role-parts.

• Acts precedence. Acts and activity-structures are used to define sequences of activities within a UoL, but acts

have precedence over activity-structures.

9. Conclusions and Future Work

In this paper we have proposed a global approach that facilitates the reuse of UoLs defined in legacy systems

or VLEs. Our solution has been implemented to support the mining of event log files (i) to obtain the learning

flow, formalized as a Petri net, and performed by students and instructors, and (ii) to identify the adaptation rules,

represented as decision trees, used to tailor the learning flow to each student. An important feature of the described

approach is its independence from any target EML, although in this paper the reengineering part of the framework is

tied to IMS LD. However, it is sufficient to define the translation, from the Petri net models to the specific process

representation, and from the decision tree to the rules grammar used by the EML, to have a compete specification of

the UoL. In fact, as future work we plan to use this framework to recompile the same event logs to a different EML,

such as ADL SCORM.

To validate this approach, we tested our framework with 9 UoLs with different degrees of complexity. Specifically,

the three parts of the reengineering approach have been analyzed separately. Firstly, we showed that process mining
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is a good solution to retrieve a process structure from a set of event log files. Specifically, ProDiGen had a precision

greater than 90% in most of the cases, and where the worst precision was of 82%. These high precision values

minimize the number of UoLs obtained by the reengineering process. Secondly, the identification of the adaptive

rules also obtained very good results. In fact, the exact rule was extracted in most of the analyzed cases and at least

80% of the instances correctly classified in nearly all the remaining cases. Finally, we must mention that the correct

IMS LD structure was retrieved for all the analyzed UoLs.

It should be remarked that a secondary objective of this paper is to facilitate the reuse of UoLs but from the

perspective of instructors. In this sense, our system only requires the participation of instructors to select the most

suitable process structure from the set of solutions recompiled by our framework. Notice that this is still a difficult

task, since instructors do not always have a deep knowledge of how IMS LD structures a UoL. This decision is more

complex as the number of recompiled structures, that match the logs, grows. Therefore, as future work we plan to

define some criteria, in addition to those identified in [11], to order the recompiled UoLs, making this selection easier.

So far our experience makes us think that the complexity is in the activities part of the UoL, since plays, acts, and

role-parts are usually not considered when designing a UoL in non-IMS LD environments. However, this point must

still be verified.
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[27] Paquette, G., Léonard, M., 2006. The educational modeling of a collaborative game using MOT+LD, in: Proceedings of the 6th IEEE

International Conference on Advanced Learning Technologies - ICALT, Kerkrade, The Netherlands. pp. 1156–1157.

[28] Pechenizkiy, M., Trcka, N., Vasilyeva, E., van der Aalst, W.M.P., Bra, P.D., 2009. Process mining online assessment data, in: Barnes, T.,

Desmarais, M.C., Romero, C., Ventura, S. (Eds.), Proceedings of the 2nd International Conference on Educational Data Mining, (EDM),

Cordoba, Spain. pp. 279–288.

27



[29] Poncin, W., Serebrenik, A., van den Brand, M., 2011a. Mining student capstone projects with FRASR and prom, in: Lopes, C.V., Fisher,

K. (Eds.), Proceedings of the 26th Annual international conference companion on Object-Oriented Programming, Systems, Languages, and

Applications, (OOPSLA), Portland, OR, USA. pp. 87–96.

[30] Poncin, W., Serebrenik, A., van den Brand, M., 2011b. Process mining software repositories, in: Mens, T., Kanellopoulos, Y., Winter, A.

(Eds.), Proceedings of the 15th European Conference on Software Maintenance and Reengineering, (CSMR), Oldenburg, Germany. pp. 5–14.

[31] Quinlan, J.R., 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[32] Rodrı́guez, M.C., Derntl, M., Botturi, L., 2010. Visual instructional design languages. Journal of Visual Languages and Computing 21,

311–312.

[33] Romero, C., Ventura, S., Garcı́a, E., 2008. Data mining in course management systems: Moodle case study and tutorial. Computers &

Education 51, 368–384.

[34] Rozinat, A., van der Aalst, W.M.P., 2008. Conformance checking of processes based on monitoring real behavior. Information Systems 33,

64–95.

[35] Rozinat, A., de Medeiros, A.K.A., Günther, C.W., Weijters, A.J.M.M., van der Aalst, W.M.P., 2007. The need for a process mining evaluation

framework in research and practice, in: ter Hofstede, A.H.M., Benatallah, B., Paik, H. (Eds.), Proceedings of the 5th International Conference

on Business Process Management, (BPM), Brisbane, Australia. pp. 84–89.

[36] Vázquez-Barreiros, B., Mucientes, M., Lama, M., 2015. ProDiGen: Mining complete, precise and minimal structure process models with a

genetic algorithm. Information Sciences 294, 315–333.

[37] Verbeek, H.M.W., Buijs, J., Van Dongen, B.F., Van Der Aalst, W.M.P., 2011. Xes, xesame, and prom 6, in: Soffer, P., Proper, E. (Eds.),

Information Systems Evolution. Springer Berlin Heidelberg. volume 72 of Lecture Notes in Business Information Processing, pp. 60–75.

[38] Vidal, J.C., Lama, M., Bugarı́n, A., 2012. Petri net-based engine for adaptive learning. Expert Systems With Applications 39, 12799–12813.

[39] Weijters, A., Ribeiro, J., 2011. Flexible heuristics miner (fhm), in: Proceedings of the IEEE Symposium on Computational Intelligence and

Data Mining (CIDM 2011), IEEE. pp. 310–317.

[40] van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A., 2009. Process discovery using integer linear programming.

Fundam. Inform. 94, 387–412.

28


	Introduction
	IMS Learning Design
	State of the Art
	Framework
	Mining the learning flow from event logs
	ProDiGen

	Mining adaptive rules from event logs
	Identification of variables and activities
	Determining the variable values for each activity
	Learning rules with a decision tree

	IMS LD reengineering
	Pairing the causal matrix with the IMS LD specification
	Consistency of plays
	Consistency of acts
	Consistency of role-parts
	Consistency of activities

	Results
	Process mining results
	Rules mining results
	Reenginering results

	Conclusions and Future Work

