
Reconstructing IMS LD Units of Learning

from Event Logs

Juan C. Vidal, Manuel Lama, Borja Vázquez, and Manuel Mucientes

Research Center on Information Technology (CiTIUS),
University of Santiago de Compostela

{juan.vidal,manuel.lama,borja.vazquez,manuel.mucientes}@usc.es

Abstract. In this paper a novel approach to facilitate the reuse of units
of learning (UoLs) is presented. Typically, e-learning platforms do not
provide the means to retrieve designed UoLs in a standardized format
to be reused in a different platform, but they have in common that
the students and teachers interaction with the system is logged to files.
Taking this into account, we propose to use these logs and apply a three
steps re-engineering approach to translate these UoLs into an accepted
educational modelling language, specifically IMS LD. In the first step, the
sequence of activities and their functional dependencies are learned by a
process mining algorithm. In the second step, another algorithm analyses
the variables and their value change in order to learn the adaptation rules
that may have been defined in the UoL. And finally, in the last step
the inferred process structure and rules are matched with the typical
structure of activities, acts, and plays defined by IMS LD.

Keywords: IMS LD, process mining, adaptive rules mining, learning
analytics, learning flows reengineering.

1 Introduction

In the last decade, an important effort to develop Educational Modelling Lan-
guages (EMLs) has been made. The aim of these languages is to describe from a
pedagogic point of view the learning design of a course: that is, the flow of learn-
ing activities undertaken by the learners to achieve the objectives of a course
using educational content and services. From these EMLs, the IMS Learning
Design specification [3] has emerged as the de facto standard for representing
learning designs that can be based on a wide range of pedagogical techniques.
Although there is some controversy about whether IMS LD is too complex to
be understood by teachers from a practical point of view [5], most of authors
highlights this complexity as a barrier for the adoption of IMS LD [8].

To deal with this issue a number of user-friendly authoring tools have ap-
peared. These tools provide graphical interfaces that allow to hide the complex-
ity of the IMS LD control structure and adaptive components [7]; offer visual
templates or patterns for creating learning designs based on pedagogical strate-
gies such as collaborative learning or project based learning [6]; or translate the

C. Rensing et al. (Eds.): EC-TEL 2014, LNCS 8719, pp. 345–358, 2014.
c© Springer International Publishing Switzerland 2014

346 J.C. Vidal et al.

learning design to the IMS LD specification from authoring tools that are not
based on IMS LD [4]. However, even with these tools the authoring process of
IMS LD units of learning (UoLs) is not easy for teachers when the UoLs are
complex or require to use advanced features of IMS LD.

The automatic reconstruction of UoLs could relieve this issue. In [8] authors
present an approach that focus on the reegineering of IMS LD UoLs based on a
visual language, which hides the complexity of the model. On the other hand,
this approach also requires a close collaboration between developers and teachers
to simplify the gap between the technical and pedagogical point of view of the
UoL. The main drawback of this approach is that the UoL is not automatically
reconstructed from the scratch and needs the supervision of teachers and even
developers. Other similar approaches have been proposed in the literature [2,11],
although not for IMS LD.

In this paper, we present an approach to automatically reconstruct the IMS
LD representation of a UoL from the events generated by the learners in the
virtual learning environment. This objective is achieved in three different steps.
Firstly, the learning flow of the UoL is automatically extracted through a pro-
cess discovery algorithm [1] which guarantees the completeness of the discovered
learning flow. Then an algorithm based on the knowledge about the IMS LD
control structure is applied to determine which IMS LD components should be
created. Finally, the adaptive rules of the UoL are automatically extracted from
the event logs by a decision tree learning algorithm and integrated in the IMS LD
structure.

The paper is structured as follows: in Section 2 we present the framework that
supports the mining of log files and the reconstruction of IMS LD. In sections 3
and 4 we precisely detail the how the learning flow and adaptive rules are mined
from the logs, respectively, while in Section 5 we close the circle and describe
how we transform these two models to IMS LD. Finally, in Section 6 we present
the conclusions of the work.

2 Framework

Fig. 1 depicts the conceptual framework for reconstructing IMS LD UoL from
the events generated by learners. The framework is composed by the following
components:

– Educational World. Teachers and learners are the typical participants in any
Learning activity. On the one hand, teachers design the learning flows based
on some educational methodology, and support the learning activities of the
course. On the other hand, learners are the core of the educational world
since they undertake the learning flow activities by using the resources and
services available in the virtual learning environment.

– Virtual Learning Environment. From an educational point of view, virtual
learning environments (VLEs) provide the means to carry out the learning
activities planned for a UoL, allowing learners to access to the learning con-
tents and executing the services required to facilitate those activities such

Reconstructing IMS LD Units of Learning from Event Logs 347

Learning flow discovery
(process mining-based)

Supports / Controls / Monitors

Helps / Assists

Record the events that

occur during the learning-

teaching process

Log

Learning Management System

Monitoring scripts

Learning Resources and
Services (LMS)

Educational world

Learners

Teachers
Instructors

ResourcesServices

Learning Flow

Learning flow hierarchization
(IMS LD structure)

Adaptation rules
(Decision tree)

Learning flow

IMS LD conditions

IMS LD control

structure

Teachers use IMS LD units

of learning through authoring

and delivery tools

Fig. 1. Framework for IMS LD UoLs reconstruction

as interacting with other learners or looking for information in libraries.
Furthermore, VLEs detect and register all the relevant events generated by
learners when undertake the learning activities. These events are stored in
an event log database that contains data about the activities execution, in-
cluding who participates in an activity, when it has been performed, the
properties values of the UoL such as a mark of a test, and so forth.

– Learning Flow Discovery This component implements the algorithm whose
aim is to discover the workflow of learning activities, i.e., the learning flow,
that learners undertake during a UoL. Note that this algorithm must guar-
antee that all the learning paths followed by learners are represented in the
discovered learning flow. Furthermore, this discovered learning flow should
be as simple as possible in order to facilitate the hierarchization of the learn-
ing flow into the IMS LD control structure.

– Learning Flow Hierarchization. Once the learning flow has been extracted
from the event logs, an algorithm will translate this learning flow to the
control structure defined by the IMS LD specification. This algorithm starts
by detecting sequences and selections of learning activities and then do ap-
ply the knowledge about the IMS LD control structure to create activity
structures, acts or plays.

– Adaptation Rules. The IMS LD specification has an extensive set of adapta-
tion conditions, but this framework is focused on extracting the conditions
related to the selection of learning activities (show and hide mechanism)

348 J.C. Vidal et al.

based on the changes in the properties values of the UoL. A decision tree
technique was implemented to automatically obtain these conditions, since
it is an effective approach to deal with this kind of problems.

In the following sections we will detail the last three components that consti-
tute the core of this framework.

3 Mining the Learning Flow from Event Logs

The aim of the process discovery algorithm (PDA) [1] is to identify the work-
flow that represents the learning flow followed by the learners during a UoL.
To achieve this objective, the PDA will only needs to process the metadata in-
formation provided by the event logs. From the perspective of process mining,
the quality of a process discovery algorithm is measured taking into account the
following metrics:

– Completeness, which indicates how much of the behaviour observed in the
event log can be reproduced by the discovered learning flow. Thus, a discov-
ered learning flow is complete when it can reproduce all the events contained
in the log database. In order to guarantee correct reconstructions of IMS LD
UoLs, all the activities undertaken by learners have to be included in the
mined learning flow. Therefore, the completeness of discovered learning flows
is a hard requirement for the PDA.

– Precision, which measures if the discovered learning flow is overly general,
allowing an additional behaviour that is not represented in the log. Thus a
discovered learning flow is precise when it cannot reproduce event traces that
are not available in the log database. From the point of view of the IMS LD
reconstruction to discover precise learning flows is not a requirement as hard
as completeness, since the extra behaviour has not been undertaken by any
learner.

– Minimality, which refers to discovered learning flows with the minimal struc-
ture that reflects the behaviour contained in the log database. A desirable
requirement for the PDA is to obtain simple learning flows, since the sim-
pler is the discovered learning flow, the easier is to reconstruct the IMS LD
control structure.

Taking these measures into account, we have developed a genetic algorithm
that discovers complete learning paths with very high values for precision and
simplicity. Algorithm 1 describes this algorithm, where the first three steps cor-
respond to its initialization with t representing the number of iterations of the
algorithm, timesRun is used to detect situations in which the search gets stuck,
and restart counts the number of times the algorithm is reinitialized. The exe-
cution cycle of the genetic algorithm is as follows:

– A population is created with a group of individuals where each individual is
a potential solution, i.e., a learning flow. In this algorithm, learning flows are

Reconstructing IMS LD Units of Learning from Event Logs 349

ALGORITHM 1. Genetic algorithm for discovery of learning flows

Initialize population
Evaluate population
t = 1, timesRun = initialTimesRun, restarts = 0
while t ≤ maxGenerations && restarts < maxRestarts do

Selection
Crossover
Mutation
Evaluate new individuals
Replace population
t = t+ 1
if bestInd (t) == bestInd (t− 1) then

timesRun = timesRun− 1
end
if none of the individuals of the population have been replaced then

timesRun = timesRun− 1
end
if timesRun < 0 then

Reinitialize population
Evaluate population
timesRun = initialTimesRun, restarts = restarts + 1

end

end

represented through causal matrices which can be easily translated into Petri
nets [9]. Fig. 2 depicts the Petri that models a UoL where the pedagogical
objective is to learn about polymorphism in object-oriented programming.

– These individuals are then evaluated with a fitness measure that indicates
how well each individual is able to reproduce the behaviour shown in the log
database.

– After this evaluation process, the population evolves by selecting those in-
dividuals with a higher fitness. Then, it generates new individuals through
genetic operators like crossover, which combines two individuals, and muta-
tion, which modifies an individual.

– These steps will be repeated in a cycle until any of the termination condi-
tions, maxGenerations and maxRestarts, are fullfilled.

In this genetic algorithm, the fitness measure (F) for an individual, i.e., for
a learning flow, is based on its completeness (Cf), precision (Pf), and simplic-
ity (Sf). When two individuals are compared to decide which of them will be
selected, these three measures are considered separately:

F(a) > F(b) ⇐⇒ {Cf (a) > Cf (b)} ∨ {Cf (a) = Cf (b) ∧ Pf (a) > Pf (b)} (1)

∨ {Cf (a) = Cf (b) ∧ Pf (a) = Pf (b) ∧ Sf (a) > Sf (b)}

350 J.C. Vidal et al.

Read about
polymorphism

Exercise A

Exercise B

Answer testComplete example

Fig. 2. Petri net that represents the learning flow of a UoL about polimorphism

Thus the individual with highest completeness will be selected. If the values
for this measure are equal for both solutions, then the second measure to be
compared is the precision. If both individuals have the same precision, the sim-
plicity will be checked. Therefore, we are looking for the simplest learning flow
from precise learning flows that are complete.

In order to check the efficiency of this algorithm for discovery learning flows,
we have conducted an experiment with 14 UoLs1 that have been undertaken in
the OPENET4LD environment [12]. OPENET4LD collects all the events gener-
ated by the learners when they perform the learning activities of a UoL. Table 1
presents the results of the comparison between our genetic algorithm (GA) and
two of the most used process discovery algorithms, alpha++ [14] and heuristic
miner [13]. The results shows that only GA is able to discover learning paths
that are complete and with high precision.

4 Mining Adaptive Rules from Event Logs

Using log files of VLEs can help to determine who has been active in the course,
what they did, and when they did it. In this section we use these data to obtain
the adaptive rules of the UoLs that determine the learning flow and the material
presented to students. Unfortunately, the log files provided by VLEs do not
follow a standard and therefore a generic solution cannot be formulated for such
purpose. In fact, log files are seldom used mainly because it is difficult to interpret
and exploit them. In most of the cases, the data aggregated are incomplete or
even not logged.

Taking this into account, in this section we describe our approach based on
the extract of the log file represented in Fig. 3. This example has two parts.
On the one hand, the first four records represent the execution of activities and
contain information about the UoL id, its name, the user that ran the activity,
the level of IMS LD of this activity (play, act, role-part), the execution time,

1 Available at http://dspace.ou.nl

Reconstructing IMS LD Units of Learning from Event Logs 351

Table 1. Performance of the genetic algorithm for learning flow discovery (GA)

Ca
nd
ida
s

In
tro
du
cti
on

IM
S
Le
ar
nin
g

CL
Fr
ida
y

Ta
i C
hi

en
do
lab

Le
ar
nin
g L
M
S

A2 Yo
ur
Op
ini
on

Ca
mi
na
ta
s

Tr
ip
ar
ou
nd
Sp
ain

De
ba
te

D2 A8

GA
Pf 1.0 1.0 0.95 1.0 1.0 1.0 1.0 1.0 1.0 0.77 1.0 1.0 1.0 1.0
Cf 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Sf 0.34 0.35 0.29 0.34 0.34 0.36 0.36 0.35 0.37 0.3 0.35 0.32 0.31 0.29

HM
Pf 1.0 1.0 0.96 1.0 1.0 1.0 1.0 1.0 1.0 0.73 1.0 1.0 1.0 1.0
Cf 1.0 1.0 0.75 1.0 1.0 1.0 1.0 1.0 1.0 0.2 1.0 1.0 1.0 1.0
Sf 0.34 0.35 0.29 0.34 0.34 0.36 0.36 0.35 0.37 0.28 0.35 0.32 0.31 0.29

α++
Pf 1.0 1.0 0.94 1.0 1.0 1.0 1.0 1.0 1.0 0.73 1.0 1.0 1.0 1.0
Cf 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.3 1.0 1.0 1.0 1.0
Sf 0.34 0.35 0.31 0.34 0.34 0.36 0.36 0.35 0.37 0.29 0.35 0.32 0.31 0.29

(3, ’UOLID 201’, ’SOID 0’, ’GeoQuiz3’, ’root’, ’2013-10-14 01:44:51’, ’play’, ’play-13193839-3ddf-

41e2-a4b8-7af8dc13d059’, ’play 0’, ’pc split’),

(4, ’UOLID 201’, ’SOID 0’, ’GeoQuiz3’, ’root’, ’2013-10-14 01:44:52’, ’act’, ’act-e4901d0f-8232-4cce-

a166-20e29133d279’, ’act 0’, ’ac split’),

(5, ’UOLID 201’, ’SOID 0’, ’GeoQuiz3’, ’root’, ’2013-10-14 01:44:52’, ’act’, ’act-e4901d0f-8232-4cce-

a166-20e29133d279’, ’act 0’, ’as split’),

(6, ’UOLID 201’, ’SOID 0’, ’GeoQuiz3’, ’d9’, ’2013-10-14 01:44:52’, ’role part role part’, ’act-

e4901d0f-8232-4cce-a166-20e29133d279’, ’role part role part 0’, ’as start’),

...

(289, ’OPENET RMI SOID 0’, ’UOLID 201’, ’setproperty’, ’2013-10-14 01:59:30’, ’user 2’, ’d2’,

’Student’, ’ locpers property 12 ’, ’Answer1’, ’locpers property’, ’string’, ’Venezuela’),

(290, ’OPENET RMI SOID 0’, ’UOLID 201’, ’change property value 0’, ’2013-10-14 01:59:30’,

’user 2’, ’d2’, ’Student’, ’ locpers property 1 ’, ’Value1’, ’locpers property’, ’integer’, ’2’),

(291, ’OPENET RMI SOID 0’, ’UOLID 201’, ’change visibility’, ’2013-10-14 01:59:30’, ’user 2’,

’d2’, ’Student’, ’ learning activity 5 ’, ’flow3’, ’locpers property’, ’boolean’, ’false’),

(292, ’OPENET RMI SOID 0’, ’UOLID 201’, ’setproperty’, ’2013-10-14 01:59:33’, ’user 2’, ’d2’,

’Student’, ’ locpers property 13 ’, ’Answer2’, ’locpers property’, ’string’, ’Siria’), ...

Fig. 3. Example of a text-based log file

and the specific name of the activity, among other information. On the other
hand, the last four records represent events on the properties used by the UoL.
Specifically, each one of these records contains information about the UoL id, the
operator that favor the change, the type of the property, and the new assigned
value.

352 J.C. Vidal et al.

4.1 Identification of Variables and Activities

The identification of variables and activities is highly dependent on the type
of events recorded in the log files. Since each VLE may record the events in a
different format, the syntactic patterns used to identify these events are usu-
ally different. For example, the identified variables are highlighted in Fig. 3.
In this case, a simple regular expression with the keywords ”setproperty” and
”change visibility” were used to identify the variables, but a different pattern
should be used to identify these same variables in an XML-based log file. How-
ever, the main issue in the identification of variables is that they are not always
recorded in the log files. When this situation happens, the mechanism for learn-
ing the adaptation rules presented in this section cannot be applied.

4.2 Determining the Variable Values for Each Activity

In the ideal situation, each time an event is produced, (i) the state of the variables
is saved in a log file. This means that, e.g., at the end of an activity the values of
the variables of a UoL are stored in the corresponding log file. Moreover, (ii) in
this context a value change is also considered an event and so is also recorded.
However, reality is different and usually both mechanisms are not supported
at the same time (e.g., in the log extract of Fig. 3 only variable changes are
included).

The variables values are subsequently associated to an activity, so we can
determine the state of the properties before and after the activity is performed.
Therefore, each time a variable value changes we must determine when and by
who it was modified. In this procedure, the time of the event is crucial since it
will determine the initial value of variables in the next activity.

4.3 Learning Rules with a Decision Tree

The identification of the adaptive rules is performed by means of J48 decision
tree algorithm [10]. We selected this type of algorithms because of its simplicity,
performance, and because an adaptive rule is very similar to a decision tree.
As it is depicted in the left part of Fig. 4, a decision tree is a graph-like struc-
ture in which each internal node represents a test on an attribute, each branch
represents the outcome of the test and each leaf node represents the class la-
bel (or decision taken after computing all attributes). A path from root to leaf
represents classification rules, and in our case, an adaptive rule.

Transforming a decision tree to an adaptive rule is straightforward since these
trees can easily be modelled as DNF (Disjunctive Normal Form) rules. For in-
stance, the right part of Fig. 4 show the corresponding rules for this tree. Specif-
ically, each branch is converted into a rule, where:

– The condition is set as the conjunction of the arc tests of a branch.
– The action of the rule is the leaf node of the branch (class/decision).
– The disjunction of all the rules has the semantics of the decision tree.

Reconstructing IMS LD Units of Learning from Event Logs 353

IF T1 <= 40
THEN visible (Task 1)

IF T1 > 40 AND T1 <= 80 AND T2 <= 50
THEN visible (Task 2)

IF T1 > 40 AND T1 <= 80 AND T2 > 50
THEN visible (Task 3)

IF T1 > 40 AND T1 > 80
THEN visible (Task 4)

T1 <= 40 T1 > 40

T1 <= 80 T1 > 80

T2 <= 50 T2 > 50

Task 1

Task 2 Task 3

Task 4

Fig. 4. Transformation of a decision tree to a DNF rule base

Tree complexity has its effect on the accuracy and is usually determined by
the total number of nodes, total number of leaves, depth of tree, and number
of attributes used in the tree construction. The number of variables is therefore
a crucial factor since too many may reduce the accuracy of the tree. Moreover,
the number of data required to learn increases with the number of variables.
However, adaptive rule are usually not based on many variables. Thus, our ap-
proach limits the variables considered during the learning of the decision tree,
and specifically, only variables which value has changed in the execution of the
activity are included.

5 IMS LD Reengineering

IMS LD is a well-known EML for adaptive learning which is specified in three
different levels of implementation (levels A, B, and C), which determine the
learning flow, the changes in the environment, and the notifications, respectively.
In this paper, two learning algorithms, presented in the former sections, address
the first two levels of IMS LD. Specifically, the process structure of the learning
is determined by a process mining approach and the adaptation mechanisms
by a decision tree. However, the results obtained by these algorithms must be
transformed to adapt to IMS LD characteristics.

5.1 A learning Flow as a Theatre Metaphor

Particularly, the IMS LD learning flow description of IMS LD is described as
a theatre metaphor where there is a number of plays, that can be interpreted
as runscripts that are concurrently executed, being independent of each other.
Each of these plays consist of a set of acts, which can be understood as a module
or chapter in a course. These acts are performed in sequence, and in each of them
the participants in the UoL carry out in parallel an activity or a structure of

354 J.C. Vidal et al.

ALGORITHM 2. Identification of IMS LD activity structures of type sequence

Input: G = (T, P, F) is the Petri net structure, T = A ∪ C is the set of
transitions of the net where A is set of activities and C the set of
control transitions, P is the set of places, F ⊆ A× P ∪ P × A is the set
of arcs between transitions and places, R is the set of roles, U is the set
of participants, UR ⊆ P ×R is set of user roles, UA ⊆ P ×A is the set of
activities done by a user.

Output: SEQ is set of activity structures of type sequence.
1 AR ← {(a, r) | a ∈ A ∧ r ∈ R ∧ (∀p | u ∈ U ∧ (u, r) ∈ UR ∧ (u, a) ∈ UA)}
2 SEQ← ∅
3 for each ai ∈ A do
4 Si ← ∅
5 for each aj ∈ A do
6 if (∃ai, aj , ak, p | (ai, p) ∈ F ∧ (p, aj) ∈ F ∧ (p, ak) ∈ F → aj = ak) then
7 if ∀pa, pb | (pa, ai) ∈ PA ∧ (pb, aj) ∈ PA ∧ pa �= pb → (∃r | r ∈

R ∧ (pa, r) ∈ PR ∧ (pb, r) ∈ PR) then
8 Si ← ∅
9 if ∃j | Sj ∈ SEQ ∧ ai ∈ Sj then

10 Si ← Sj
11 else
12 SEQ← SEQ ∪ Si
13 end
14 Si ← Si ∪ {ai} ∪ {aj}
15 end

16 end

17 end

18 end

activities, the which are executed in sequence or by selecting a specific number
of them activities.

The problem therefore consists in identifying the different IMS LD elements
in the Petri net defined by the process mining algorithm. Algorithm 2 shows
one of the procedures defined for such purpose. Specifically, this algorithm is
designed to identify the activity structures of type sequence in the Petri net
G = (T, P, F) as described in Section 3. Notice that the set T is composed
of two types of transitions, namely activities and control structures, where te
activities represent the learning and support activities of the learning process.
The identification of sequences of activities takes into account (line 6) (i) that
there is a direct dependency, that is, an arc between an activity ai to a place p
and also from p to a second activity aj and that here is no other dependency
between ai and another activity ak. Moreover, the two activities must also verify
that they share the same role (line 7), otherwise they could be in different role-
part structures.

The remaining algorithms used to identify the plays, acts, role-parts, or se-
lections of activities use a very similar approach that consists in identifying the
inner structural characteristics of each component. Specifically:

Reconstructing IMS LD Units of Learning from Event Logs 355

– Selection of activities. Very similar to Algorithm 2 where all the activities
of the structure must share a role but also requires the activities in parallel
between an OR-split and an OR-join.

– Role-part. The most difficult structure to identify. A role-part can be sim-
ple (just one activity with a specific role) or complex if it is composed by
structures of activities, where sequences and selections can also contain sub-
activities and structures.

– Act. Role-parts must match an AND-JOIN workflow pattern, that is, role-
parts are split in parallel by an AND-split control structure and their exe-
cution is synchronized by an AND-join.

– Play. Defined by a set of acts in sequence.
– Method. Defined by a set of plays in parallel in an AND-JOIN workflow

pattern.

5.2 Knowledge-Base of Adaptive Rules

IMS LD adapts the learning flow of a student according to a set of predefined
properties and rules. Properties can have different scopes, such as global or
local, different targets, such as a person or people with a specific role, or even
the combination of different scopes and targets, such as, e.g., global personal
or local role properties. The state of a learning process is consequently defined
by these variables, and therefore, depending on their values the learning flow
may vary according to students’ needs. Usually, the state is composed by user
properties and the presentation to a student of educational material is guided
by his scores, his responses to questions, or, e.g., the time needed to solve a
problem. However, properties with a global scope or targeted to roles (not just
to individuals) provide to IMS LD the means to adapt collaborative or group-
focused activities.

Taking this into account, the variables extracted from the event logs must
be classified according to IMS LD types. The procedure detailed in Algorithm 3
returns the IMS LD scope and target of a property p previously identified in the
log files. Firstly, it defines the time intervals (t, t+1) between two events that have
changed the value of p. For each one of these intervals, the algorithm identifies
the value that the property had in this instant in the log files. Specifically, we
define this value for each UoL and participant (line 9). Notice that we do not
have always an event from which we can obtain the value of a property in a time
interval. Therefore, we store the historical values for each UoL and participant
during the processing of the log files and return the last known value of the
property when no event was produced in the given time interval. The property
target is determined in the if-then-else from lines 13 to 18. In this structure
we identify the cases in which the property takes the same values for each time
interval. If all the participants with the same role verify this predicate then the
property target is set to role. Notice that since this structure is in a loop all the
time intervals must verify this condition to finally be a role-targeted property.
The verification of the scope is in between lines 21 to 26. In this if-then-else
structure we just check that the value of a property is shared between all the

356 J.C. Vidal et al.

ALGORITHM 3. Classification of a variable identified in the event logs

Input: p is the property we want to classify, L is set of logs, M is the set of
participants, U is the set of UoLs.

Output: sp ∈ S and tp ∈ T are the scope and target of p, respectively.
Data: S = {local, global} and T = {role, personal} are the set of scopes and

targets defined in IMS LD, respectively.
1 t← 0
2 V ← ∅
3 repeat
4 t+1 ← next time p value changed in L starting from t
5 V ← ∅
6 for u ∈ U do
7 Vu ← ∅
8 for m ∈M do
9 Vu,m ← {p values in UoL u for the user m in the interval (t, t+1)}

10 Vu ← Vu ∪ {Vu,m}
11 end
12 Vu ← Vu ∪ {Vu,m}
13 if ∀m1,m2, r, x | m1,m2 ∈M ∧m1 �= m2 ∧ Vu,m1 , Vu,m2 ∈ Vu ∧ r ∈

role(m1) ∧ r ∈ role(m2) ∧ x ∈ Vu,m1 → x ∈ Vu,m2 then
14 if tp �= personal then
15 tp ← role
16 end

17 else
18 tp ← personal
19 end
20 V ← V ∪ Vu
21 end
22 if ∀u1, u2,m1,m2, x | u1, u2 ∈ U ∧ u1 �= u2 ∧m1, m2 ∈M ∧m1 �=

m2 ∧ Vu1,m1 ∈ Vu1 ∧ Vu2,m2 ∈ Vu2 ∧ Vu1 , Vu2 ∈ V ∧ x ∈ Vu1,m1 → x ∈ Vu2,m2

then
23 if sp �= personal then
24 sp ← global
25 end

26 else
27 sp ← local
28 end
29 t← t+1

30 until t �= t+1

UoLs in the time interval. If it is, the scope of the property is set to global, and
to local if it is not.

The second pillar of IMS LD adaptation mechanism is a set of rules. Rules
are structured as a conditional if-then-else control flow and therefore evaluate
the then part when the if condition is verified and the else part when it is not.
The operators used in the if, then, and else blocks are defined in the IMS LD

Reconstructing IMS LD Units of Learning from Event Logs 357

Level B of the information model [3] and include classic logical, arithmetic,
and comparison operators, and others more specific that support operating on
the user model and the process structure (i.e., methods, acts, role-parts, and
activities). Contrary to programming languages, the semantics of the then part
is limited and so can only contain actions, which will show or hide objects, change
a property value, or notify a role. The else part is more standard, and allows
concatenating if-then-else control structures, in addition to actions.

Notice that IMS LD rules structure is very similar to those described in Sec-
tion 4. Two additional remarks about the transformation of the decision tree.
Firstly, there is always a viable transformation between the obtained decision
tree and the IMS LD rules since (i) the operators used by the decision tree are
supported by IMS LD and (ii) we just learn two types of actions for changing
(i) the visibility of an object and (ii) the value of a property. Secondly, the rules
we generate have the structure of an if-then control flow, that is, we never have
an else block. This last feature does not limit the semantics of our rule model
since each else is represented as an if-then rule but with its specific condition.

Finally, we must also mention that in IMS LD rules are evaluated at the
beginning of a session and each time a property is changed. Furthermore, rules
are also evaluated at the completion of methods, plays, acts, and activities. This
is reasonable since these control structures coordinate the participants of the UoL
and thus that or teachers change the value of their properties in the activities,
methods, plays, and acts define a group behaviour and thus changes must affect
all the members of the group. However, this behaviour is very dependent of
IMS LD and even more complicated to extract from the events of log files. In
fact, usually this kind of adaptation is represented by the process mining as
a simple activity that changes the state of the properties. Consequently, the
completion of upper hierarchical structures, such as plays and acts, will not
change the state of learning. However, this is not a big issue since our solution
defines specific dummy activities to such a change.

6 Conclusions and Future Work

In this paper we have proposed a global approach that facilitates the reuse of
UoL defined in legacy systems or VLEs. Our solution has been implemented to
support the mining of event log files (i) to obtain the learning flow, formalized
as a Petri net, and performed by students and instructors, and (ii) to identify
the adaptation rules, represented as decision trees, used to tailor the learning
flow to each student. From these two results, we also describe how to translate
these models into an IMS LD UoL.

Finally, as future work we plan to extend the number of operators used by the
decision tree algorithm to so give support to the complete grammar or IMS LD.

358 J.C. Vidal et al.

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes, 1st edn. Springer Publishing Company, Incorporated (2011)

2. Bergenthum, R., Desel, J., Harrer, A., Mauser, S.: Modeling and Mining of Learn-
flows. In: Jensen, K., Donatelli, S., Kleijn, J. (eds.) ToPNoC V. LNCS, vol. 6900,
pp. 22–50. Springer, Heidelberg (2012),
http://dl.acm.org/citation.cfm?id=2231056.2231058

3. Global Learning Consortium, I.: IMS Learning Design Information Model, Version
1.0 Final Specification (March 2003),
http://www.imsglobal.org/learningdesign/index.html

4. Dalziel, J.: Implementing learning design. the learning activity management system
(lams). In: Proceedings of the 20th Annual Conference of the Australasian Society
for Computers in Learning in Tertiary Education (ASCILITE), pp. 51–58. IADIS
Press, Adelaide (2003)

5. Derntl, M., Neumann, S., Griffiths, D., Oberhuemer, P.: The conceptual structure
of ims learning design does not impede its use for authoring. IEEE Transactions
on Learning Technologies 5(1), 74–86 (First 2012)

6. Hernández-leo, D., Villasclaras-Fernández, E.D., Asensio-Pérez, J.I., Dimitriadis,
Y., Jorŕın-Abellán, I.M., Ruiz-Requies, I., Rubia-Avi, B.: Collage: A collaborative
learning design editor based on patterns. Educational Technology & Society 1(9),
58–71 (2006)

7. Karampiperis, P., Sampson, D.: A flexible authoring tool supporting adaptive
learning activities. In: Proc. of IADIS International Conference on Cognition and
Exploratory Learning in Digital Age (CELDA 2004), pp. 51–58. IADIS Press, Lis-
bon (2004)

8. Martinez-Ortiz, I., Sierra, J.L., Fernandez-Manjon, B.: Authoring and reengineer-
ing of ims learning design units of learning. IEEE Trans. Learn. Technol. 2(3),
189–202 (2009), http://dx.doi.org/10.1109/TLT.2009.14

9. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

10. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers Inc., San Francisco (1993)

11. Reimann, P., Yacef, K.: Using Process Mining for Understanding Learning. In:
Handbook of Design in Educational Technology, pp. 472–481. Routledge, New York
(2013)

12. Vidal, J.C., Lama, M., BugaŕıN, A.: Petri net-based engine for adaptive learning.
Expert Syst. Appl. 39(17), 12799–12813 (2012),
http://dx.doi.org/10.1016/j.eswa.2012.05.013

13. Weijters, A., van der Aalst, W., Alves de Medeiros, A.: Process mining with the
heuristics miner-algorithm. BETA Working Paper Series WP 166. Eindhoven Uni-
versity of Technology (2006)

14. Wen, L., Aalst, W.M., Wang, J., Sun, J.: Mining process models with non-free-
choice constructs. Data Min. Knowl. Discov. 15(2), 145–180 (2007),
http://dx.doi.org/10.1007/s10618-007-0065-y

