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Abstract— This paper describes an Adaptive Evolutionary
approach to the problem of the production planning task in
the wood furniture industry. The objective is to schedule new
incoming orders and to regenerate the scheduling for already
existing orders when necessary. Complexity and uncertainty of
this task promotes the use of an hybrid solution that combines
Evolutionary Algorithms (EAs) and Fuzzy Sets. On one hand,
EAs allow an efficient and flexible use of large number of
parameters involved in the scheduling task and to reduce its
computation time. On the other hand, Fuzzy Sets improve the
confidence in the evaluation of the solutions when uncertain
knowledge is used. This evolutionary approach to the production
planning task is a part of a knowledge-based system that manages
the product design life cycle of wood-based furniture and is being
currently implemented on a wood furniture industry.1

I. INTRODUCTION

Custom furniture industry is facing unprecedented levels of
competitiveness that forces organizations to increment their
productivity and to reduce their costs, since customers expect
quickly customized higher-quality products at lower cost. A
way to achieve some of these objectives is the improvement
of the processes related to the product design and assembly
[2]. As a part of the product life cycle, production planning
plays an important role to get these objectives [12], since
an accurate time estimation and an optimal assignment of
resources improve the organization productivity, logistics and
storage capacity requirements.

The problem of production planning and scheduling in
the furniture industry is not new. Conventional search and
optimization techniques are hard to apply for scheduling of
large-scale custom furnitures. On one hand jobs, resources and
the variety of constraints and preferences configure a huge and
complex search space that cannot be timely solved in practice
by traditional techniques. On the other hand, the schedule
must be frequently updated in response to changes in the jobs
priority or the availability of resources. However, in real-world
production environments, efficiency and optimization must be
balanced and results close to the optimum but achieved in a
reasonable amount of time are often sufficient. Evolutionary
Algorithms (EAs) are well suited to such problems due to their
adaptability and their effectiveness at searching large spaces
[8]. In this field EAs are a useful tool for only analysing
a small number of possible solutions in order to find an
acceptably optimized plan. In this sense, the time required
to schedule the production plant is drastically reduced.

1All authors are with Department of Electronics and Computer Science Uni-
versity of Santiago de Compostela {jvidal, manuel, alberto, lama}@dec.usc.es

An important feature for planning in the wood furniture
industry is the difficulty to estimate its manufacturing times.
Unlike other planning domains, humans still have much in-
fluence on the furniture manufacturing processes. Computer-
Aided Manufacturing (CAM) products estimate the time of
machinery from Computer-Aided Designs (CAD) designs.
However, these products do not take human influence into
account and do not provide the capacity to estimate non-
machinery time. In practice, most of estimations are based
on experts knowledge and are therefore uncertain. For this
reason, the planning task must be endowed with the capability
to deal with the uncertainty of time estimations the schedules
are based on.

In this paper, we describe the module in charge of the
production planning task as a part of a Knowledge-Based
Business Process Management System (BPMS) [27] in the
wood furniture industry that solves the product design task by
means of knowledge-enriched workflows [25]. The module
is implemented by means of an adaptive EA that selects a
number of suitable production options taking into account the
jobs to be done and the resources available for them to be done
(current workload of the industry, availability of the resources
centres, ...). The planning module includes a fuzzy rule based
system for improving the planning task in order to also
take into account the uncertainty due to bad time production
estimations and other non-foreseable factors thus allowing
plans with lower levels of uncertainty to be considered. The
BPMS is based on a framework [27] that combines the Unified
Problem-solving method Modelling Language (UPML) [6]
with workflows to define and reuse both static and dynamic
knowledge in process-oriented view. Parts of the BPMS have
been implemented and tested at a wood furniture industry,
whilst other are currently under development.

The paper is structured as follows: section II describes the
scheduling problem which custom furniture industry faces.
Based on this description, section III describes the modelling
approach to solve the problem and its implementation. Finally,
section IV present the conclusions and the future trends of this
work.

II. WOOD-BASED FURNITURE MANUFACTURING

This section describes the most elementary concepts of the
production planning task in the custom wood-based furniture
manufacturing industry and provides the basis for the approach
presented in the following sections. We must remark that some
of the task features described in this section are attached to the
characteristics of the industry the system is being developed
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for. However, experience tells us that most of companies of
this field face similar troubles when promoting the automation
of the production planning task and therefore, could take
advantages of the solution herein described.

The aim of production planning is to schedule a finite set
of client orders O = {Oo, 1 ≤ o ≤ NO} in the manufacturing
workload. A finite set of resources R = {Rr, 1 ≤ r ≤ NR},
both human as well as machines (cutting machine, horizon-
tal band saw, two side thickness planner, abrasive finishing
machine, etc.) is in charge of performing the different man-
ufacturing operations MO = {MOm, 1 ≤ m ≤ NMO} (cut,
shape, assemble, finish, etc.) of a production plant. Client
orders must be sorted according to a given priority and its
delivery date. Orders are subdivided in a set of jobs Ji ={
Jk

i , 1 ≤ k ≤ NJi

}
, Oi ∈ O with a specific manufacturing

operation MOm to be done. Jobs inherit the client order
precedence but are also sorted according to the operation
dependencies. These dependencies are defined by means of
predefined manufacturing routes which are assigned to a
furniture manufacturing based on its CAD design specification.
For example, the use of a type of joint may require to
assemble the furniture before the finishing, thus increasing the
manufacturing, packaging and/or shipping costs.

A special feature of the planning task in this field is that
jobs are not directly related to resources. A job is assigned
to a resource centre Cc (C = {Cc|1 ≤ c ≤ NC}) which is
in charge of dividing the work among its resources. In this
sense, the resource centre has the capability to assign the job
to an individual or a group of resources. For this purpose,
a set of strategies S = {Ss|1 ≤ s ≤ NS} has been defined
to group resources. Basically, three type of strategies have
been defined: (i) a single one, (ii) a percentage or (iii) all
the available resources belong to the group that will perform
the job. However, the association of operations is made at
a resource level and thus centres can only perform those
operations that can be carried out by their resources. Moreover,
resource assignment to centres may vary along the time. In a
certain sense, resources define time slots that are assigned to
a centre. Thus, the time slots for resource Rr can be defined
as TSr =

{
TSt

r, t = ([tin, tout], Jk
i )

}
where t represents

the resource assignment to perform a job Jk
i in the time

interval [tin, tout] in resource Rr. Initially, all the resources
are available, i.e. they have no schedules assigned Jk

i = φ for
k = 1, ..., NJi and i = 1, ..., NO.

Let us suppose a client order O1 composed of one hundred
office desks. The office desks may consists of different kinds
of materials such as metal, wood and wood-based products,
plastic, melamine foils, laminate, PVC, and so on. Based on
the CAD designs of the desks, specific manufacturing, and
assembly rules related to the kind of material the furniture
will be made of, the manufacturing operations to be performed
and thus its jobs Jk

1 for k = 1, ..., NJi. In order to define a
manufacturing plan, each job must be assigned to a resource
centre. For example, job J1

1 (e.g. in charge of cutting the
melamine panels) may be assigned to the cut centre C1 which
assigns two cutting machines (R1 and R2) to perform this job.

Resource

Polynomial

Operation Type

3(x+y) + 2z – t2

Dowel Joint

x

y
z

CAD design 
specification

Time

Fig. 1. Time estimation of a resource manufacturing operation is built from
a polynomial equation

As regards the manufacturing plan, this assignment means that
the free time slots of the R1 and R2 resources are assigned to
the job.

The main difficulty related to the planning task is that the
time to perform a job depends on (i) the resource that will per-
form it, (ii) the manufacturing operation to be performed, and
(iii) the furniture specification (specially related to material).
This scenario implies that the job time must be estimated for
each manufacturing plan generated along the planning process.
We use an estimation method based on influence parameters
in order to determine a polynomial approach for estimating
the time of resource operations. Once these parameters were
identified by means of regression equations (over a set of well
balanced examples that were timed), the coefficients of these
polynomials are calculated. Following with the office desk ex-
ample, suppose the drying kiln operation J1

1 . The polynomial
that obtains the job time for this process should take into
consideration relevant parameters such as the intended use of
the product (inside or outside use), the product volume, or
the moisture content among other aspects. As it is depicted
in Fig. 1, time estimation requires to relate the resource and
its polynomial equation with the CAD specification of the
furniture purpose of the evaluation. Since time recordings
are not available for all future productions, and the relevant
parameters for them may also be different from previous
ones, time estimations are always associated to a degree of
uncertainty that is inherent to the production problem.

III. AN ADAPTIVE FUZZY EVOLUTIONARY APPROACH TO

THE PRODUCTION PLANNING PROBLEM

This section describes our approach to develop the pro-
duction planning task described in section II. Since some of
the features of the BPMS influenced the planning module
solution, it is worth to briefly mention them: the BPMS
is modelled as a workflow specially designed to cover the
product design in the wood furniture industry within a new
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Fig. 2. HLPN of the adaptive fuzzy evolutionary algorithm

workflow framework [27] which is based on both workflow
[1] and UPML frameworks [6]. The workflow layer in this
framework is used to define the control flow of business
processes. Within this layer, a propose, revise and update
composite method for dealing with the EA has been defined
through a High Level Petri Net (HLPN) [16]. Through the
HLPN formalism, the workflow specification models tasks by
means of transitions, conditions by means of places and cases
by means of coloured tokens. Complex tasks, represented by
substitution transitions [16], will be solved through composite
methods.

A. Adaptive Fuzzy Evolutionary Algorithm Description

The EA algorithm defined for our scheduling task is de-
picted in Fig. 2. The usual structure of the EA has been
upgraded in order to support a fuzzy control over the EA
behaviour (grey box over the HLPN in Fig. 2). Production
scheduling in the wood furniture industry is based on the
human experience and empirical information and its results
have a certain degree of uncertainty. In this sense, it is
necessary to control the degree of confidence of the solutions
obtained in each EA iteration. For this purpose, a fuzzy
controller supervises the new populations and modifies the
selection, mutation and crossover rates in order to improve the
quality of the solutions and to avoid premature convergences.

The initial marking of the HLPN EA defines the initial
values for the fitness, selection, crossover and mutation rates
and sets a population size of N individuals. Population size
plays an important role in the correct behaviour of this solu-
tion. Although the domain-specific control knowledge reduces
the complexity of our task, planning is extremely hard to
solve. Population size adjusts the quality of the solution at
the expense of task time consuming. Large populations obtain
better work plans but demand more computation. The same

happens with the fitness rate and the number of iterations of
the EA. With a small number of iterations or a wrong fitness
rate, the EA may get results away from the optimal solution.

1) Problem Encoding: The encoding of our scheduling
problem is depicted in Fig. 3. The chromosomes contain all the
orders that must be manufactured. Specifically, a chromosome
contains a sequence of orders scheduled according to its
priority and delivery date. This kind of arrangement assigns
a higher priority to jobs based on the client order precedence
and allow those jobs to choose their resources and reserve
their free slot times in advance.

Jobs of the chromosome are ordered based on the manufac-
turing route selected to perform a client order. This kind of
sorting, jointly with the precedence constraints of client orders,
define a unique jobs configuration. In fact, a job position is
the same in all the chromosomes of a population. The genes
that compose the chromosomes are defined by three elements:
a job identifier, a resource centre identifier and a resource
assignment strategy identifier. A gene defines the centre that
will perform a job and its resource assignment strategy.

It should be noted that this EA does not allow the definition
of incorrect chromosomes. Both the generation of the initial
population and the mutation operations define only correct
chromosomes.

2) Fitness Function: The fitness function herein described
evaluates the goodness of each of the individuals of the
population. This evaluation is very hard because of the sim-
plicity of the chromosome. In a certain sense, the iterations
in the EA define the assignment of resources to jobs and the
configurations of resources within the same resource centre.
Although this information restricts the scheduling, it does
report nothing about the workload of the resources or the
manufacturing time. In fact, it is necessary to compute the
work plan from the chromosome information before the fitness
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Fig. 3. Chromosome and gene representation

function can evaluate it.
The method that solves this task defines the following steps

for each job Jk
i of a client order Oi:

• Select all the resources Rr of the resource centre Cc that
can perform the job Jk

i .
• Compute the time and the percentage of work performed

for the operation type MOm per minute of work for each
Rr.

• Get the free time slots of each Rr based on (i) the
manufacturing strategy of the Oi (”as soon as possible”,
”as late as possible”, ”no strategy”), on (ii) its delivery
date and (ii) on the jobs dependencies.

• Define the resource groups of the Cc that can perform Jk
i

according to the grouping strategy Ss in the chromosome.
• Select the most suitable group based on the free slot

assignment and the time worked by each resource.

Fitness function formulae for a plan defined in the time
interval [tin, tout] can be defined as follows where α, β, δ, γ ∈
R are weight coefficients:

α


 ∑

r=1,...,NR

wl[tin,tout]
r


 − β




∑
r=1,...,NR

[t1,t2]∈[tin,tout]

ol[t1,t2]
r


 +

δ


 ∑

i=1,...,NO

ctimei


 + γ


 ∑

i=1,...,NO

ccosti




Fitness evaluation is based on four criteria. The first one, is
related to the resources work load. In this sense, a high degree
of work load indicates a good use of resources.

wl[tin,tout]
r =

usage
[tin,tout]
r

availability
[tin,tout]
r

Resource work load is based on the usage of a resource in a
time interval. The usage formulae for the resource Rr and the
time interval [tin, tout] can be defined as follows, where Jk

i �=
φ ∀k = 1, ..., NJi, i = 1, ..., NO, and [t1, t2] ∈ [tin, tout]:

usage[tin,tout]
r =

∑

TS
[t1,t2],Jk

i
r ∈TSr

(t2 − t1)

Computation of availability is similar, and has also includes
the free time slots of the resource (Jk

i ∈ (Ji ∪ φ)).
The second criterion looks for overloads and possible bot-

tlenecks in the production plant. This is a negative property

of a plan. A resource Rr for r = 1, .., NR is overloaded for a
certain period of time [tin, tout] where tin + 60 < tout if the
wl

[tin,tout]
r > 0.9 and other resources Rk for k = 1, .., NR

and k �= r in the same centre have a wl
[tin,tout]
k < 0.9 for the

same manufacturing operations. It should be noted that the
minimum period of time to define an overload is fixed in 1
hour.

Time and cost related to the orders manufacturing are also
taken into account. This evaluation compares the time and cost
needed to perform a client order manufacturing in relation
to the time and cost set in its price estimate. For example,
the use of a certain resource may reduce the production time
but increase the price of the manufacturing. The formulae
for the time comparison between the estimate TE and the
manufacturing order Oi for i = 1, ..., NO time estimation
in the client order time interval [tin, tout] can be defined
as follows where i = r, ..., NR, k = 1, ..., NJi, [t1, t2] ∈
[tin, tout], and Jk

i �= φ for k = 1, ..., NJi:

ctimei =

∑
TS

[t1,t2],Jk
i

r ∈TSr

(t2 − t1)

TE

The same procedure has been used to compute the cost
comparison. In this case, the time slots of each resource is
multiplied by the resource cost per minute costr and compared
against the cost estimate CE:

ccosti =

∑
TS

[t1,t2],Jk
i

r ∈TSr

(t2 − t1) · costr
CE

3) Selection, Crossover and Mutation Functions: Although
the operators used in this EA are quasi-standard, some of them
introduce some differences because of the chromosome encod-
ing. As we previously mentioned, incorrect chromosomes are
not allowed in our scheduling process. For this reason, both
crossover an mutation operators define a special behaviour.
The scheduling task uses a crossover operator that randomly
defines one crossover point. However, this point cannot cut
a gene. As regards mutations, a random mutation operator
is defined with the ability to perform two kind of changes.
It is possible to change the centre that will perform the
manufacturing operation or the resource assignment strategy.
In both cases, the number of mutation are restricted to the
centres that have a resource with the ability to perform the
job and the grouping strategies defined in the environment,
respectively.

4) Fuzzy Rule Based System for EA adaption: The fuzzy
control task modifies the elite, mutation and crossover rate
values according to a fuzzy evaluation of a population. The
objective of this control is the dynamic adaption of the
algorithm in order to improve its behaviour, also considering
less uncertain plans. The fuzzy evaluation of the population
and the control of the EA is performed in several steps:

• In a previous off-line step, experts are requested to
linguistically define the significant terms for evaluating
the quality or reliability of the estimation times provided
by the regression equations for every job. This is done by
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a fuzzy partition involving three terms (HIGH, MEDIUM,
LOW) that refer to the uncertainty of the estimation times.

• Historical information of all the previous time estimations
and the actual production times for all jobs is collected.
This allows the sytems to calculate, for every job with
estimated time teJ , its mean percentage error ∆teJ .
This error will be the key information for calculating
the reliability of future time estimations. If no previous
history exists for te, the value provided by a linear
interpolation among the previously existing te is used.

• The first on-line step evaluates the quality of the time
estimations of each job Ji of the work plan, using the
previously indicated historical information. A percentage
error ∆teJi is obtained for job Ji and their membership
degree to the three linguistic labels that define its quality.
These three degrees are the measure of the uncertainty of
the estimation times for each new job.

• The second step computes the global work plan eval-
uation. Once the particular degrees of uncertainty are
calculated for each job in the plan (as stated before)
the total uncertainty measures are calculated by means
of simple t-conorm operations between the uncertainty
of each job in the plan.

• Finally both the total time estimation for the plan and its
uncertainty measure are used twofold:

1) It is used as the input to the fuzzy control system
that will improve the EA parameters.

2) It is forwarded to the expert as an indication of
the quality of the plan. In order to make it more
understandable a linguistic approximation process
is applied for giving such information only in terms
of the relevant linguistic labels HIGH, MEDIUM,
LOW and all the linguistic formulae including them
(i.e., all the AND, OR, NOT combinations of these
terms), thus considering all expressions that may be
informative to experts.

Let us see this by means of an example. Figure 4 graphically
describes the process. The historic of percentual deviations of
previous jobs is depicted in te − ∆te axis, whilst linguistic
labels defined by the expert are depicted in membership−∆te
axis. For a new job Ji, time estimation teJi

is previously
calculated using the regression model for that operation. The
corresponding error mean percentage error ∆teJi

and its asso-
ciated uncertainty are obtained. For the example in Fig. 4 un-
certainty for job Ji is (LOW0.8, MEDIUM0.2, HIGH0.0).
For a plan involving just this job Ji and another job Jk

(LOW0.0, MEDIUM0.4, HIGH0.6), the total uncertainty
will be described as (LOWs(0.8,0.0), MEDIUMs(0.2,0.4),
HIGHs(0.0,0.6)), where s is the t-conorm operator used for
aggregation.

The global uncertainty (reliability) information for every
plan is of great help for experts to select the most adequate
plan at every moment. This critical decision is always done
manually by experts and therefore the system is only requested
to provide them with information on the plan duration, its

LOW

MEDIUM

HIGH

0.00.21.0 0.8
te (time 
estimation)teJ1

Δte

membership

Fig. 4. Calculation of uncertainty for a job

schedule proposal and uncertainty associated. Decision is
usually made on the total time criteria, but it may be the case
that the uncertainty criteria be considered for discarding some
plans.

Using the information coming from the fitness function and
the uncertainty of each plan, a fuzzy rule-based system (FRBS)
has been implemented in order to modify the crossover and
mutation probabilities, and the elitism rate. Adaptive evolu-
tionary algorithms [30], [31], [32] can improve conventional
evolutionary algorithms, for example avoiding the premature
convergence and increasing the search speed.

In this application, it is quite important to obtain reasonably
good solutions (plans) in a short time (a few minutes). For
this reason, an adaptive balance between exploration and
exploitation of the search space helps in speeding up the
search process. The main idea underlaying the FRBS is to
explore the search space when the obtained solutions are not
good and have a high uncertainty. This is done with a regular
genetic algorithm (GA), but when the solutions improve and
the uncertainty is reduced, the GA evolves into an Evolution
Strategy, (1, 1)-ES. In a (1, 1)-ES the best individuals of
the population are mutated and replace the worst individuals,
exploiting the search space in the most promissing areas.

The FRBS uses as input variables the average fitness of the
population (AF ), the diversity of the population (div), and
the average uncertainty of the plans (AU ). Sometimes, it is
also needed the fitness and uncertainty of the best solution
(Fb and Ub). As outputs, the system will modify the crossover
and mutation probabilities (pc, pm), the elitism rate (er) and
also the posibility of reinitializing the population keeping the
best individuals. As an example:

If AF is good andAU is low
Then pc is low and pm is high and er ismedium

In this situation the individuals have a good fitness value
and the uncertainty of the plans is low, so the evolutionary
algorithm can exploit the most promising areas of the search
space increasing the mutation probability and elitism rate, and
reducing the crossover probability.
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Fig. 5. Woodworking machinery center work plan

B. System Implementation and Validation

As previously mentioned, this development is part of a
project that deals with the product design life cycle in the wood
furniture industry. Our solution has been implemented as a part
of a Workflow Management System enriched with knowledge-
based capabilities [27] (Fig. 5). Both the product design and
specifically the production planning tasks have been modelled
as workflows. The control flow depicted in Fig. 2 is the core
of our workflow although other tasks have been defined for
the planning automation to be assessed and validated by a
human expert. In this way, the scheduling complements the
design for manufacturing and assembly. For example, once
the manufacturing plans are computed by the EA, the three
best plannings options in terms of cost, together with their
durations and degree of uncertainty, are offered to the human
expert for validation. This information is useful for users to
finally decide on the plan to be moved to real production of
to ask the system for more reliable plannings. If none of the
plans are considered to be valid by the expert, then the expert
defines the changes or constraints that new plans should fulfil.
These new parameters can affect previous steps of the product
design workflow, e.g. changes in the materials composition,
designs, manufacturing route, or resources calendars, and will
require a new scheduling.

IV. CONCLUSIONS AND FUTURE WORK

Although a prototype of the planning moduel is still cur-
rently being validated at a wood furniture industry, two con-
clusions can yet be inferred from the results obtained. Firstly,
our solution considerably reduces the time needed to compute
manufacturing plans. In fact it fulfils all the requirements
to perform a future dynamic re-scheduling. Secondly, even
though some time estimations are far from the obtained in the
production plant, the approach for dealing with uncertainty
has proved to be useful for experts plan validation. In these
sense, a fitness and uncertainty measure helped experts to have
a vision of the plan closest to the reality. Moreover, the fuzzy
labels facilitates the understanding of the plan evaluations.

In parallel other tasks of the product design workflow are
still under development. For example, a refinement of the
polynomials for time production estimation. Following with

the example described in section II, the time two cutting
machines need to cut one hundred office desks melamine
panels has been estimated in 6h20min while the real time of
manufacturing was 8h35min (26% error). The evaluation of
this discrepancy defines a LOW level of confidence and affects
the final confidence of the plan. Thus, the validation stage of
the production planning task is influenced by external factors.
In order to avoid this drawback, the feedback of this stage and
the information extracted from the plans are used to improve
time estimations. In fact, estimations and real time measures
must be constantly compared. For example, the workload of
the ”wood machinery” resource centre for a given day must be
compared with what was previously planned. In a near future,
this refinement should be automatically made by a learning
from previous examples module.
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