
Tracking More Than 100 Arbitrary Objects
at 25 FPS Through Deep Learning

Lorenzo Vaqueroa,∗, Víctor M. Breaa, Manuel Mucientesa

aCentro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de
Santiago de Compostela, Santiago de Compostela, Spain

Abstract

Most video analytics applications rely on object detectors to localize objects
in frames. However, when real-time is a requirement, running the detector at
all the frames is usually not possible. This is somewhat circumvented by in-
stantiating visual object trackers between detector calls, but this does not scale
with the number of objects. To tackle this problem, we present SiamMT, a new
deep learning multiple visual object tracking solution that applies single-object
tracking principles to multiple arbitrary objects in real-time. To achieve this,
SiamMT reuses feature computations, implements a novel crop-and-resize op-
erator, and defines a new and efficient pairwise similarity operator. SiamMT
naturally scales up to several dozens of targets, reaching 25 fps with 122 simul-
taneous objects for VGA videos, or up to 100 simultaneous objects in HD720
video. SiamMT has been validated on five large real-time benchmarks, achieving
leading performance against current state-of-the-art trackers.

Keywords: multiple visual object tracking, motion estimation, deep learning,
Siamese networks.

1. Introduction

Video analytics systems carry out functions such as automatic video summa-
rization [1] or path planning in autonomous vehicles [2], to name a few. Many
of these systems follow the multi-object tracking (MOT) framework, which pro-
cesses a video sequence and generates the track —set of bounding-boxes— for
each object appearing in the scene [3]. They perform this task using the different
components shown in Figure 1. Thus, for each new frame, a pre-trained detector
is run to locate the categories of interest in the scene. Then, these detections
are compared with the objects identified in the previous frames, generating an
affinity score, to finally make an association in which they are matched, looking
for the lowest overall cost.

∗Corresponding author
Email addresses: lorenzo.vaquero.otal@usc.es (Lorenzo Vaquero),

victor.brea@usc.es (Víctor M. Brea), manuel.mucientes@usc.es (Manuel Mucientes)

Preprint submitted to Pattern Recognition July 26, 2021

Detection

Motion
estimation

Association

Affinity

Input
Frame

TracksBayesian
filter MVOT . . .

Figure 1: Diagram of a typical MOT system. They have three well-defined steps (colored blue)
for generating tracks from input frames. However, real-time systems cannot have detections
in all frames (dashed path), so most of the time they rely on a motion estimation module
(red path). The purpose of SiamMT is to perform this motion estimation using visual object
tracking techniques.

However, when real-time is a must for video analytics, typical MOT frame-
works are not suitable due to their high computational cost. For example, in
MOT2020 [4] there are only 5 approaches that report real-time speeds, but they
do not take into account the running time of the detector. Considering also
the detector times, all those approaches are ruled out1. Typical runtimes for
accurate detectors on an NVIDIA TITAN V for an HD720 image are 23 fps for
EfficientDet-D3 [5], or 16 fps for RetinaNet [6]. Certainly, there are detectors
that can run in real-time, even on embedded GPU systems, like the lightweight
Tiny-YOLOv3 [7], but they often have a poor accuracy or resort to shrinking
the input image. Therefore, the most extended approach to enable real-time
processing is to call the detector at a lower frame rate and perform motion es-
timation between detector calls, allowing the system to provide the position of
the objects in all the frames. Thus, the motion estimation module feeds the
affinity block when the detector is not called [7] (Figure 1, red path).

There are different approaches to address motion estimation, being Bayesian
filters and Visual Object Trackers (VOT) the most widely used [8]. Visual
object trackers are usually class-agnostic, so they are able to track any object
regardless of their category, without requiring specific retraining or knowing
the class to which the object belongs [9], which results in much more general
motion models than those detection-inspired [10]. Yet, the problem with motion
models based on multiple visual object tracking (MVOT) is that they work
by instantiating multiple single-object trackers [11], which is only feasible —in
terms of computational time— when there are few targets in the scene.

In order to address motion estimation, we propose SiamMT, an MVOT
proposal capable of applying single-object online tracking techniques to multi-
ple simultaneous targets in real-time. SiamMT is based on SiamFC [9]. Our
approach solves different challenges (Figure 2) to create a scalable solution, al-
lowing the sharing of features between objects, adding a feature crop-and-resize

1We consider that a system/module operates in real-time if it runs at least at 25 fps for
HD720 resolution on an NVIDIA TITAN V or similar.

2

Features are
not reused

Input frame

Motion
estimation

(a)

Features are
reused

Scale & location
mismatch

(b)

1-to-1 cross-correlations

~

Correct scale
& location

(c)

Operator supports
pairwise N-to-N

~ ~

(d)

Figure 2: Different architectures that show the evolution from SiamFC to SiamMT: (a) instan-
tiates multiple SiamFC trackers; (b) reuses features computations with a single backbone i;
(c) introduces ˜̂ to solve the location and scaling problems; and (d) adds Ẽ to support multiple
comparisons. Bringing all these three elements together gives rise to SiamMT.

module and including a novel pairwise similarity operation. To the best of our
knowledge, SiamMT is the first deep-learning-based real-time arbitrary MVOT.
The main novelties of our proposal are summarized as follows:

• We propose SiamMT, a Siamese Convolutional Neural Network capable of
real-time-tracking multiple arbitrary objects in a scalable manner. Its de-
sign allows its application in SiamFC-based architectures, either by train-
ing it end-to-end or by maintaining their learned weights via a network-
based transfer learning procedure.

3

• In order to allow the tracking of different sized objects in the same frame,
we establish a reformulation of the RoIAlign operator [12], making it capa-
ble of cropping and resizing features extracted with a fully-convolutional
backbone without padding.

• We define a new similarity operator which, based on the properties of
depthwise cross-correlation, enables the efficient pairwise comparison of
multiple feature maps.

• We perform a deep analysis on the speed and performance benefits of each
operator in the architecture.

• Our approach is able to track 122 simultaneous objects in VGA video and
100 objects in HD720 video at 25 fps, all with robustness and accuracy
that exceed the current state-of-the-art.

The main contributions of this paper with respect to [13] are:

• The foundations of design decisions are further deepened, extending the
motives behind them and why other possible approaches are not appropri-
ate. Along with this, the introduced operators are defined and analysed
in more detail, exploring their effects and performance in greater depth.

• Experimental validation is improved, focusing on real-time performance
and adding more benchmarks with greater diversity and challenges.

• Training is improved, obtaining better accuracy and robustness metrics.

• The network architecture is further optimized, achieving a 1.69× speedup.

2. Related Work

Motion Estimation. The main contribution of this paper lies in the de-
velopment of a multiple visual object tracker (MVOT) for motion estimation.
There are approaches that allow maintaining the identity of multiple objects
by associating their detections across frames [14]. However, since they require
detections in all the frames, they cannot be considered for real-time systems.
Some of them report near-real-time speeds, but they are achieved without tak-
ing into account the detector time or by using multiple GPUs in parallel, so we
cannot consider them truly viable solutions.

The preferred solutions are those that are completely decoupled from the
detector. Within this category, one of the first approaches consisted in the use
of Kalman filters to estimate a linear constant velocity model [15]. However,
with the rise of visual deep learning models, these Bayesian-based predictors
were soon displaced by MVOT methods. Thus, systems emerge that base their
motion estimation on single-object trackers, either by including them as an
independent stage [16] or by unifying the object motion and affinity model into
a single architecture [11]. But the drawback they all have so far is that they

4

simply instantiate multiple single-object trackers, so speeds are low, especially
when there are multiple targets in the scene —for example, [11] runs at 5 fps
for 21 objects on FHD video.

Visual Object Tracking. Single-object visual object trackers receive the
location and the dimensions of the target for the first frame of the sequence.
From this point on, they search for the object of interest in each frame of the
video, updating its coordinates and size. Specifically, Discriminative Corre-
lation Filters (DCF) trackers predict the position of the object by training a
filter that distinguishes between the element of interest and the background of
the scene [17], with some works modeling them as convolutional layers [18] to
adaptively weight the local target information. However, while these techniques
provide great speeds, they have been somewhat displaced by more accurate deep
learning approaches.

Deep learning-based trackers employ deep convolutional neural networks
(CNNs) to train a similarity function which, starting from the initial appearance
of the object, indicates its position in each new frame. The ATOM [19] family of
trackers is one example of this, using specific components for target estimation
and classification with the aim of iteratively refining the bounding-box. These
trackers adapt themselves online to focus on the tracked object, with approaches
that improve the classification module by introducing distractor information and
inserting a subnetwork for the prediction of a good initialization [20], greatly
improving the accuracy. Nevertheless, these target estimation methods are very
computationally expensive and involve tuning highly-sensitive hyperparameters.

Siamese Object Trackers. The most widely adopted trend for object
tracking involves the use of a Siamese structure to compare the initial appear-
ance of the object with each frame’s search area, with SiamFC [9] being the
forerunner of the state-of-the-art. Several contributions have been made to
the original architecture, allowing the regression of the object’s bounding-box
—either with [21] or without anchors [22]—, incorporating more powerful back-
bones [23], including segmentation information [24], adopting new objective
functions during training [25], or defining new guidelines for target state esti-
mation [26]. However, most of these new approaches tend to add considerable
complexity or significantly decrease the tracking speed, so they are less suitable
for extension towards MVOT systems.

Table 1 shows a brief summary of the approaches discussed above with their
main features. “Deter.” denotes whether the approach is deterministic and
“Similarity” specifies the similarity operation of the algorithm (“XCorr”. for
cross-correlation, “RPN” for Region Proposal Network, “Cls” for class, “Reg”
for regression, “Cen” for center-ness, “Qua” for quality assessment, and empty
if the network is non-Siamese). Non-deterministic models lean towards online
learning, so they are often less popular due to their higher overhead. The
lightest and simplest models are currently the most widely used alternatives for
MVOT. This is why we have developed our multi-object tracking approach from
SiamFC [9], because it is fast, simple, effective, and is the basis of the current
state-of-the-art in tracking. Therefore, present and future Siamese correlation
architectures could follow our proposal.

5

Table 1: State-of-the-Art Approaches for MVOT.
Tracker Real-time Deter. Backbone Similarity

SiamFC [9] X X AlexNet XCorr
SiamRPN [21] X X AlexNet RPN

SiamRPN++ [23] X X ResNet-50 Depthwise-RPN
ATOM [19] X ResNet-18
DiMP [20] X ResNet-50

AGUnet [24] X Custom Mask
SiamCAR [22] X X ResNet-50 Cls+Reg+Cen
SiamFC++ [26] X X GoogleNet Cls+Reg+Qua

ASCT [18] VGG16
TIFC [25] X VGG16 XCorr
SiamMT X X AlexNet Pairwise-XCorr

(a) (b)

(c) (d) (e)

Figure 3: Qualitative examples of SiamMT on different sequences from (a) ILSVRC [27],
(b) VisDrone [28], (c) MOT-2017 [29], and (d), (e) YT-BB [30].

3. SiamMT Network Architecture

SiamMT is built around SiamFC [9], redesigning its architecture to allow the
efficient tracking of multiple simultaneous objects (Figure 3), all while following
the techniques employed by individual object trackers. Hence, we will first make
a brief description of the foundations of SiamFC and then describe how SiamMT
applies and adapts them to multiple targets.

3.1. SiamFC’s network architecture
SiamFC is the forerunner of the current state of the art in single object

tracking. Its architecture, described in Figure 4a, uses deep-learning similarity
metrics to track individual objects at a high number of frames per second.
The tracking process starts with the initial location of the object at Frame 0.
Based on this information, this first frame is cropped and resized, obtaining
the exemplar image of the tracked object. This exemplar image consists of the

6

Search area

Frame 0

Updated
locationFrame F

Score map

Exemplar
features

Search area
features

Exemplar image

SiamFC

1280 × 720 × 3 255 × 255 × 3 22 × 22 × 256

6 × 6 × 256127 × 127 × 3

17 × 17 × 1

(a)

Frame 0

Frame F Score maps

Search areas
features

Updated
locations

Exemplars
features

Frame features
SiamMT

1280 × 720 × 3
N × 17 × 17 × 1

N × 22 × 22 × 256150 × 80 × 256

N × 6 × 6 × 256

~ ~

(b)

Figure 4: (a) SiamFC and (b) SiamMT network architectures during the inference phase.
SiamMT first extracts the features of the entire frame via a i backbone, enabling the reuse
of features. After this, the features of the various search areas are cropped and resized with
the ˜̂ operator. Finally, these features are combined with those of their respective exemplars
through Ẽ, obtaining score maps that indicate the new positions of the N objects.

bounding box containing the object plus a context margin Z , all scaled to a size of
127×127 pixels. Following this, the features of this image are extracted using an
AlexNet-based [31] fully-convolutional neural network without padding —as no
padding is applied, the strict translation invariance property of the convolutions
is maintained [23]. The resulting 6 × 6 pixels and 256 channels features tensor
defines the appearance of the object, and will be reused throughout the whole
tracking process.

Once obtained the exemplar features, the tracking process itself begins, and
is repeated for each frame in the sequence. The new frame is loaded and a
search area is defined around the last known position of the object. This re-
gion is then cropped and resized with ^, obtaining the search area image —
255 × 255 pixels—, which is processed using i to obtain a features tensor of
22 × 22 pixels and 256 channels. After this, the previously extracted exemplar
features are compared with each one of the regions of the search area by means
of a cross-correlation operation E, generating a score map of 17 × 17 elements.
Lastly, this map is bicubically upsampled to 272×272 pixels and large displace-
ments are penalized to finally apply non-maximum-suppression and obtain the
new position of the object.

This process has a number of important insights. First, if we adhere to the
above description, the process would only recognize displacements, not changes
in scale. In order to detect scale changes, SiamFC considers two additional
search areas that cover regions of different sizes (slightly smaller and slightly

7

(a) (b) (c)

Figure 5: Pooled pixels when applying (a) ˜̂, (b) RoIPool, and (c) RoIAlign over a 4 × 4
features tensor (depicted as a blue dashed grid). The region of interest (represented in black)
has 2 × 2 bins, and the sampling points (colored red) have arrows linking them to the pixels
they query. Quantizations in RoIPool produce misalignments, and RoIAlign uses 4 sampling
points per bin that are merged into one value (colored purple).

larger). Once the similarity between the exemplar features and the 3 search
areas is computed, the score map with the highest probability is chosen as the
new size of the object.

Second, due to the way the exemplar image and the search area images are
defined, they always represent any object with the same proportion. This is
an essential factor in this type of architectures, since it allows to: (i) learn a
feature extractor that will always consider similar sized objects; (ii) and define
a similarity operation that can assume that the size of the object in exemplar
features and in search area features is approximately similar. As a result, the
network gains a lot of precision and is able to maintain the object’s scale between
frames.

3.2. Modifying the SiamFC architecture to multiple objects
The architecture of SiamMT emerges from modifying the architecture pro-

posed by SiamFC as shown in Figure 4b, allowing the efficient tracking of mul-
tiple simultaneous objects. The main features of SiamMT and its differences
from SiamFC are described below.

Global features extraction. In the pipeline of SiamFC and its subsequent
evolutions, for each new frame, the first step consists of cropping and resizing
(^) the object’s search area to then extract its features (i). For a frame with N
objects this would be inefficient. Therefore, the solution proposed by SiamMT
consists in removing the image crop-and-resize module ^ and applying the i op-
erator directly on the input frame (Figure 4b). This allows the reuse of features
when there are multiple objects on the scene, which enables the scalability of
the system since i is the most expensive operation in the architecture and its
execution per search area —as in SiamFC— would be unfeasible.

Cropping and resizing of features. Once the features of the whole
frame have been extracted, the following naïve step would consist in directly
comparing said features with those of each exemplar using Ẽ. However, doing
so would result in two major problems: (i) it is inefficient to analyze the entire
frame looking for an object, as it is unlikely that said object has undergone a

8

large displacement relative to the previous frame —thus it is better to search
for each object in a reduced area—; (ii) the similarity function would become
less efficient as the object changes in scale, since the main trackers through
similarity [9, 21, 23, 26] have a relatively low tolerance for discrepancies between
the object’s size in the exemplar image and in the search area —supporting a
maximum difference of up to a 15%, according to our experiments. To solve this,
in SiamMT it is necessary to introduce a features crop and resize module ˜̂ prior
to the similarity operation (Figure 4b). This ˜̂ operator is applied to the frame
features and creates new fixed-size tensors in which each object is represented
with a constant size, analogously to SiamFC’s ^ operation. However, while crop
and resize operations result straightforward in images, they are particularly
challenging when carried out on features.

The first proposal to obtain a set of fixed-size feature maps from a nonuni-
form sized input and a series of regions of interest comes with RoIPool [32].
RoIPool delimits each region of interest and divides it into a predetermined
number of sections (bins) —e.g. 2 × 2—, to then assign each bin the value
corresponding to the highest value of the pixels it contains (Figure 5b). As
an RoIPool successor, aiming for higher precision, RoIAlign [12] arises, which
prevents misalignments by avoiding quantizations and obtains more representa-
tive values by computing the values of each bin by aggregating —maximum or
average— 4 bilinearly interpolated sampling points (Figure 5c).

Following RoIAlign’s approach, in SiamMT we introduce the ˜̂ operator
in order to crop and resize features. It is an RoIAlign variant that applies
a region calculation capable of handling features extracted with a backbone
without padding —see below—, and that employs a single sampling point per
bin (Figure 5a). This allows ˜̂ to maintain the inference speed while obtaining
more precise and representative values than with RoIPool. The ultimate goal of
this operator is to reconstruct the information that would have been obtained
from the direct features extraction of each rescaled image.

Features coordinates calculation. For the correct determination of the
regions of interest, ˜̂ redefines the way in which areas are delimited. In RoIPool
and RoIAlign, the transformation between image coordinates G8 and features
coordinates G 5 is done by simply dividing the pixel coordinates by the back-
bone’s (i?) global stride ((Figure 6a). This, whilst it works when the feature
extractors are architectures with padding such as ResNet [33] or DarkNet [34],
is incorrect if the backbone has no padding, as is the case of AlexNet [31],
the backbone employed in SiamFC. Therefore, in order to calculate the region
coordinates for backbones without padding, it is necessary to apply the trans-
formations considering the effective size of the input tensor.

Let) be an input tensor of size # that produces an output of size " after
passing through a fully-convolutional backbone i without padding. We define
′, the effective size of) with respect to i, as the size of the minimum subtensor
of) that produces an output of size " after passing through i applying padding
in all its operations —we denote this configuration of the backbone as i?. It is

9

K × K

T

N

 × N

 × N w h c

xi

 = Sxf

xfxi

p

W

 × W

 × W w h c

(a)

T'

K × K

K × K

p
xi

 = Sxf

xi'

xi

'

'

T

N - N'
2 = ix xi-

N

 × N

 × N w h c

M

 × M

 × M w h c

xf

xf

1)

2) M

 × M

 × M w h cN'

 × N'

 × N' w h c

(b)

Figure 6: Transformation between pixel coordinates and features coordinates for (a) a back-
bone with padding using RoIAlign and (b) a backbone without padding using ˜̂. When the
backbone has no padding, the transformation cannot be performed directly using RoIAlign.
Thus, we first clip the input tensor to its effective size (step 1)), and then apply the RoIAlign
calculation on that tensor (step 2)).

possible to prove that every tensor) would have an effective size of:

′ =

⌈
− + 1

(

⌉
· (− ((− 1) (1)

where and (are the receptive field and the global stride of i, respectively.
This implies that) generates an "-sized tensor after passing through i, and

) ′ (the # ′-sized clipping of)) generates a tensor with exactly the same size "
after passing through i?. As we define # ′ as the minimum size that fulfills this
property, if) ′ shrank, its features extracted using i? would be smaller than ".
Conversely, if) ′ grew (but no more than (− 1 pixels in each dimension), the
size of its features extracted with i? would remain ". By defining # ′ in this
way, we can use) ′ as an intermediate step to transform coordinates extracted
with a backbone without padding (i), as shown in Figure 6b.

Therefore, the step 1) consists in calculating the new position of the object
inside) ′, namely G8

′. After this, it is possible to pose the problem as the

10

extraction of the features of) ′ with i?, so the position G 5 of the object in
features will be obtained by dividing its new coordinates G8 ′ by the global stride
of the backbone ((step 2)). Finally, these coordinates will become the new
position of the object, since the dimensionality of the tensor generated by i?
is the same as that of the tensor generated by i. Consequently, given some
input coordinates in pixels G8, their respective coordinates in features extracted
with the fully-convolutional backbone i without padding will be calculated as
follows, by concatenating said steps:

G 5 =
1

(
·
(
G8 −

− # ′
2

)
(2)

This transformation reveals two issues:

• In the SiamFC architecture, the size of the exemplar features tensor is
smaller than the object it represents. As seen in Figure 7a, on step 3) we
extract the features of a 127×127 image containing a 63.5×63.5 object. As
the backbone has a global stride of 8, the object becomes 7.9×7.9 pixels in
size. However, since the backbone does not employ padding, the resulting
exemplar features tensor has a size of only 6 × 6 pixels, and thus some of
the object’s edge information is washed away. Hence, during the similarity
operation, the central regions of the object will receive the most attention
and its edges will be mostly ignored.

• In the SiamMT architecture, if the region sizes were computed over the
frame, the scale of the object would differ between exemplar and search
area features. This becomes evident on Figure 7b, step 3), as the exemplar
features undergo a rescaling of a factor of 0.73, while the factor for the
search area features is 1.33. This scaling difference is due to the fact that
the size ratio between the defined areas is different from the size ratio
between the features tensors. Thus, at the end of the process we obtain
an object of size 3 × 3 at the exemplar branch, while the object has a
size of 5.4 × 5.4 pixels at the search area branch. Ultimately, a difference
like this ends up being very harmful to the network’s performance, as the
similarity operation will not be able to appropiately match the exemplar
and the search area.

In summary: (i) SiamFC’s exemplar features tensor is smaller than the ob-
ject it represents, causing an information loss at its edges; (ii) in our architecture,
if we computed the exemplar and search area regions over the input frame, the
size of the object would differ between the exemplar and the search area tensors.
Therefore, in order to solve these two issues, we calculate the regions over the
frame features and without any additional context (Z = 0), as shown in Fig-
ure 7c, step 2). This way, at the end of the process, the size of the object is the
same for both tensors, and there is no loss of information at the edges.

Similarity operation. Finally, of particular interest is the reformulation of
the features comparison operation applied at the end of the architecture. This

11

The delimited areas are cropped
and resized to 127×127 px and
255×255 px for the exemplar and
search area image, respectively.

132.5×132.5
66×66

33×33

7.9×7.9

63.5
×63.5

7.9
×7.9

63.5
×63.5

727 × 407 × 3

6 × 6 × 256

22 × 22 × 256255 × 255 × 256

127 × 127 × 256

ζ = 0.5

Information
loss

Exemplar and search
area sizes are computed
over the frame with a
context of ζ = 0.5.

2)1) 3)

Images features are extracted
with 𝜑, obtaining a 6×6 tensor
for the exemplar and a 22×22
tensor for the search area.

(a)

Exemplar and search
area sizes are computed
over the frame with a
context of ζ = 0.5.

132.5×132.5
66×66

33×33

5.4
×5.4

3×3

16.6×16.6
8.3×8.3

4.1
×4.1

81 × 41 × 256

22 × 22 × 256

6 × 6 × 256

727 × 407 × 3

ζ = 0.5

~

~
2)

Scale
mismatch

1) 3)

numerical example

The features of the whole frame are
extracted with 𝜑, and the previously
delimited regions now cover areas
of 8.3×8.3 px for the exemplar and
16.6×16.6 px for the search area.

The delimited areas are
cropped and resized to 6×6 px
and 22×22 px, respectively.

(b)

The features of the
whole frame are
extracted with 𝜑.

33×33

15.1×15.1

4.1
×4.1

6×6
ζ = 0

4.1×4.1

6×6

81 × 41 × 256

22 × 22 × 256

6 × 6 × 256

727 × 407 × 3

~

~

2)1) 3)

Exemplar and search area sizes are
computed over the frame features
with a context of ζ = 0.

The delimited areas are
cropped and resized to 6×6 px
and 22×22 px, respectively

(c)
Figure 7: Numerical example for a 33 × 33-pixel object across different architectures. Object
is represented in gray, while its exemplar and search area regions are represented in green and
red, respectively. (a) depicts the standard SiamFC architecture, (b) illustrates the mismatch
when computing regions over the input frame, and (c) shows the method followed by SiamMT.

is because, in SiamFC and its derived architectures, it is defined as a cross-
correlation operation between the exemplar features and the search area features

12

Algorithm 1: Pairwise cross-correlation.
• Let) f , be the permutation of the dimensions in tensor) , where f is the

permutation in cycle notation.

• Let vec(T), be the vectorization of tensor) , which converts it into a column
vector.

• Let vec−101 ,...,08 ,...,0= (+), be the folding of vector + into an =-dimensional tensor,
where 08 is the size of each dimension.

• Let DwXCorr(). ,)/), be the two-dimensional depthwise cross-correlation be-
tween tensors). and)/ , with)/ acting as the filters.

1 Function PairwiseXCorr()�,)�)
Input: A)� tensor of dimensions [N, F�, ℎ�, 2] containing the features of N

search areas, and a)� tensor of dimensions [N, F� , ℎ� , 2, >] containing
the features of N exemplars to obtain > output channels.

Output: A)(tensor of size [N, F� − F� + 1, ℎ� − ℎ� + 1, >] containing the
similarity score map between each search area in)� and its
corresponding exemplar)� .

2). ← vec−1
1,F�,ℎ�,N·2

(
vec

(
)
(1,2,3)
�

))
3)/ ← vec−1

F� ,ℎ� ,2·N,>

(
vec

(
)
(1,2,3)
�

))
4)% ← DwXCorr(). ,)/)

5)& ← vec−1
FA−FE+1,ℎA−ℎE+1,N,2E ,>

(vec ()%)) (1,3,2)

6)(←
∑2
;=1)& (8, 9 , :, ;, <) where 1 ≤ 8 ≤ N, and 1 ≤ 9 ≤ FA − FE + 1, and

1 ≤ : ≤ ℎA − ℎE + 1, and 1 ≤ < ≤ >
7 return)(

tensor. In the case of SiamMT, as it is necessary to cross-correlate multiple
pairs of tensors, this operation would have to be replicated throughout the
batch size, which is computationally inefficient. As a solution, taking advantage
of the properties of GPGPU architectures, we propose the use of the pairwise
cross-correlation Ẽ.

The proposed Ẽ operation (PairwiseXCorr) is described in Algorithm 1,
and takes as inputs the exemplar and search area features ()� and)�) of N
objects and efficiently compares them, generating N score maps. As we want
this operator to be general and applicable to other architectures, the exemplar
features tensor supports an additional dimension >, to vary the depth of the
resulting score maps. This dimension allows the application of Ẽ on architec-
tures that require many outputs for each cross-correlated pair, like the anchors
regressions in a Region Proposal Network [23].

Operator Ẽ is made possible by the properties of two-dimensional depthwise
cross-correlation (DwXCorr). The latter takes as inputs a three-dimensional ten-
sor). and a set of two-dimensional filters)/ , and applies a different filter to
each of the 2 channels of). . Therefore, by appropriately stacking the objects’
features contained in)� and)� , it is possible to obtain the). and)/ tensors
(lines 2 and 3), which are the inputs to the depthwise cross-correlation opera-
tion. After the operation, an output)% with N ·2 channels is generated (line 4).

13

Finally, this output is reshaped (line 5) and aggregated for each object (line 6),
which would correspond to the final sum of the 2 channels for each filter in a
standard cross-correlation.

This new operator is mathematically equivalent to applying E to each pair
and has a great impact on the speed of the architecture, allowing it to scale to
several dozen objects. Also, as the exemplar of an object remains constant dur-
ing the inference phase, SiamMT can cache)� and reuse it during the tracking
process. Lastly, if multiple scales were to be considered for each object —as is
the case with SiamMT—, the batch dimension of the exemplar and search area
features would have a size of a · N , where a is the number of scales considered.

3.3. System training
SiamMT supports reusing the weights learned by SiamFC through a network-

based transfer learning procedure, which consists in collecting all the parameters
learned by a previously trained SiamFC network —backbone and similarity op-
eration’s weights and biases— and copying them into their respective SiamMT
operations. This alone is sufficient for performing inference, and provides good
results as demonstrated in Section 4.2, hinting at the direct extensibility of
SiamMT to other SiamFC-based architectures. However, due to the use of the
crop-and-resize operator ˜̂, it is convenient to fine-tune the last layers of the
network. This tuning is very similar to an end-to-end network training, but
freezing the first 3 convolutional layers and with a lower learning rate.

Regardless of whether the training is performed end-to-end or just fine-
tuning, SiamMT’s training is very similar to the one designed by SiamFC. For
each iteration, two different frames containing the same object are fed into the
network, one at the exemplar branch and the other at the search area branch.
The features of the frames are extracted with i, to later create the exemplar
and search area features tensors through ˜̂ using the locations provided by the
dataset annotations. Following this, these two tensors are compared using Ẽ,
obtaining an < × =-size score map lg that seeks to represent the likelihood that
the object is present in each region of the search area. Since the training is
defined as a binary classification problem, the error is obtained by comparing
this score map with a ground truth map gt , through a sigmoid cross-entropy
loss:

loss =

<∑
9=1

=∑
8=1

max
(
lg 8 9 , 0

)
− lg 8 9 · gt 8 9 + log

(
1 + 4−|lg8 9 |

)
(3)

Since the exemplar and search area regions are defined around the locations
provided by the dataset annotations, during training the object will always stand
in the center of the search area tensor. Therefore, we can define the groundtruth
map gt as an < × =-size matrix with the positive classes in an area of radius '
around the center E of the tensor. Taking into account the global stride (of the

14

network, the value of each element of this matrix can be defined as follows:

gt 8, 9 =

{
1, if (· ‖ (8, 9) − E‖ ≤ '
0, if (· ‖ (8, 9) − E‖ > '

where 1 ≤ 8 ≤ =, and 1 ≤ 9 ≤ <
(4)

In addition to this, we also contemplate the use of negative examples, to prevent
the network from learning to detect objects rather than distinguishing among
targets. We achieve this by introducing pairs of frames that do not display the
same object.

During training, there is the risk that the network erroneously learns that the
tracked object always has the same proportion with respect to the search area.
This is because, even though the frames go through a data augmentation pro-
cess —involving translations, scale changes, rotations, color variations, motion
blur and noise addition—, as the ˜̂ operator uses the locations provided by the
dataset annotations, it always generates a perfectly cropped and rescaled search
area tensor. As this does not accurately represent a real tracking scenario, dur-
ing training, a random factor is applied to the calculation of the dimensions of
each search area. Therefore the system is able to gain tolerance towards object
scale changes.

Finally, handling the disparity in size of the different objects across the
datasets is not straightforward, as the training would have difficulties to con-
verge if the same feature extractor was used for objects with very different
sizes. Therefore, in order to reduce training time and ensure stability, the in-
put frames are rescaled so that the considered objecs always have a size among
a predefined range. This phenomenon does not affect SiamFC-based architec-
tures [9, 21, 23, 26], as they always rescale the images before extracting their
features.

4. Experiments

This section evaluates SiamMT under different scenarios. The experiments
were conducted on a computer with an Intel Core i7-9700K, 16 GB of DDR4
RAM and an NVIDIA TITAN Xp. The chosen deep learning framework was
TensorFlow.

4.1. Implementation details
Feature extractor. The choice of the backbone is a determining factor

in the network performance. While other state-of-the-art architectures such as
ResNet [33] or DarkNet [34] would allow for richer features, they would result in
a much longer inference time. Therefore, following the example of SiamFC [9]
and some of its successors, we have opted for a backbone based on AlexNet for
its simplicity and speed, but with a few modifications.

The specific architecture of the adopted backbone is shown in Figure 8. It
incorporates batch normalization and non-linear Leaky ReLU activation func-
tions after each convolutional intermediate layer. Moreover, convolutions in

15

3
96

720

1280

48 128

256 256

192 192

355

635

177

177

317

173

313

156

86

84

154

84

154

173
317 313 152

152

82

82

80

150

11

11

3

3

5

5

5

5

3

3

3

3

3

3

3

3

3

3
3

3

3

3

Conv+BN
 +LReLu

MaxPool
 +Split

Conv+BN
 +LReLu

MaxPool
 +Merge Conv+BN

 +LReLu
 +Split

Conv+BN
 +LReLu

 Conv
+Merge

Figure 8: SiamMT’s feature extractor. The tensors and their sizes are represented in black,
while the operations and their names are colored in blue.

layers 2, 4 and 5 are grouped, as it makes training faster and helps in learning
better representations of the data [35]. Finally, it is particularly important to
note that no padding is introduced into the network, as this would lead to the
loss of translation invariance [23].

Exemplar and search area sizes. For the formulation of the exemplar and
search area sizes, a similar approach to SiamFC [9] is taken. Thus, if we denote
the size of an object’s bounding box as (F, ℎ), its exemplar will correspond to
the region centered on its location, with an area

� = (F + Z (F + ℎ)) × (ℎ + Z (F + ℎ)) (5)

where Z is a context factor. After cropping the exemplar region, it is resized to
the size of the destination tensor. In SiamFC, Z is set to 0.5 and the rescaling is
done to 127×127 pixels, as the crop-and-resize is performed on images. However,
since SiamMT’s calculations are made directly on features, a value of Z = 0 with
a destination tensor of size 6 × 6 provides the best results. In the case that the
weights of the original SiamFC [9] architecture are directly reused, Z should be
adjusted accordingly to replicate SiamFC’s field of view.

Similarly, the search area size is calculated as the quotient between its desti-
nation tensor and the destination tensor for the exemplar, all multiplied by the
exemplar’s crop region. In SiamFC, where the crop is made on an image, the
destination tensor has a size of 255×255 pixels. On the other hand, as SiamMT
crops features, a tensor of size 22 × 22 is chosen as the destination.

Training process. The system was trained using the video databases pro-
vided by the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [27],
the YouTube-BoundingBoxes Dataset (YT-BB) [30], and the Generic Object
Tracking Benchmark (GOT-10k) [36]. Together, these databases have about
255,000 sequences with over 9.8 million labelled bounding boxes, populating
more than 560 object classes. The initial weights of the network are generated
following a normal distribution. During training, we employ an Adam opti-
mizer [37] to minimize the error function over 1,000 epochs, starting from a

16

learning rate of 3×10−4 that is geometrically annealed to 3×10−6, and applying
L2 regularization (_ = 5 × 10−5) to the learned weights. Each epoch consists on
65,536 pairs of images —one for the exemplar and the other for the search area,
containing the same object and spaced no more than 100 frames for the positive
samples— arranged in size-32 batches. The best model is selected based on the
validation error of the last 250 epochs.

Inference process. The inference phase aims to be as simple as possible to
achieve high tracking speeds. To accomplish this, the features of each exemplar
are extracted at the beginning of the process and reused throughout it. This
greatly reduces the number of operations, and also allows the tracker to be
formulated as a one-shot detector. Indeed, it has been demonstrated that simple
methods for updating the exemplars do not offer great advantages for short-
term tracking. However, high-level updating techniques could be very useful for
improving the performance on long-term crowded videos [19].

To tackle small objects, we resize the input frames so that the median size
of the targets in the scene is above 32 px2. And lastly, SiamMT allows for
the partial extraction of the frame features. With this technique, it considers
only the minimum region in which the followed objects are found, plus a slight
margin. This offers large speed gains when the objects are close together.

4.2. Tracking quality evaluation
Since SiamMT is an MVOT, it initially receives the starting location for

each object and provides its new position in each frame, without further inter-
action with a detector. This, by definition, is how single-object trackers operate,
and thus SiamMT’s quality can be evaluated using the protocols of single ob-
ject tracking benchmarks. As MVOTs are used in situations where processing
time is a constraint, the metric that most faithfully represents this behavior
is VOTChallenge’s VOT-RT [38], considering each object in each video as an
individual sequence at the time of aggregating the values. This method re-
ports two values: accuracy —amount of overlap between the prediction and the
groundtruth— and robustness —percentage of frames in which the tracker has
not lost the object, with an exponential sensitivity of S = 30—, both with a
real-time threshold of 20 fps. We have also run the tests with a 25 fps threshold,
to be consistent with the definition of real-time of the rest of this work.

The experiments were run in various public multi-object video databases,
seeking to cover a wide variety of scenarios where motion estimation systems are
commonly used: MOT-2017 [29], MOT-2020 [4], UAVDT [39], VisDrone [28],
and JTA [40]. We have compared SiamMT and SiamMT-W—i.e., SiamMT with
its weights and parameters obtained directly from a previously trained SiamFC
network through a transfer learning procedure— with their baseline, SiamFC [9],
and the state-of-the-art methods of SiamRPN [21], SiamRPN++ [23], SiamCAR [22],
and SiamFC++ [26], whose multiple instantiations are frequently used as MVOTs
for motion estimation tasks. The results are shown in Table 2.

As can be seen, the accuracy and robustness obtained by SiamMT are supe-
rior to those of the existing approaches, with differences as large as 21.2 points

17

Table 2: Quantitative Results for Tracking Quality. Red, blue and green, represent the approaches
that rank 1st, 2nd and 3rd, respectively.

MOT-17 MOT-20 UAVDT
@20 fps @25 fps @20 fps @25 fps @20 fps @25 fps

Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Acc. Acc. Rob.

SiamFC++ 53.9 70.2 52.3 67.6 30.4 70.9 28.8 69.7 52.4 86.1 48.5 81.2

SiamCAR 47.5 60.0 46.0 58.2 27.8 67.5 27.2 67.0 40.3 70.0 37.1 64.9

SiamRPN++ 48.5 60.1 47.0 58.9 27.8 67.4 27.1 66.9 38.2 67.1 35.2 62.5

SiamRPN 50.9 70.7 49.5 67.9 30.3 71.0 29.1 69.7 53.5 89.9 49.8 85.7

SiamFC 45.8 58.4 45.2 57.2 26.9 67.3 26.6 66.9 41.4 73.3 37.5 67.3

SiamMT-W 52.7 73.4 52.4 71.2 50.0 74.6 50.0 75.3 53.8 92.6 53.9 92.6

SiamMT 54.5 76.2 54.5 73.8 52.6 81.7 52.5 82.2 54.6 92.3 54.5 92.3

VisDrone JTA
@20 fps @25 fps @20 fps @25 fps

Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob.

SiamFC++ 34.2 32.8 32.0 31.5 44.4 59.8 42.1 56.2

SiamCAR 28.9 29.8 27.8 29.3 38.3 48.7 36.6 46.9

SiamRPN++ 28.2 29.6 27.2 29.1 37.8 48.7 36.1 46.9

SiamRPN 36.2 34.4 33.9 32.8 43.7 60.3 41.5 56.8

SiamFC 27.9 29.5 27.0 29.0 36.3 46.3 35.2 45.1

SiamMT-W 46.8 59.3 46.5 58.3 47.3 57.1 47.2 57.0

SiamMT 45.7 52.2 45.4 51.5 46.9 61.5 46.9 61.5

if we compare the accuracy of SiamMT against SiamFC++ —the state-of-the-
art tracker with the highest score— at MOT-20 @25 fps. If we consider the
experiments with the threshold @20 fps, SiamMT obtains results that are, on
average, 7.2 points higher for the accuracy and 7.5 points higher for the ro-
bustness, comparing it with the state-of-the-art tracker that scores the highest
at each dataset. Those datasets where SiamMT really excels are those with a
larger number of targets, most notably MOT-2020 and VisDrone, which have an
average density of 127 and 46 objects per frame, respectively. In such crowded
scenarios the use of traditional MVOT systems is unfeasible, with our proposal
scoring the best results by a large margin.

The difference between SiamMT and the other approaches becomes signifi-
cantly larger if we increase the real-time threshold. For a video at 25 fps, the
quality of the state-of-the-art methods drops noticeably, while SiamMT only
drops on average 0.1 points in accuracy and 0.5 points in robustness. Thus, if we
compare SiamMT against the best-performing state-of-the-art models @25 fps,

18

SiamMT’s accuracy and robustness are 9.3 and 9.7 points higher on average.
These experiments show that traditional MVOT systems are unfeasible when
there are many objects in the scene, being our approach the only able to scale
naturally in real time.

Finally, although SiamMT-W obtains slightly worse results than SiamMT,
they are still remarkably good considering that it has not been retrained or
fine-tuned. In fact, for VisDrone, SiamMT-W consistently scores slightly better
results than SiamMT, which may be attributed to it being the dataset with
the largest number of distinct categories. This demonstrates the versatility of
SiamMT’s paradigm, and suggests its potential extension to other SiamFC-
based architectures.

4.3. Tracking speed evaluation
As previously stated, the inference speed of an MVOT solution is a key

aspect since it determines whether a system is suitable for real-life scenarios or
not. The main objective of SiamMT is to enable the real-time tracking of a large
number of arbitrary objects in a scalable manner, something that has not yet
been achieved in MVOT. Consequently, we have designed two different test sets
to represent the most typical multiple object tracking scenarios: the MT-VGA
benchmark, composed of videos with a size of 640× 480 pixels, and the MT-HD
benchmark, with 1280 × 720-pixel videos. The purpose of these experiments is
to test the scalability of a tracker with respect to the number of tracked objects.
Thus, the benchmark starts by measuring the time required to track a single
object for each video, and gradually increases the number of tracked targets all
the way up to 100.

To demonstrate the scalability of the proposed solution, the SiamMT ar-
chitecture will be compared against the multiple instantiations of SiamFC [9]
and SiamFC-MI. SiamFC-MI is a proposal of ours that optimizes the SiamFC
algorithm for multiple instantiations by stacking objects along its batch size to
maximize GPU parallelization. However, it does not reuse features computa-
tions, nor does it implement any of our novel operators.

It is worth noting that SiamMT’s partial extraction of the frame features
has not been applied during these tests. This technique provides a significant
speed boost on most situations, so it would make SiamMT perform better for
some sequences. However, we believe that employing it for these benchmarks
would not be fair, as it is the network architecture itself the one that should
stand out for its scalability, not the extra add-ons.

MT-VGA benchmark. The results for the MT-VGA benchmark are
shown in Figure 9a. For a single object, all three architectures offer speeds
above 60 frames per second, with SiamFC being the fastest due to its simplic-
ity, reaching 112 fps. SiamFC-MI tracks one object at 89 fps —it is slower
than SiamFC due to its batch management—, and SiamMT tracks one object
at 63 fps as, unlike the other two, it extracts the features of the whole frame.

As more objects are added, the SiamFC and SiamFC-MI tracking speeds are
reduced exponentially to just 11 and 16 fps for 10 objects, respectively. Mean-
while, the scalability of the SiamMT architecture becomes evident, dominating

19

Number of objects

F
ra

m
e

ra
te

 (f
ps

)

0

20

40

60

80

100

20 40 60 80 100

SiamMT SiamFC-MI SiamFC

(a)

Number of objects

Fr
am

e
ra

te
 (f

ps
)

0

20

40

60

80

20 40 60 80 100

SiamMT SiamFC-MI SiamFC

(b)

Figure 9: Speed results for (a) MT-VGA and (b) MT-HD benchmarks with respect to the
number of tracked objects.

the rest of the graph and allowing to track 10 objects at 49 fps. This is possible
because SiamMT runs the backbone only once per frame thanks to its features
reuse, and because its final similarity operator exploits the properties of the
depthwise cross-correlation, allowing multiple pairwise comparisons.

Thus, SiamMT scales almost linearly with the number of objects, being
able to track 70 targets at 30 fps and —100 objects— at 27 fps. Furthermore,
SiamMT is able to maintain speeds over 25 fps with up to 122 simultaneous ob-
jects. By contrast, even though SiamFC-MI offers higher speeds than SiamFC,
its performance is far below SiamMT, tracking 100 objects at only 2 fps.

MT-HD benchmark. The results for the MT-HD benchmark are shown in
Figure 9b. Since SiamMT performs the global features extraction of the 1280×
720-pixel frames, it has a higher overhead that becomes more noticeable for a
low number of targets, tracking 1 object at 51 frames per second while SiamFC
and SiamFC-MI do it at 89 and 69 fps, respectively. The latter are virtually
unaffected by the resolution of the frame, as they only process a 255× 255 crop
of the image.

However, once above 3 objects, SiamMT outperforms the other architectures,
with a computational cost that remains almost constant thanks to its reuse of
features computations. Thus, SiamMT is capable of tracking 60 objects at

20

Number of objects

St
ag

e
co

st
 (m

s)

0

50

100

150

200

20 40 60 80 100

Setup
Crop-and-resize
Backbone
Similarity operation
Score map upsampling
Bounding-boxes update

(a)

Number of objects

St
ag

e
co

st
 (m

s)

0

50

100

150

200

20 40 60 80 100

Setup
Crop-and-resize
Backbone
Similarity operation
Score map upsampling
Bounding-boxes update

(b)

Figure 10: Comparison of average times per stage in the MT-HD benchmark for
(a) SiamFC-MI and (b) SiamMT, with respect to the number of followed objects. In
SiamFC-MI, the cost of most stages increases linearly. Meanwhile, in SiamMT, few are the
stages whose time depends on N.

30 fps and reaches a speed of 25 fps for 100 objects. Meanwhile, SiamFC and
SiamFC-MI do not exceed 2 fps with 100 objects, evidencing the scalability
benefits offered by the SiamMT architecture.

4.4. Computational cost per stage analysis
Figure 10 shows the cost of the main stages of SiamMT and SiamFC-MI for

the MT-HD benchmark. As depicted, all the SiamFC-MI operations incur in an
execution time that increases with N , as opposed to the SiamMT ones, whose
cost remains almost constant. Below is the description of these stages and the
explanation for the cost difference:

• Setup. In this stage, all the necessary data are allocated onto GPU
memory in order to process the next frame. Both networks take the same
tensors as inputs, yet the cost of SiamMT for this stage remains constant,
since it caches the exemplars’ features —)/ in Algorithm 1— directly in
GPU memory.

21

• Crop-and-resize. This stage constitutes a crop-and-resize operation that
creates the search areas for each tracked object. SiamMT solves this ap-
plying ˜̂ on the frame features, efficiently calculating the region sizes and
generating small 22 × 22 tensors. However, SiamFC-MI implements this
with ^, performing this operation directly over the frame image and gen-
erating three 255 × 255 images per tracked object. Therefore, the cost of
^ is more sensitive to the number of tracked objects, making it grow with
a greater slope.

• Backbone. Both SiamFC-MI and SiamMT employ the same AlexNet-
based backbone i to extract the images’ features. However, while SiamFC-MI
must use it on each of the 3N search areas, SiamMT only runs it once for
the whole frame. The latter is less efficient when there are few objects on
the scene, but is significantly faster when N is large.

• Similarity operation. This operation is the responsible for generating a
score map from the exemplar and search area features. SiamMT employs
a similarity operator Ẽ, specially designed for the comparison of pairs
of tensors, as it performs the entire comparison within the same depth-
wise cross-correlation. This is very different from the sequential approach
followed in SiamFC-MI, which requires one additional step per followed
object.

• Score map upsampling. In order to reduce the coarseness of the score
maps, they are upsampled to 272×272 pixels. SiamFC-MI’s score maps are
upsampled via bicubic interpolation. On the other hand, although slightly
less accurate, SiamMT applies bilinear interpolation, which allows for a
much higher throughput.

• Bounding-boxes update. Lastly, the score maps are penalized in scale
and translation, and the best candidate for each object is chosen. SiamFC-MI
implements these operations sequentially, while SiamMT is able to embed
them inside Ẽ. Hence, when N is large, the non-maximum-suppression is
substantially faster in the SiamMT architecture.

5. Conclusions and future work

Current motion estimation modules work by instantiating multiple individ-
ual trackers, so they are only a viable option when there are few targets in the
scene. In this paper we present SiamMT, the first deep-learning-based real-time
arbitrary MVOT (multiple visual object tracker). It applies individual tracking
techniques to multiple objects in an efficient and scalable manner, tracking 122
simultaneous objects in VGA video, and 100 objects in HD720 video, both at
25 fps. This is made possible through its global frame features extraction, its
RoiAlign-based crop-and-resize operator, and a novel pairwise cross-correlation
operation.

22

SiamMT has been evaluated in several video databases, obtaining a real-
time accuracy and robustness superior to those of the current state-of-the-art
—9.5 points more on average when compared to the best performing counter-
part at 25 fps—, and demonstrating the architectural improvements that enable
a speed-up of more than 20× per object. In addition, as it extends on SiamFC,
SiamMT allows reusing SiamFC’s weights without requiring retraining, which
further highlights its versatility and ease of adoption for multiple types of sce-
narios.

As future work, since SiamMT opens up the possibilities of extending real-
time video analytics applications to many more objects, it would be worthy to
integrate the present architecture on an embedded system, possibly trading ac-
curacy and computation capacity for area and power consumption, but enabling
video analytics directly at the edge without resorting to large uplinks for data
transmission. The migration to backbones with padding would also be reward-
ing, as it would allow to run deeper neural networks at the cost of reducing
processing speed.

Acknowledgment

This research was partially funded by the Spanish Ministerio de Ciencia e In-
novación [grant numbers PID2020-112623GB-I00, RTI2018-097088-B-C32], and
the Galician Consellería de Cultura, Educación e Universidade [grant numbers
ED431C 2018/29, ED431C 2017/69, accreditation 2016-2019, ED431G/08].
These grants are co-funded by the European Regional Development Fund (ERDF).
Lorenzo Vaquero is supported by the Spanish Ministerio de Universidades under
the FPU national plan (FPU18/03174).

References

[1] Y. Zhang, X. Liang, D. Zhang, et al., Unsupervised object-level video sum-
marization with online motion auto-encoder, Pattern Recognit. Lett. 130
(2020) 376–385.

[2] A. Rangesh, M. M. Trivedi, No blind spots: Full-surround multi-object
tracking for autonomous vehicles using cameras and lidars, IEEE Trans.
Intell. Veh. 4 (4) (2019) 588–599.

[3] L. Leal-Taixé, A. Milan, K. Schindler, et al., Tracking the trackers:
An analysis of the state of the art in multiple object tracking, CoRR
abs/1704.02781.

[4] P. Dendorfer, H. Rezatofighi, A. Milan, et al., MOT20: A benchmark for
multi object tracking in crowded scenes, CoRR abs/2003.09003.

[5] M. Tan, R. Pang, Q. V. Le, Efficientdet: Scalable and efficient object
detection, in: IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2020,
pp. 10778–10787.

23

[6] T. Lin, P. Goyal, R. B. Girshick, et al., Focal loss for dense object detection,
IEEE Trans. Pattern Anal. Mach. Intell. 42 (2020) 318–327.

[7] M. Fernández-Sanjurjo, M. Mucientes, V. Brea, Real-time multiple object
visual tracking for embedded GPU systems, IEEE Internet Things J. 8
(2021) 9177–9188.

[8] G. Ciaparrone, F. L. Sánchez, S. Tabik, et al., Deep learning in video multi-
object tracking: A survey, Neurocomputing 381 (2020) 61–88.

[9] L. Bertinetto, J. Valmadre, J. F. Henriques, et al., Fully-convolutional
siamese networks for object tracking, in: European Conf. Comput. Vis.
(ECCV) Workshops, 2016, pp. 850–865.

[10] X. Zhou, V. Koltun, P. Krähenbühl, Tracking objects as points, in: Euro-
pean Conf. Comput. Vis. (ECCV), 2020, pp. 474–490.

[11] J. Yin, W. Wang, Q. Meng, et al., A unified object motion and affinity
model for online multi-object tracking, in: IEEE Conf. Comput. Vis. Pat-
tern Recognit. (CVPR), 2020, pp. 6767–6776.

[12] K. He, G. Gkioxari, P. Dollár, R. B. Girshick, Mask R-CNN, in: IEEE Int.
Conf. Comput. Vis. (ICCV), 2017, pp. 2980–2988.

[13] L. Vaquero, M. Mucientes, V. M. Brea, SiamMT: Real-time arbitrary multi-
object tracking, in: IEEE Int. Conf. Pattern Recognit. (ICPR), 2020, pp.
707–714.

[14] L. Leal-Taixé, C. Canton-Ferrer, K. Schindler, Learning by tracking:
Siamese CNN for robust target association, in: IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), 2016, pp. 418–425.

[15] A. Bewley, Z. Ge, L. Ott, et al., Simple online and realtime tracking, in:
IEEE Int. Conf. Image Process. (ICIP), 2016, pp. 3464–3468.

[16] Z. Zhou, W. Luo, Q. Wang, et al., Distractor-aware discrimination learning
for online multiple object tracking, Pattern Recognit. 107 (2020) 107512.

[17] T. Xu, Z. Feng, X. Wu, J. Kittler, An accelerated correlation filter tracker,
Pattern Recognit. 102 (2020) 107172.

[18] D. Yuan, X. Li, Z. He, et al., Visual object tracking with adaptive structural
convolutional network, Knowl. Based Syst. 194 (2020) 105554.

[19] M. Danelljan, G. Bhat, F. S. Khan, M. Felsberg, ATOM: accurate tracking
by overlap maximization, in: IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2019, pp. 4660–4669.

[20] G. Bhat, M. Danelljan, L. V. Gool, R. Timofte, Learning discriminative
model prediction for tracking, in: IEEE Int. Conf. Comput. Vis. (ICCV),
2019, pp. 6181–6190.

24

[21] B. Li, J. Yan, W. Wu, et al., High performance visual tracking with siamese
region proposal network, in: IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2018, pp. 8971–8980.

[22] D. Guo, J. Wang, Y. Cui, et al., Siamcar: Siamese fully convolutional
classification and regression for visual tracking, in: IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), 2020, pp. 6268–6276.

[23] B. Li, W. Wu, Q. Wang, et al., Siamrpn++: Evolution of siamese visual
tracking with very deep networks, in: IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2019, pp. 4282–4291.

[24] Y. Yin, D. Xu, X. Wang, L. Zhang, Agunet: Annotation-guided u-net
for fast one-shot video object segmentation, Pattern Recognit. 110 (2021)
107580.

[25] H. Xu, Y. Zhu, Real-time object tracking based on improved fully-
convolutional siamese network, Comput. Electr. Eng. 86 (2020) 106755.

[26] Y. Xu, Z. Wang, Z. Li, et al., Siamfc++: Towards robust and accurate
visual tracking with target estimation guidelines, in: AAAI Conf. Artif.
Intell. (AAAI), 2020, pp. 12549–12556.

[27] O. Russakovsky, J. Deng, H. Su, et al., ImageNet large scale visual recog-
nition challenge, Int. J. Comput. Vision 115 (3) (2015) 211–252.

[28] P. Zhu, L. Wen, D. Du, et al., Vision meets drones: Past, present and
future, CoRR abs/2001.06303.

[29] A. Milan, L. Leal-Taixé, I. D. Reid, et al., MOT16: A benchmark for
multi-object tracking, CoRR abs/1603.00831.

[30] E. Real, J. Shlens, S. Mazzocchi, et al., Youtube-boundingboxes: A large
high-precision human-annotated data set for object detection in video, in:
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2017, pp. 7464–7473.

[31] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep
convolutional neural networks, in: Adv. Neural Inf. Process. Syst. (NIPS),
2012, pp. 1106–1114.

[32] R. B. Girshick, Fast R-CNN, in: IEEE Int. Conf. Comput. Vis. (ICCV),
2015, pp. 1440–1448.

[33] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recogni-
tion, in: IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2016, pp.
770–778.

[34] J. Redmon, A. Farhadi, YOLO9000: better, faster, stronger, in: IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2017, pp. 6517–6525.

25

[35] Y. Ioannou, D. P. Robertson, R. Cipolla, A. Criminisi, Deep roots: Improv-
ing CNN efficiency with hierarchical filter groups, in: IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), 2017, pp. 5977–5986.

[36] L. Huang, X. Zhao, K. Huang, Got-10k: A large high-diversity benchmark
for generic object tracking in the wild, IEEE Trans. Pattern Anal. Mach.
Intell. (2019) 1–1.

[37] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: Int.
Conf. Learn. Repr. (ICLR), 2015, pp. 1–15.

[38] M. Kristan, J. Matas, A. Leonardis, et al., The seventh visual object track-
ing VOT2019 challenge results, in: IEEE Int. Conf. Comput. Vis. (ICCV)
Workshops, 2019, pp. 2206–2241.

[39] H. Yu, G. Li, W. Zhang, et al., The unmanned aerial vehicle benchmark:
Object detection, tracking and baseline, Int. J. Comput. Vis. 128 (5) (2020)
1141–1159.

[40] M. Fabbri, F. Lanzi, S. Calderara, et al., Learning to detect and track
visible and occluded body joints in a virtual world, in: European Conf.
Comput. Vis. (ECCV), 2018, pp. 450–466.

Lorenzo Vaquero is a Ph.D. student at the CiTIUS of the
Universidade de Santiago de Compostela, Spain. He received
the B.S. degree in Computer Science in 2018 and the M.S.
degree in Big Data in 2019. His research interests are visual
object tracking and deep learning for autonomous vehicles.

Víctor M. Brea is an Associate Professor at CiTIUS, Uni-
versidade de Santiago de Compostela, Spain. His main re-
search interest lies in Computer Vision, both on deep learning
algorithms, and on the design of efficient architectures and
CMOS solutions. He has authored more than 100 scientific
papers in these fields of research.

Manuel Mucientes is an Associate Professor at the CiTIUS
of the University of Santiago de Compostela, Spain. His main
research interest is artificial intelligence applied to the follow-
ing areas: computer vision for object detection and tracking;
machine learning; process mining. He has authored more than
100 scientific papers in these fields of research.

26

	Introduction
	Related Work
	SiamMT Network Architecture
	SiamFC's network architecture
	Modifying the SiamFC architecture to multiple objects
	System training

	Experiments
	Implementation details
	Tracking quality evaluation
	Tracking speed evaluation
	Computational cost per stage analysis

	Conclusions and future work

