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Abstract. The explosion of process-related data in nowadays organi-
zations has raised the interest to exploit the data in order to know in
deep how the business processes are being carried out. To face this need,
process mining has emerged as a way to analyze the behavior of an or-
ganization by extracting knowledge from process related data. In this
paper, we present a case study of process mining in a real IT service
management scenario. We describe an exploratory analysis of real life
event logs generated between 2012 and 2015, in four different processes
designed within an IT platform. More specifically, we analyze the way of
handling the different requests and incidents registered in an organiza-
tion.

1 Introduction

In the recent years, there has been a huge investment in developing technolo-
gies to automate the different tasks carried out in an organization, and to store
all the possible information generated during these tasks. In particular, regard-
ing business processes, this has lead to an incredible growth on the amount of
process-related data, i.e., execution traces of business activities. Clearly, the ex-
plosion of this kind of information has opened a door to provide insights into the
actual way of working in an organization, to predict performance using simula-
tion, to detect deviations in the process or to improve the way certain business
activities are executed [1].

Within this context, a business process, henceforth a process model, is un-
derstood as a collection of related structured activities that produce a specific
outcome, e.g., a product or a service. Typically, process models have a detailed
description prescribing how tasks must or should be done, i.e., they describe the
way of working. Unfortunately, there might be differences between the designed
process model, and how the process is being executed in reality [1]. Hence, creat-
ing process models is a difficult and error-prone task, that can lead to an evident
gap between what we think is going on (the a-priori process model) and what
is really happening (the real process model). With this in mind, process mining
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has emerged as a way to analyze the behavior of an organization by extract-
ing knowledge from process-related data, and offering techniques to discover,
monitor and enhance real processes [1]. Nowadays we can find several academic
(PMLAB3), open-source (ProM4), and commercial (Disco5) tools featuring an
extensive set of analysis techniques for process mining.

Concerning its real applicability, process mining has been widely applied in
multiple domains, showing an incredible potential as a link between Business
Process Management and all kinds of analytical techniques that are not neces-
sarily process-aware. Examples of this success can be found in a wide variety
of fields6. In the literature, we can find several case studies providing insights
into hospital and health care processes [2,3,4,5]; education [6,7]; manufacturing
processes [8]; invoice verification processes in SAP [9]; in monitoring sea regula-
tions [10]; financial services [11] or purchases process in IBM [12].

Regarding this paper, we present an experience of applying process mining
in a real IT service management (ITSM) scenario. The dataset used in this
case study consists of a total of 2,004 different requests and incidents generated
in an organization between 2012 and 2015, and four different process models
designed to handled such requests and incidents recorded in the system. Within
this scenario, we will follow a data-driven approach, seeking new insights and
generating ideas and hypotheses for further research, i.e., this analysis has an
exploratory character. Thus, the main idea behind this study is to find the
gap between the modeled behavior, i.e., the as-designed process model or what
the organization thinks is happening; and the observed behavior, i.e., the as-is
process model or what is really happening. In this analysis, we mainly use the
academic tool ProDiGen [13] platform7 and the open source tool ProM.

2 Case study

The case under study presented in this paper is the analysis of the services to
handle requests and incidents in a real organization. In particular, this organi-
zation has implemented a central point of contact for handling customers, users
and other issues within the company, e.g., stock capacity, changes on a partic-
ular process, financial management, etc. In order to plan, deliver, operate and
control the offered IT services, this organization relies on a ITSM software plat-
form. This platform provides a wide range of management services. In particular,
it implements the means for monitoring the progress of different events, i.e., it
logs process-related data. However, the ITSM tool does not provide any kind of
process mining analysis technique, that is, it does not fully exploit this kind of

3 https://www.cs.upc.edu/~jcarmona/PMLAB/
4 http://www.promtools.org
5 https://fluxicon.com/disco
6 The IEEE CIS Task Force on Process Mining has an extensive compilation of
different successful case studies http://www.win.tue.nl/ieeetfpm/doku.php?id=

shared:process_mining_case_studies.
7 https://tec.citius.usc.es/processmining
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information. Hence, although plenty of process-related information is available,
this organization has no clear idea of how the incidents and requests are handled.

In this system, requests and incidents, henceforth tickets, are usually mapped
to one or more management processes, i.e., process models. Thus, when a ticket is
registered in the system, the linked management process indicates the actions to
be performed. Each one of these process models is generated through a graphical
tool, in which the designer defines, configures and organizes the different steps
in such a process model. Hence, each of these management processes specifies a
guideline tof steps indicating who, how and when should intervene during the
processing of a ticket. In other words, in order to be properly handled, each ticket
has to perform a sequence of defined steps. From the point of view of process
mining, each one of this steps can be considered as an event, i.e., a specific
activity in the system, and each ticket as a trace, i.e., a sequence of events.
Therefore, for each defined process model in this organization, it is possible to
extract an event log, i.e., a group of traces that consist of process events.

Concerning this case study, we identify four major process models: Issues
resolution, Orders resolution, Standard changes and Emergency changes. Hence-
forth we denote this processes as: Workflow 1, Workflow 2, Workflow 3, Work-
flow 4, respectively. In total, this four processes are mapped to 2,004 tickets, i.e.,
traces, registered between 2012 and 2015. Hence, we are dealing with historic
data, i.e., traces that, in theory, have been completed. Within this scenario, the
main motivation is to obtain, from an exploratory point of view, insights into
how the different tickets are being handled in reality, and if they conform with
what was designed. In other words, we aim to check and compare reality with
what was planned. Remark that this exploratory analysis does not have a specific
goal, i.e., through this analysis we do not aim to intervene, adjust or redesign
the possible deviations and differences between modeled behavior and reality,
but rather gain insights for a further question-driven and deeper analysis.

We have executed the following steps to perform this exploratory case study.
First, we extracted and filtered the data from the ITSM tool database. Then,
we conformed reality with the a-priori process models. After this, we applied
discovery techniques to retrieve the real processes. Finally, we measured the
performance of the processes to detect bottlenecks and performance issues.

2.1 Data preparation

The first phase in the presented analysis consists of the preparation and explo-
ration of the available process data between 2012 and 2015. Hence, in this step,
the data was extracted from the database of the platform, and converted into a
standard event log storage format, i.e., XES [14]. Furthermore, we also translated
the a-priori process models to their equivalent Petri net representation.

During this preprocessing step, we detected several traces that, during their
lifespan, were linked to different process models. In other words, a ticket was
initially handled through the steps of a specific process model and, at some
point, was transferred to a different process model, having to start again. The
main problem behind this particular behavior is that there is no clear indicator
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Table 1: Event logs characteristics.

Workflow 1 Workflow 2 Workflow 3 Workflow 4
#activities 5 7 12 7
#traces 158 1,151 84 611
#events 886 7,242 696 3,580

#activities, #traces and #events stands for the number of activities, process instances,
and events, respectively, in each event log.

in the database on when a change of this type took place: the only information is
when a ticket fired an step on a different process model. Clearly, a deeper study
would involve analysing these particular cases and checking, for instance, the
impact on the average time resolution of the tickets, or the reason behind these
transfers. However, in this case study, we filtered this kind of behavior, focusing
the analysis on those tickets handled only through a single process model.

Once correctly identified all the different tickets, i.e., the traces, we found a
problem related with the ordering of the events. Specifically, some events in the
system lacked the start timestamp attribute, precluding the creation of the actual
trace of events for each ticket. Note that we are working with atomic activities,
and we sort the events of a trace based on the start timestamp. In particular, we
detected that this behavior was always related to automatic activities. Hence, in
order to properly sort the events of a trace, we set the start timestamp of these
activities equal to the end timestamp. Finally, we also added an artificial end
and start activity to each trace.

After this filtering process we created four different event logs, one for each
process model, in XES format. Table 1 shows, for each prepared event log, the
number of activities (#actitivies), the number of process instances or tickets
(#traces), and the total number of events (#events) in each event log.

2.2 Conformance analysis

Conformance checking aims to find discrepancies between the modeled behavior,
i.e., the process model, and the observed behavior, i.e., the event data. As we have
access to the a-priori process models, i.e., the desired behavior, we can conform
the recorded behavior of the tickets w.r.t. the a-priori process models and see
how many of the handled tickets actually followed the defined steps. The metric
used to this end is the replay fitness, which measures the extent to which process
models can reproduce the traces recorded in the event log. Among the different
approaches in the literature related to this particular dimension, we have selected
cost-based fitness metric, based on alignments [15]. An alignment between a trace
and a process model is a pairwise comparison between the executed activities
and the activities allowed by the model. Such sequences of pairs are called moves.
Three different moves can be distinguished: i) moves only on the event log, i.e.,
the process model does not allow the execution of a recorded event; ii) moves
only on the process model, i.e., the process model needs to execute an activity
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Table 2: Cost-based fitness and number of tickets for the a-priori process models.

Workflow 1 Workflow 2 Workflow 3 Workflow 4
Cost-based fitness 0.87 0.89 0.96 0.89
#correctly replayed tickets 57 (36% ) 594 (51% ) 60 (71% ) 111 (18% )
#incorrectly replayed tickets 101 (64% ) 557 (49% ) 24 (29% ) 500 (82% )

not recorded in the event log; and iii) moves on both (synchronous moves), i.e.,
an event in the event log can be correctly replayed through the model.

Table 2 shows the cost-based fitness after aligning each event log and process
model. For instance, the event log Workflow 2 has a fitness of 0.89, that is, it can
reproduce 89% of the recorded events or, in other words, 11% of the recorded
events deviate from the a-priori process model. Additionally, Table 2 also shows
the number of tickets that were correctly and incorrectly replayed through their
respective process model. In other words, each time a ticket deviates from the
a-priori process model, even in a single event, it counts as an incorrectly replayed
ticket. As can be seen, although the cost-based fitness is relatively high in all
cases, there is a significant amount of tickets, in all four event logs, that deviate
from the a-priori process model, e.g., 82% of the tickets in Workflow 4 present
a deviation, i.e., an event log/model move.

Through replay fitness techniques we can also obtain a more detailed lo-
cal diagnostic, allowing to detect exactly where the deviations took place. For
example, by projecting the alignments between all traces in the event log of
Workflow 1 onto the a-priori process model yields a visualization that shows
the location of deviations as shown in the Petri net of Figure 1. In this visual-
ization, each transition shows (in parenthesis) the ratio of synchronous moves
(left part) to moves only on the process model (right part). Also, colored places
represent errors when moves only on the event log occur. Furthermore, the size
of the colored places represent the frequency of moves only on the event log. In
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Fig. 1: Diagnostic information showing the deviations for Workflow 1 on the
a-priori model.
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Table 3: Most skipped and wrongly executed activities for each workflow.

Workflow 1 Workflow 2 Workflow 3 Workflow 4
Most skipped
activity

update impact (85) warning (497) email to the
petitioner (9)

priority vali-
dation (421)

Most wrongly ex-
ecuted activity

analysis & resolu-
tion (54)

analysis & resolu-
tion (404)

analyze change
order (13)

analysis & reso-
lution (120)

Most skipped activity is related to the model moves, while Most wrongly executed
activity is related to log moves.

more detail, the deviations in this process model occur in different locations. On
the one hand, we detect different model moves: update impact was skipped 85
times; user validation was skipped 29 times; analysis & resolution was skipped
4 times and notify opening was skipped 2 times. On the other hand, related to
log moves, the activities analysis & resolution and user validation were executed
54 and 2 times, respectively, when the a-priori process model was not allowing
them to happen. Note that, for instance, considering all the possible moves, user
validation was executed more than 158 times, i.e., the total number of traces.
This means that this activity was executed in a loop situation, i.e., it appears
more than once within the same trace.

Based on these diagnostics for Workflow 1, some of the insights that can
be extracted from the previous information are that, for instance, in 53% of
the handled tickets, the activity update impact was skipped and, in 29%, the
activity user validation was also not involved, albeit both these activities were
designed as required in the a-priori process model. Another deviation is that
in 34% of the total tickets, analysis & resolution was executed multiple times
within the same trace, when this activity was designed to only happen once per
process instance. Furthermore, it was also designed to be executed just before
user validation but, in the previous cases, it was freely executed without any type
of restriction, e.g., it was executed just after user validation. Table 3 depicts the
most skipped (model moves) and wrongly executed (log moves) activities for
each process model. Further research will involve finding the reason behind this
behavior, following a more question-driven analysis, e.g., in which situations is
it possible to skip these activities? Is it related to a certain type of tickets?

2.3 Discovery analysis

Following with our exploratory analysis on how this organization is actually
handling the different tickets, the next step involves discovering, from the control-
flow perspective, the real processes based on the recorded events. This analysis
usually starts with the visualization of the underlying discovered process model.

Based on the previous conformance checking analysis, all four a-priori models
have a fitness over 0.85, i.e., more than 85% of the events happened as planned.
Hence, among other indicators such as the number of different process instances,
it is quite clear that, from the point of view of process discovery, we are dealing
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with Lasanga processes [1], i.e., the real processes are relatively structured and
the cases flowing through such processes are handled in a controlled manner.
Hence, it should be possible to discover process models with high(er) values of
replay fitness and with a clear structure. Figures 2 and 3 demonstrate that this
is, in fact, the described case. More specifically, Figures 2a and 3a show the
original discovered process models by ProDiGen for the event logs Workflow 2
and Workflow 4, respectively, in C-net format. A C-net is a graph where nodes
represent activities and arcs represent causal dependencies. In this representation
there are not places, hence the routing logic is solely represented by the possible
input and output bindings. Both these process models reproduce all the behavior
of the tickets recorded in the event logs, i.e., they have a perfect replay fitness.
Furthermore, in order to focus only on the main behavior of the process models,
we also pruned the arcs used less than 5%. Figures 2b and 3b show the resultant
pruned models. Additionally, for each process model, we annotated each arc and
transition with their frequency of use.

The rather structured discovered process models, coupled with their perfect
replay fitness, is of special interest to the stakeholders to both detect frequent
and infrequent behavior. When these results were presented to the stakeholders,
they confirmed that the models representing the most frequent behavior, e.g.,
the process models in Figures 2b and 3b, were, with slight differences, what they

Start process

user
notification

(1152)

20

analysis &
resolution

(1560)

1131

user
validation

(1107)

933

180

warning
(654)

1

End process

38

4

554

analysis of
rejection

(2)

1

notify pending
validation

(455)

99

449

severe request
notification

(10)
5

5

1132

168

249

11 1 356

297

2

5

99

351

(a) Original discovered model.

analysis &
resolution

(1560)
249

user
notification

(1152)

1132

user
validation

(1107)

168

180

933

warning
(654)

554

notify pending
validation

(455)

99

End process

449356

297

99

351

Start process

1131

(b) Filtered discovered
model.

Fig. 2: Annotated c-nets discovered by ProDiGen for the event log Workflow 2.
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Table 4: Unexpected behavior for each discovered process model.

Workflow 1 Workflow 2 Workflow 3 Workflow 4
Unexpected
loops

analysis & resolu-
tion

analysis & resolu-
tion

- analysis & resolu-
tion

Unexpected
skips

update impact user validation,
user notification

analyze
change order

priority validation,
user validation

Unexpected skips and Unexpected loops stands for behavior that, in theory, is not
allowed, but the discovered process model allows to execute it.

expected. However, they also detected unexpected behavior and deviations in
the way of handling certain tickets. Table 4 summarizes the exceptional insights
retrieved from this discovery analysis, i.e., loops that in theory are not allowed
(unexpected loops), or activities that are mandatory but in reality can be skipped
(unexpected skips). Among the different deviations detected by the stakeholders,
it is noteworthy, in both processes (Figures 2b and 3b), the high frequency of the
self-loop in the activity analysis & resolution. Additionally, also in both these
processes, the activity user validation, in theory mandatory, can be skipped in
the discovered model. In other words, this means that there were tickets that
completed without any kind of validation.
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ProDiGen platform provides a visual interface where stakeholders can repro-
duce, through the discovered process models, the actual path of each trace. This
was crucial to retrieve valuable information about the behavior of the whole
process. Figure 4 shows a snapshot of this process player, on the event log Work-
flow 4. This process player represents a set of controls to reproduce the event
log over the process model. In this example, we have grouped the traces that fol-
lowed the same path in the process model. Hence, in this visualization we show
the path —the dark gray activities and arcs— followed by the traces grouped
in Group 2, i.e., 131 different traces that share the same sequence of activities.
Furthermore, this player also shows different performance statistics (this kind of
analysis is extended in more detail in Section 2.4), in the left part of Figure 4,
such as the average completion time of this group of traces, i.e., 13 days, or the
average completion time of each activity considering only this group of traces,
e.g, user validation took 5 days on average within these 131 traces. Additionally,
this player also enables to reproduce specific traces, allowing to gain more fine
grained insights, in a visual way, into how, who and when an specific trace was
executed through the discovered process model.

Furthermore, through this discovery analysis we obtained valuable feedback
from the people involved in the process on how to improve the mining of these
kind of processes in further analysis. Specifically, the timestamp is of particular
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Fig. 4: Snapshot of the process player, in ProDiGen platform, on the process
model discovered for the event log Workflow 4.
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value when mining these kind of event logs. For instance, when the same activity
is executed multiple times in a short period of time, it should be considered
as the same activity. Additionally, when two different activities are executed
sequentially in a short period of time, it should be considered that they are
executed in parallel regardless if they always appear as a sequence.

2.4 Performance analysis

The last part of this case study relies on the performance analysis. Process
mining provides a wide range of performance techniques [1]. Among them, the
dotted chart is one of the most powerful tools to view a process from different
angles. Concerning this paper, we use the dotted chart to gain an overall view
of the performance of the event log Workflow 2. Figure 5 shows this dotted
chart. In this chart, time is measured along the horizontal axis, and each trace
represented along the vertical axis where each dot is an event. The color of each
dot represents the activity of the process, e.g., the red dots represent the activity
user validation. Note that, in this visualization, we omitted the artificial start
and end activities.

Based on this dotted chart of the event log, different observations can be
made. At first glance, we can see that the process does not follow a constant
arrival of tickets, i.e., the initial events of all traces do not form a straight line:
there is a clear difference between the influx of tickets before and after 2014. More
specifically, we can see that there is a significant increase in the arrival rate of
tickets after the last months of 2014. Moreover, this arrival is quite steady, i.e.,

increase in the in ow of
recorded tickets

Fig. 5: Dotted chart, retrieved with ProM, for the event log Workflow 2 using
absolute (real) times for the horizontal axis. Each horizontal division represents
a calendar month. The vertical axis represents the traces.
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we can draw a rather straight line alongside the initial events during this period
of time (bottom right of Figure 5), i.e., from 2014 onwards. Additionally, it seems
that, in some situations, certain sets of activities are executed in batches, i.e.,
the same activities are executed for different cases in the same interval of time.
For instance, the activities inside the colored boxes (bottom right of Figure 5)
seem to show this particular behavior. We can also notice that there are periods
of inactivity (some of them are marked with the colored circles in the middle of
Figure 5), where no events were recorded.

On the other hand, for some tickets, events are recorded a long time after
their arrival, whereas for the majority of the tickets most events are observed in
the first couple of days. Figure 6 shows a better view of this behavior. In this
figure, we use the relative times, i.e., all the tickets start at time zero, and they
are sorted in descending order by their real duration. As can be seen, most of the
cases ended within the first days, or even in the same day, of being registered in
the organization. However, we can find different tickets that took much longer
than expected, e.g., more than 10 days. Furthermore, we can see exceptional
cases that took even more than a year (the bottom of Figure 6). In general,
it seems that when the ticket goes through the activities user validation and
warning, i.e., the events represented by a red and pink dot, respectively, the
time to handle a ticket increases.

As shown, it is possible to divide the real process of Workflow 2 in two time
intervals, based on the inflow of tickets: before and after the increase in the ar-
rival rate of tickets in 2014. Furthermore, we detected the same pattern in the
other three event logs within the organization. With this in mind, an interesting

Fig. 6: Dotted chart, retrieved with ProM, for the event logWorkflow 2 using rel-
ative times for the horizontal axis, i.e., all traces start at time 0. Each horizontal
division represents 30 days. The vertical axis represents the traces.
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analysis would involve discovering the process models in these two time intervals
to scrutinize how the process behave under such conditions. Hence, we created
two different logs with the tickets before and after 2014 for Workflow 2, more
specifically, before and after September 2014. Figure 7 shows the discovered pro-
cess models for these two time intervals. Again, both solutions have a perfect
replay fitness, i.e., they reproduce all the recorded behavior in both event logs.
As can be seen, the process model describing the behavior of the tickets recorded
after 2014 (Figure 7b) is more well-structured than the process model discov-
ered for the tickets recorded before 2014 (Figure 7a). Furthermore, the process
model of Figure 7b, i.e., the modeled behavior after 2014, describes, with slight
differences, the expected behavior designed by the stakeholders. However, the
discovered model of Figure 7a, i.e., the modeled behavior before 2015, depicts
more deviations and unexpected behavior. In other words, after September 2014,
there was an significant improvement on the way of handling the different tickets
through this particular workflow, with less deviations, i.e., tickets that followed
not defined rules from the desired process model. Remark that, after splitting
the behavior in all the remaining event logs, we found the same behavior in
the discovered process models, i.e., after September 2014, the way of handling
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the different tickets was followed in a more strict way, as stated in the different
designed process models.

Performance analysis can also be achieved by enhancing process models with,
for instance, the time attributes of the events recorded in the event log. In other
words, using the previously discovered process models in Section 2.3, and the
timestamp of the events, it is possible to detect bottlenecks and other types
of behavior that could negatively affect the whole performance of the process.
Figure 8 shows the throughput of the process model discovered in Section 2.3
for the event log Workflow 2. This model was extended with the timestamp for
both the activities, and the layover between them, i.e., the time between the
completion of the preceding activity and the start of the next activity. In this
process model, each arc is annotated with the average time between activities.
Moreover, the darker it is in comparison with the rest of the arcs, the longest
is the time between two activities. The same annotation is used regarding the
time of the activities.

As can be seen, most of the layovers between activities are almost automatic,
taking a second or less. However, there is one layover that stands out from
the rest: the arc from analysis of rejection to user validation, which takes 92
days. Concerning the activities, it is possible to identify several of them that are
automatic, i.e., they are instant. However, we also find an activity that took, on
average, 90 days: analysis of rejection. From a global perspective, if we analyse
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the frequency of use of this part of the model (Figure 2a), analysis of rejection
was only executed two times in the whole process, but being very time consuming
in the whole process performance.

Within the visual interface provided by ProDiGen, it is also possible to detect
the most frequent patterns in a process model, allowing to visualize the critical
parts. These patterns are extracted using both the information of the the event
log and the discovered process model to extract the frequent patterns. Hence,
using this algorithm it is possible to detect subprocesses (both activities and
control structures) that can be replaced with high level activities to, for instance,
reduce the complexity of a process model. For instance, Figure 9 highlights the
frequent pattern within the process model discovered for Workflow 2, with a
threshold above 70%, i.e., the pattern must be fulfilled more than 70% of the
times the process was executed. In this particular case, the most frequent pattern
in the whole model is a sequence of 〈analysis & resolution → user notification
→ user validation〉, with a frequency of 81%, i.e., 81% of the behavior recorded
in the event log went through this pattern. This visualization allows us to easily
check which part of the model is the most congested.

3 Conclusions

We have presented a case study of applying process mining on a real IT ser-
vice management scenario. The real data set has 2,004 requests and incidents
recorded between 2012 and 2015 within an organization. First, we extracted and
prepared the data. Then, based on the a-priori models, we performed a confor-
mance checking analysis, followed by the discovery of the real process models.
Finally, we measured the actual performance of the processes. In this paper, we
focused on a data-driven project, providing valuable insights about the way of
handling the different tickets. For instance, the change of behavior in the global
processes before and after 2014. Other insights are related to how, for some
tickets, it was necessary to redo certain activities, related to wrongly assigned
tickets, or, for other tickets, that there was no validation and/or notification to
the user and/or staff. Regarding the latter, this behavior was due to anticipated
cancellations that were not properly recorded in the system, leading to open
tickets, or unexpected endings. Further analysis will involve giving answer to
the untapped questions, such as: the analysis of the tickets that were involved
in more than one process model, the handover of work, etc.
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