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Abstract. The reduction of energy consumption in buildings is one of
the goals to improve energy efficiency. One way to achieve energy savings
in buildings is to develop intelligent control strategies for heating systems
that are able to reduce power consumption without affecting the thermal
comfort. An intelligent control system must be able to predict the tem-
perature of the building in order to manage the heating system. In this
paper, we present a rule-based model that is able to predict the indoor
temperature for different values of k (hours ahead in time). The model
has been learned with FRULER, a genetic fuzzy system that generates
accurate and simple knowledge bases. Our approach has been validated
with real data from a residential college.

Keywords: energy optimization, indoor temperatures prediction, TSK
fuzzy rules for regression, genetic fuzzy systems

1 Introduction

Buildings account for 40% of the total energy consumption in the EU, according
to European Directive 2010/31/EU on energy efficiency in buildings. Because of
the expansion this sector is currently experiencing, a rise of that percentage will
be inevitable. Therefore, it seems clear that the reduction of energy consumption
and the use of energy from renewable sources in the building sector will play a
key role in future measures to reduce emissions of greenhouse gases.

One way to achieve energy savings in buildings is by reducing the total work-
ing hours of heating systems. However, a decrease in the total usage may lead
to important decreases of indoor temperatures that can affect thermal comfort.
In order to prevent this, automatic heating control systems must predict the fu-
ture indoor temperature for a particular control policy in order to find the best
strategy that minimizes power consumptions while keeping thermal comfort.

Current methods for indoor temperature prediction [3] are mostly based on
physical model simulations [13] and black-box machine learning methods [5, 14,
1, 12]. Physical models describe the building behaviour by solving theoretical
equations that describe to a certain precision the different dynamics and in-
teractions between the variables. Although these methods are very powerful to
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simulate the different dynamics of a building, especially when there is no real
data available, in general these methods are: 1) very time-consuming since they
require many simulation hours, which prevents their application for predicting
temperatures in small temporal windows; and 2) complex to formulate, since it is
very difficult to produce a detailed model of a complex building, especially when
there are many unknown factors that can affect the temperature dynamics. On
the other hand, machine learning models can overcome some of these limitations
by learning the behaviour from real data. However, current techniques, which
are mostly black-box models based on neural networks, are hard to interpret and
thus the interaction of the different variables of the building remains unknown.

In this sense, the generation of accurate and interpretable models for indoor
temperature prediction is fundamental for 1) modelling the energy-building be-
haviour and 2) discovering which are the most relevant variables that affect
the indoor building temperature and are related to power consumption. Within
this context, initiatives such as the EU LIFE-OPERE project [2], where this
research is framed, have started. OPERE has among its goals the setting of ef-
ficient management systems in energy networks, both thermal and electrical, in
existing installations with large energy consumption.

In this paper, we propose a rule-based regression model for indoor tempera-
ture prediction. To do so, we have modelled the indoor temperatures of a residen-
tial college using the FRULER Genetic Fuzzy System (GFS) [10]. The knowledge
bases learned by FRULER include TSK fuzzy rules that accurately predict the
temperature dynamics from a set of different predictors that can be measured
both inside and outside the building.

2 FRULER: Fuzzy RUle Learning through Evolution for
Regression

FRULER (Fuzzy RUle Learning through Evolution for Regression) [10] is a novel
GFS that obtains accurate and simple linguistic TSK-1 fuzzy rule base models for
regression problems. FRULER (Fig. 1) is composed of a new instance selection
method for regression, a novel multi-granularity fuzzy discretization of the input
variables, and an evolutionary algorithm that uses a fast and scalable method
with Elastic Net regularization to generate accurate and simple TSK-1 fuzzy
rules.

Instance selection. The objective of the instance selection module is to reduce
the variance of the models, focusing the generated rules on the representative
examples. The instance selection method for regression is an improvement of
the CCISR (Class Conditional Instance Selection for Regression) algorithm [9],
which is an adaptation for regression of the instance selection method for clas-
sification CCIS (Class Conditional Instance Selection) [4].

Multi-granularity fuzzy discretization. In a multi-granularity proposal,
each granularity has a different fuzzy partition. The generation of the fuzzy
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Fig. 1: FRULER architecture. Dashed lines indicate flow of datasets, dotted lines
multigranularity information and solid lines represent process flow.

linguistic labels can be divided into two stages. First, the variable must be dis-
cretized to obtain a set of split points Cg for each granularity g. Then, given the
split points, the fuzzy labels can be defined for each granularity. In regression
problems (TSK-1 in our case), the discretization process must search for the
split point that minimizes the error when a linear model is applied to each of
the resulting intervals.

Evolutionary algorithm. The evolutionary algorithm learns a linguistic TSK
model. The integration of the evolutionary algorithm with the preprocessing
stage is as follows (Fig. 1):

– First, the instance selection process is executed over the training examples
Etra in order to obtain a subset of representative examples ES .

– Then, the multi-granularity fuzzy discretization process obtains the fuzzy
partitions for each input variable.

– Finally, the evolutionary algorithm searches for the best data base config-
uration using the obtained fuzzy partitions, generates the entire linguistic
TSK rule base using ES and evaluates the different rule bases using Etra.

The chromosome is codified with a double coding scheme (C = C1 + C2).
C1 represents the granularity of each input variable. C2 represents the lateral
displacements of the split points of the input variables fuzzy partitions.

FRULER uses the Wang & Mendel algorithm to create the antecedent part
of the rule base for each individual. The consequent part of the rules is learned
using the Elastic Net method [15] in order to obtain the coefficients of the degree
1 polynomial for each rule. Elastic Net linearly combines the `1 (Lasso regular-
ization) and `2 (Ridge regularization) penalties of the Lasso and Ridge methods,
minimizing the following equation:

β̂ = arg min
β

||Y −X · β||22 + λ · α · ‖β‖22 + λ · (1− α) · ‖β‖1 (1)
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where β is the coefficients vector, Y is the outputs vector, X is the inputs matrix,
λ is the regularization parameter and α represents the trade-off between `1 and
`2 penalization. In order to solve the minimization problem of Elastic Net (Eq.
1), we used Stochastic Gradient Descent (SGD).

The rule base is generated using only those examples in Es. In this man-
ner, those examples that are not representative are not taken into account, the
method avoids the generation of too specific rules, and reduces the time needed
to create the rule base.

The fitness function is:

fitness = MSE (Etra) =
1

2 · |E |

|E |∑
i=1

(F (x i)− y i)2 , (2)

where Etra is the full training dataset and F (xi) is the output obtained by the
knowledge base for input xi. Using all the examples for evaluation can be seen,
in some way, as a validation process, as the rule base was constructed with a
subset of them (ES).

3 Indoor temperature prediction

The main goal of the OPERE project [2] is to implement efficient management
systems in both thermal and electrical energy grids in existing installations with
large energy consumption. To achieve this goal, in this work we propose a method
that automatically learns an accurate and interpretable non-linear model using
FRULER. The learned model predicts the indoor temperature dynamics of an
existing building in order to find a better heating control that minimizes the
energy consumption without sacrificing thermal comfort. Concretely, we focus
this study on the residential facilities of Monte da Condesa, a building located
at the University of Santiago de Compostela.

Monte da Condesa comprises a set of centers that act as separate buildings,
but nevertheless maintain thermal interaction through their conditioning cir-
cuits connected to a common cogeneration plant. The building is about 25,000
m2 and reached in 2013 a total power consumption of 5,747 MWh. The set of
all centers is supervised by a SCADA system that has 469 variables (inputs
and outputs) that are associated with signals from the primary heating circuits
and power consumption. Signals are collected in two different ways: synchronous
(sync) and asynchronous (async). Synchronous signals are sequentially sampled
at a fixed interval of 10 s, whereas asynchronous signals are registered by de-
tecting a change of a value above an stablished threshold. These signals include
information about the indoor temperature of each floor, the outside tempera-
ture, the pumped water temperature of the heating systems, plus many other
low level variables. In order to predict the indoor temperatures, we focus on the
variables that may directly affect the temperature dynamics.

These variables are represented in Fig. 2a, which shows a high-level repre-
sentation of the building. Tnin corresponds with the indoor temperature sensors
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Fig. 2: Monte da Condesa schema and sample representation of indoor and water
temperatures.

of the building. In total, there are 6 different sensors (T 0
in, . . . , T

5
in), one for each

floor, which are the objective variables we want to predict. Tflow1 and Tflow2 re-
fer to the temperature of the pumped water of the two heating systems installed
in Monte da Condesa. Tflow1 corresponds with the pumped water temperature
of the heating system that feeds both floors 0 and 1, whereas Tflow2 feeds the
remaining floors. Note that, for the sake of clarity, in the following we will re-
fer to Tflow instead of Tflow1 and Tflow2, where Tflow = Tflow1∀n ∈ [0, 1] and
Tflow = Tflow2∀n ∈ [2, 5]. Fig. 2b shows an example of Tflow and T 0

in between
22-02-2016 and 24-02-2016.

In addition to these SCADA variables, we also obtained the humidity (Hr)
and solar radiation power (P ) from Santiago-EOAS, a Meteogalicia [6] weather
station situated approximately 100 meters from the reference building.

Moreover, the temperature (TMS
out ), relative humidity (HMS

r ) and sky state
(skyMS) predictions at Monte da Condesa are obtained from MeteoSIX [7], a
galician numerical weather service that provides hourly predictions from the
current day to four days in ahead.

Synchronous measures were downsampled to 1 h bins and asynchronous mea-
sures were converted into time series by appling linear interpolation and 1 h
resampling. To summarize, the selected signals, sampled at 1 h interval (t) are:

– Tnin(t): indoor temperature at t of floor n (°C, async).
– Tout(t): outside temperature at t (°C, async).
– Tflow1(t): water temperature of the first heating system (1) at t (°C, sync).
– Tflow2(t): water temperature of the second heating system (2) at t (°C, sync).
– Hr(t): relative humidity (%, sync, Meteogalicia).
– P (t): global solar radiation power (W/m2, sync, Meteogalicia).
– TMS

out (t): outdoor temperature prediction (°C, MeteoSIX).
– HMS

r (t): relative humidity prediction (%, MeteoSIX).
– skyMS(t): sky state prediction (MeteoSIX).
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Only Tnin(t) and Tout(t) are directly used into the model as predictor variables
at t. The rest are used to predict related variables at t+ k, as the predictions of
MeteoSIX are usually biased:

– T̂out(t+k): A correction is performed over the predicted outdoor temperature
TMS
out (t + k) in order to approximate these values to the real ones. So that,

the real outdoor temperature Tout(t) is taken into account to make this
adjustment.

T̂out(t+ k) = TMS
out (t+ k) + (TMS

out (t)− Tout(t))

– Ĥr(t+ k): In the same way that T̂out(t+ k) is calculated, an adjustment is
performed to calculate the predicted relative humidity.

Ĥr(t+ k) = HMS
r (t+ k) + (HMS

r (t)−Hr(t))

– P̂ (t+k): The radiation is predicted using a model with the real radiation val-
ues P in the last twelve hours -enough information to describe its behaviour-
until t and the sky state prediction skyMS at t + k. The sky state returns
a categorical value that will be converted from 0 -sunny- to 1 -completely
cloudy-. At night, it is set to 1. This model was learned with Random Forest,
as it contains both numerical and categorical variables.

P̂ (t+ k) = f(P (t− 12), . . . , P (t), skyMS(t+ k))

– %r(t+k): This variable represents the boiler operating percentage in a time
interval. It is the system control variable, since the boiler operation can be
adjusted in order to satisfy the comfort temperature.

We constructed a rule-based regression model F with FRULER to predict
each variable response T̂nin(t+ k), n ∈ [0, 5] for different values of k (hours ahead

in time), where T̂nin is the predicted indoor temperature on floor n at instant
t + k. As k might be large (up to 96 h), those variables that have to be known
in a future time where predicted at 1 h intervals and averaged in different time
windows. Thus instead of using as features T̂out(t+ k), Ĥr(t+ k), P̂ (t+ k), and
%r(t+k), we defined variables {T̄ sout, H̄s

r , P̄
s,%rs}. Algorithm 1 shows how these

features are calculated. X̄s is any of variables in {T̄ sout, H̄s
r , P̄

s,%rs}.

Algorithm 1 Definition of the predicted features given a future time k.

1: if k < 4 then
2: α = 1; β = k
3: else
4: α = k/4; β = 4
5: end if
6: s = {0, . . . , β − 1}
7: X̄s = 1

α

∑α
i=1 X̂(t+ s · α+ i)
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In order to train the models, several values of k could be set. In this case,
k = {1, 2, 4, 8, 16, 24}h are proposed. To calculate the indoor temperature for
another k, a combination of the previous models can be carried out. Then, the
predicted indoor temperature is:

T̂nin(t+ k) = F [Tnin(t), Tout(t), T̄
0
out, · · · , T̄

β−1
out , H̄

0
r , · · · , H̄β−1

r , P̄ 0, · · · , P̄ β−1,

%r0, · · · ,%rβ−1]

At k = 1 and k = 2 we use 6 and 10 predictor variables respectively. For
k >= 4, the total predictor variables remains equal to 18. These variables are
represented in Figure 3.

16h15h14h13h12h11h10h9h8h7h6h5h4h3h2h1h

Hours ahead in time (k)

. . .Pred. Inter.

1h

2h

4h

8h

16h

X̄0

X̄0 X̄1

X̄0 X̄1 X̄2 X̄3

X̄0 X̄1 X̄2 X̄3

X̄0 X̄1 X̄2 X̄3

Fig. 3: Example of a predicted feature for different future times.

4 Experiments and results

4.1 Experimental setup

FRULER was designed to keep the number of parameters as low as possible.
For the instance selection technique, no parameters are needed. In the multi-
granularity fuzzy discretization, the fuzziness parameter used for the generation
of the fuzzy intervals from the split points was 1, i.e., the highest fuzziness value.
For the evolutionary algorithm, the values of the parameters were: population
size = 61, maximum number of evaluations = 100,000, pcross = 1.0, pmut =
0.2, and nls = 5. For the generation of the TSK fuzzy rule bases, the weight
of the tradeoff between `1 and `2 regularizations on the Elastic Net is α =
0.95, and the regularization parameter λ was obtained from a grid search in the
interval [1, 1E − 10]. η0 was obtained halving the initial value (0.1) until the
result worsens.

We present the results of the second floor (P2) with a a 5-fold cross-validation.
Moreover, 6 trials (with different seeds for the random number generation) of
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FRULER were executed for each 5-fold cross validation. Thus, a total of 30
runs were obtained for prediction hour in this floor. For the experiments in the
remaining floors we just performed 3 trials without cross-validation.

The results shown in the next section are the mean values over all the runs.
Data was recorded from 27-02-2016 to 14-06-2016 (2,483 h). Note that variable
HMS
r was not recorded until 23-07-2016 and consequently, Hr is used instead of

Ĥr. Nevertheless, it may be used in future as a predictor variable.

4.2 Results

In order to evaluate the performance of FRULER, we did a comparison with
ElasticNet and Random Forest Regressor, both implemented in the scikit-learn
package [8]. Table 1a shows the average test error in °C of the three approaches
for the indoor temperature prediction on the second floor (P2) at several predic-
tion intervals. For each algorithm and interval, the table displays the test error
measured in °C. This indicator allows to compare the accuracy of the algorithms.
The values with the best accuracy —lowest error— in Table 1a are marked in
bold.

Pred. Interval FRULER ElasticNet Random Forest

1h 0.129 0.177 0.197
2h 0.222 0.317 0.346
4h 0.329 0.464 0.479
8h 0.434 0.640 0.561
16h 0.532 0.824 0.662
24h 0.558 0.872 0.660

(a) Average test error in °C for the compared algo-
rithms.

Algorithm Ranking

FRULER 3.50
Random Forest 11.00
ElasticNet 14.00

p-value 0.012

(b) Aligned Friedman
Test.

Table 1: Comparison results of the three algorithms for the indoor temperature
prediction on the second floor (P2) at several prediction intervals.

FRULER gets the best accuracy for all the experiments. In order to check
whether there are significant differences among the algorithms, we applied the
Aligned Friedman statistical test, that computes the ranking of the results of the
algorithms. The application of the test, using the STAC platform [11], rejects
the null hypothesis, which states that the results of all the algorithms are equiv-
alent with a given confidence -significance level (α = 0.05)-. Table 1b shows the
ranking for the test error and the p-value of the test, which indicates that the
differences among the algorithms are statistically significant and that FRULER
ranks first.

In Table 2a, the average test error in °C for the indoor temperature prediction
on the second floor (P2) is displayed for several prediction intervals. Note that
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for the prediction intervals ∈ {1h, 2h, 4h, 8h, 16h, 24h}, the learned models are
applied whereas for the remaining prediction intervals -they have been chosen
arbitrarily-, a concatenation of the previous models is performed. This technique
lets us to predict the indoor temperature for any prediction interval from 1h to
96h.

As depicted in Table 2a, the test error is higher for the larger prediction
intervals. The results are what could be expected, i.e., it is more accurate to
predict the indoor temperature for the next hour rather than four days ahead.

1h 2h 4h 6h
0.129 0.222 0.329 0.335

8h 12h 16h 20h
0.434 0.504 0.532 0.617

24h 48h 72h 96h
0.558 0.845 0.954 0.279

(a) Average test error
in °C on the second
floor (P2).

Floor 1h 2h 4h 8h 16h 24h

P0 0.123 0.216 0.378 0.462 0.534 0.493
P1 0.109 0.207 0.336 0.492 0.473 0.518
P3 0.219 0.332 0.335 0.549 0.703 0.613
P4 0.102 0.191 0.311 0.386 0.409 0.467
P5 0.154 0.102 0.204 0.220 0.283 0.351

(b) Average test error in °C for the remaining
floors at several prediction intervals.

Table 2: Test error on the second floor by concatenating the learned models (a)
and test error for the remaining floors (b).

Finally, Table 2b presents the average test error in °C for the remaining floors
at several prediction intervals. As we concluded before, the test error tends to
increase as the prediction interval does.

5 Conclusions

In this paper we presented a model for indoor temperature prediction using the
FRULER Genetic Fuzzy System to generate the knowledge base, made up of
TSK fuzzy rules. The model has been learned from data recorded at Monte da
Condesa Residential College during 2,483 hours and from several sensors. The
model can predict the future indoor temperature for each floor of the building
with an average error in the range 0.10-0.22 °C at t+1 and in the range 0.35-0.61
°C at t+24. The learned model will be used in the near future in the LIFE-
Opere EU project [2] for planning efficient heating control strategies, in order to
guarantee that the global power consumption of the heating system is reduced
without sacrificing thermal comfort.



10

Acknowledgement

This research was supported by the European Union LIFE programme (grant
LIFE12 ENV/ES/001173), the Spanish Ministry of Economy and Competitive-
ness (grant TIN2014-56633-C3-1-R) and the Galician Ministry of Education
(grants CN2012/151 and GRC2014/030). All grants were co-funded by the Eu-
ropean Regional Development Fund (FEDER program).

References

1. Prediction of building’s temperature using neural networks models. Energy and
Buildings, 38(6):682–694, 2006.

2. Life-OPERE web page, http://www.life-opere.org/, Last visited May 30th 2016.
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STAC: a web platform for the comparison of algorithms using statistical tests.
In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE), pages 1–8, 2015.

12. Tao Lu and M Viljanen. Prediction of indoor temperature and relative humidity
using neural network models: model comparison. Neural Computing Applications,
18(4):345–57, 2009.

13. Catalin Teodosiu, Raluca Hohota, Gilles Rusaouën, and Monika Woloszyn. Nu-
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