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Abstract—This paper presents a hybrid approach for auto-
matic composition of Web services that generates semantic input-
output matching compositions minimizing the number of services
and optimizing the global QoS. The proposed approach has four
main steps: 1) generation of the composition graph for a request;
2) computation of the optimal QoS of the composition graph;
3) multi-step optimizations of the graph to identify equivalent
and dominated services; and 4) hybrid local-global search to
extract the optimal QoS with the minimum number of services. A
validation with the datasets of the Web Service Challenge 2009-
2010 is also provided.
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I. INTRODUCTION

As the number of available services on the Internet grows,
the need to develop efficient composition algorithms that can
1) select and combine different services to build rich function-
alities and 2) deal with a large number of services ensuring
optimal Quality-of-Service (QoS) becomes a challenging task.
This has motivated researchers to explore different strategies
to efficiently generate QoS-aware Web service compositions
from different perspectives [1]. One common approach is
to consider the QoS composition problem as a Knapsack
Problem [1], where the goal is to select a combination of
services for a predefined workflow that optimizes some global
QoS utility function subject to different constraints [2]. These
approaches do not contemplate how to automatically generate
the composition workflow, so the total number of services
in the composition is fixed. Other approaches [3], [4], [5]
consider a broader problem by not only optimizing the total
QoS but also building the entire composition in an automatic
fashion. However, the problem of building the composition
with the minimum number of services that guarantee the
optimal end-to-end QoS is rarely considered. For example,
in [3] the authors analyze the problem of generating top K
query compositions by relaxing the optimality of the QoS in
order to introduce service variability. The problem is that the
alternatives are generated at the expense of worsening the
optimal QoS instead of looking first for other composition
alternatives that guarantee the optimal QoS. Other authors,
such as the top-3 of the Web Service Challenge 2009-2010
[6], [4], [5], proposed efficient techniques to optimize a single
QoS parameter. However, these approaches do not find optimal
compositions in terms of number of services and also do not
contemplate pruning techniques to improve the scalability.

This paper focuses on the automatic generation of se-
mantic input-output based compositions with optimal QoS,
minimizing the total number of services. We present a hybrid

optimization algorithm for QoS-aware semantic service com-
position. It combines a near-optimal heuristic local search with
a global combinatorial search in order to retrieve the optimal
composition in terms of the number of services and the global
QoS for a given semantic input-output composition request.
The approach works as follows: given a composition request,
a directed graph with the relevant services for the request is
generated. Once the graph is built, an optimal label-correcting
forward search is performed in polynomial time in order to
compute the global optimal QoS. This information is used later
in a multi-step pruning phase to remove sub-optimal services.
Finally, a hybrid local/global search is performed within a fixed
time limit to extract the optimal solution from the graph. The
main contributions of this paper are threefold:

• Multi-step optimizations based on the analysis of non-
relevant, equivalent and dominated services in terms of
interface functionality and QoS, which is an extension
of our previous work [7].

• A fast local search strategy to obtain a near-optimal
number of services while satisfying the optimal end-
to-end QoS for an input-output based composition
request.

• An heuristic guided combinatorial search that com-
bines global QoS bound propagation with sub-optimal
service pruning to improve the solution obtained by
the local search strategy.

Experimental results with the Web Service Challenge 2009-
2010 show that the proposed approach is able to solve effec-
tively all the datasets. The rest of the paper is organized as
follows: Sec. II introduces the composition problem, Sec. III
describes the proposed approach, Sec. IV presents the results
obtained, and Sec. V gives some final remarks.

II. PROBLEM DESCRIPTION & MOTIVATING EXAMPLE

In a nutshell, the composition problem tackled in this paper
can be informally described as follows: Given a semantic
description of the composition problem R = {IR, OR}, where
IR are the inputs provided and OR the outputs expected, and
a set of available services with different quality properties
(e.g., response time, throughput...), a composition graph is
computed layer by layer. This graph contains a set of services
w = {Iw, Ow, qw} –where Iw is the set of inputs required
by the service, Ow is the set of outputs returned, and qw
is the QoS property associated to the service– and all the
possible matches between outputs and inputs of services. A
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Fig. 1. Composition graph example with the solution with optimal QoS and
minimum number of services highlighted.

match between a semantic output Ow1 of a service w1 and a
semantic input Iw2 of a service w2 (match(Ow1 , Iw2)) exists
iff (Ow1 ≡ Iw2) ∨ (Ow1 � Iw2), i.e., the output concept is
equivalent to the input concept (exact match) or the output
concept is a subclass of the input concept (plugin match). The
graph also contains two dummy services So = {∅, IR} and
Si = {OR, ∅}, where So is the source dummy service and Si
is the sink dummy service.

Fig. 1 shows an example of a composition graph for a
request R = {{i1}, {o1, o2}} where the services are associ-
ated with response time values. Each service is represented
by squares, whereas inputs and outputs are represented by
circles. As can be seen, this graph contains many different
compositions since there are inputs in the graph that can be
matched by the outputs of different services. The total response
time of the example is 100 ms, because the optimal cost for
o1 is 100 ms and for o2 is 30 ms. This can be easily computed
by applying the adequate aggregation functions depending on
the type of the QoS properties [8] and computing the best
QoS of the graph, which can be calculated in polynomial time
[9]. However, there can exist multiple combinations of services
that satisfy the composition request subject to the optimal QoS
constraint, which in this case is 100 ms. For example, in Fig.
1, the optimal solution (highlighted) is composed of 7 services,
but there is for example another one with 8 services and the
same QoS. Selecting the minimum number of services for the
optimal QoS is a hard combinatorial problem. The goal of this
paper is to find the composition with the minimum number of
services that satisfy the request with an optimal QoS.

III. ALGORITHM FOR QOS-AWARE SERVICE

COMPOSITION

The proposed approach has four steps: 1) calculation of
the composition graph for a request; 2) computation of the
optimal QoS of the composition graph; 3) optimization of the
composition graph; 4) hybrid search to extract the optimal
combination of services.

A. Generation of the composition graph

Given a composition request, the generation of a com-
position graph with the relevant services for the request is
calculated by selecting all invocable services layer by layer,
starting with So in the first layer and terminating with Si in
the last layer [7]. Once all possible services are selected, a

match between all outputs and inputs of services is computed
(thus, the resulting graph can contain cycles). The output of
this step is a graph such as the one represented in Fig. 1.

B. Optimal end-to-end QoS

The optimal QoS for a composition graph can be computed
in polynomial time using a shortest path algorithm to calculate
the best accumulated QoS cost for each input and output of the
graph. In order to compute the optimal QoS, we use a Dijkstra-
based label-setting algorithm from Si to So [10]. The output
of this step is the best accumulated QoS cost for each input
and output in the graph.

C. Graph optimizations

Once the optimal QoS for each input and output of the
graph is known, we perform a multi-step optimization to re-
duce the size of the graph. At each step, the algorithm analyzes
different criteria to identify services that are redundant or can
be substituted by better ones, so the size of the graph decreases
monotonically in each step. The steps that are sequentially
applied are: 1) pruning of services that lead to suboptimal QoS;
2) elimination of services that do not contribute to the outputs
of the request; 3) combination of interface / QoS equivalent
services; and 4) replacement of interface / QoS dominated
services. The first step uses the information of the optimal
QoS for each input and output, which has been previously
calculated. The algorithm is applied backwards, from Si to
So, by propagating the optimal QoS bounds for each input.
This allows to detect and remove the services from the graph
that cannot be part of the final composition. The remaining
optimization steps are described in detail in [11].

D. Hybrid search

Each input in the graph may be matched by many outputs
from different services. Thus, there may be multiple combi-
nations of services that satisfy the composition request with
same or different QoS. The goal of the hybrid search is to
extract good solutions from the composition graph, optimizing
the total number of the services involved while keeping the
optimal QoS. The hybrid search performs a local search to
extract a good solution and then it tries to improve the solution
by running a global search in the remaining time.

1) Local search with backtracking: Fig. 2 shows the pseu-
docode of the local search strategy. The algorithm starts with a
composition graph, the unresolved inputs of the service Si (the
expected outputs of the request) and the service Si selected
to be part of the solution. Using the list of the unresolved
inputs to be matched, the method RANK-RESOLVERS returns
a list of services that match any of the unresolved inputs.
Services are ranked according to the number of unresolved
inputs that can match, so the service whose outputs match
more inputs is considered first to be part of the solution. Then,
for each input that the selected service can match, the method
CYCLE performs a forward search to check if the selected
service can safely resolve the input, without generating cyclic
dependencies. For example, in Fig. 1, if we select the service
K to match the input of I after having decided to resolve
the input of K with the service I , we end up with an invalid
composition, so K is an invalid resolver for I and must be
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1: function LOCAL-SEARCH(graph)
2: return LS-BACKTRACK(graph, INPUTS(Si), {Si})
3:
4: function LS-BACKTRACK(graph, unresolved, services)
5: if unresolved = ∅ then return graph

6: services← RANK-RESOLVERS(services,unresolved)
7: for each w ∈ services do
8: resolved← {}
9: matched← MATCH(w, unresolved)

10: for each input ∈ matched do
11: if ¬CYCLE(w, input) then
12: resolved← resolved ∪ input

13: if resolved �= ∅ then
14: unresolved← unresolved \ resolved
15: if w /∈ services then
16: unresolved← unresolved ∪ INPUTS(w)

17: g ← RESOLVE(graph, w, resolved)
18: result← LS-BACKTRACK(g, unresolved, services∪w)
19: if result �= fail then return result

return fail

Fig. 2. Local search algorithm to extract a composition from a graph

discarded. Once all resolvable inputs are collected in resolved,
the method RESOLVE creates a copy of the current graph
where the inputs in unresolved are matched only by the
selected service, so any other match to that each resolved input
is removed from the graph. If the selected service has not
already selected, then all its inputs are marked as unresolved
and a recursive call to LS-BACKTRACK is performed to select
a new service to resolve the remaining inputs, until a solution is
found. If a dead end is reached (a solution that has no services
to resolve the remaining inputs without cycles) the algorithm
backtracks to a previous state to try a different service.

2) Global search: The goal of this algorithm is to extract
the composition with the minimum number of services and
optimal QoS. This search is based on the observation that each
input of the graph can have different QoS bound constraints. In
order to discover which are the valid and invalid candidates to
resolve an input, the algorithm needs to propagate a global QoS
bound constraint for each input iw ∈ w. This interval is defined
as Qiw = [Qlmax, Qgmax]. The lower bound Qlmax represents
the maximum local cost of the QoS that does not affect the
output cost of service w, i.e., any output of a service with
an accumulated cost Q such that Q = Qlmax can be used to
match the input without affecting the optimal output cost of the
service. If this bound is exceeded, the output cost of the service
increases, and an optimal QoS update should be performed to
recompute the costs of each input/output in the graph. The
upper bound Qgmax represents the maximum global cost for
the input that cannot be exceeded without worsening the QoS
cost of the overall composition. These bounds are used to
detect prune sub-optimal candidates during the global search.

Fig. 3 shows the pseudocode of the global search strategy.
The algorithm starts computing the optimal QoS cost for
each input and output by calling QOS-UPDATE. This method
returns a hash table Qopt where the keys are the inputs and
outputs and the values are the optimal QoS cost for each
input/output. Then, the dummy service Si is selected to be
part of the composition and its inputs are stored in the hash
table unresolved. At this time, we compute the QoS bound
constraints for the unresolved inputs. For example, in Fig. 1,
the bounds of the input o1 of Si are [100, 100] and the bounds

1: function GLOBAL-SEARCH(graph)
2: Qopt ← QOS-UPDATE(graph)
3: selected← {Si}
4: max← MAX-QOS(INPUTS(Si), Qopt)
5: for iSi ∈ INPUTS(Si) do
6: unresolved[iSi]← [Qopt[iSi],max]

7: queue← INSERT(〈graph, unresolved,Qopt, selected〉,queue)
8: while queue �= ∅ do
9: 〈graph, unresolved,Qopt, selected〉 ← POP(queue)

10: if unresolved = ∅ then return graph

11: input← SELECT-UNRESOLVED(graph)
12: [Qlmax, Qgmax]← unresolved[input]
13: for w ∈ RESOLVERS(input, [Qlmax, Qgmax]) do
14: if ¬CYCLE(w,input) then
15: successor ← RESOLVE(graph, w, {input})
16: unresolved← REMOVE(i, unresolved)
17: Qoutw ← QOS-OUTPUT(w, Qopt)
18: if Qoutw > Qlmax then
19: Qopt ← QOS-UPDATE(successor)

20: if w /∈ selected then
21: [Qw

lmax, Q
w
gmax]← BOUNDS(w,Qgmax)

22: for iw ∈ INPUTS(w) do
23: unresolved[iw]← [Qw

lmax, Q
w
gmax]

24: u← selected ∪ w
25: queue← INSERT(〈successor, unresolved,Qopt, u, queue)

return fail

Fig. 3. Global search algorithm to extract the optimal composition

of o2 are [30, 100] ms. All this information is inserted in a
priority queue sorted by the total number of services selected,
so the solutions with less services are always extracted first.
Then, for each solution in the queue, we heuristically select one
of the unresolved inputs (method SELECT-UNRESOLVED)
using a minimum-remaining-values heuristic. This heuristic
selects always the input with less resolvers (services). Then,
for each possible service that resolves the selected input, a new
composition graph with the selected input resolved is created,
and the resolved input is removed from the list. If the output
of the selected service exceeds the value of Qlmax of the
resolved input, then a QoS update is performed to recompute
the new QoS costs. Finally, if the selected service was not
selected before (is not in the selected list), then its inputs are
added to unresolved and the new bounds for these inputs are
computed with the method BOUNDS. This method propagates
the bounds of the QoS constraints by subtracting Qgmax−qw,
where qw is the QoS property of the selected service. The
subtraction function, as in the case of the QoS aggregation
function, depends on the type of the QoS, which in the case
of the response time is a standard subtraction for real numbers
and in the case of the throughput is the min function. For
example, if we resolve the input o2 (with bounds [30, 100]
ms) of Si with the service I , whose response is 20 ms, the
bounds for the input of I would be [30, 100 − 20] ms. What
this basically means is that, although the max QoS cost of I
is 30 ms, any service whose output cost is between 30 ms and
80 ms can be used to resolve the inputs of I without affecting
the optimal QoS of the composition. The new partial solution
generated is finally inserted in the queue to expand later. The
algorithm stops when it extracts a solution with no unresolved
inputs. Since the algorithm always extracts the partial solution
with less services, it always finds the optimal solution first.

737



IV. EVALUATION

In order to evaluate the performance of the proposed
approach, we used the datasets of the Web Service Challenge
2009-2010 [12]. These datasets range from 572 to 15,211
services with two different QoS properties: response time and
throughput. Tests were executed with a time limit of 5 min.

Tables I and II show the results obtained for each dataset
(D-01 to D-05), for the response time and throughput respec-
tively. The best global response time (measured in millisec-
onds) and throughput (measured in invocations/second) are
shown in the first row of each table. Row #Graph services
shows the number of services of the composition graph and
#Graph services (opt) the number of services after applying the
graph optimizations. As can be seen, the optimizations reduce,
on average, the number of services in the composition graph by
64%. This indicates that equivalence and dominance analysis
of QoS, and functionality of services is a powerful technique
to reduce the search space in scenarios where the number of
available services and the possible matches between inputs and
outputs is very large. Row Local Search and row Global Search
show the number of services of the solution obtained by the
corresponding method as well as the total time spent on the
search. The total time reflects the time elapsed between the
composition query being submitted by the end-user and the
results being obtained by the search algorithm.

The global search strategy obtained the best solution in
terms of number of services (#Services) for the optimal QoS
in every dataset, except for the dataset 04 due to combinatorial
explosion (Tables I and II). However, in this case, the local
search strategy extracts a good solution in 7.767 s (Table I)
and 8.571 s (Table II). Solutions highlighted are those that
improved the solutions obtained by the 1st place winners of
the Web Service Challenge 2009-2010 [6]. The rest of the
solutions are as good as the ones obtained by the winners. Ex-
ecution times are slightly worse since our algorithm improves
also the number of services of the solutions. Even so, most of
the solutions were obtained in a few seconds.

Note also that the local search in many cases obtains the
best solution, comparing it with the global search, except for
the throughput in D-03 and D-05. As far as we know, the
results obtained are the best achieved so far in terms of number
of services for the optimal response time and throughput. We
have compared these results not only with the participants of
the challenge but also with other recent approaches [13].

TABLE I. WSC VALIDATION WITH RESPONSE TIME

D-01 D-02 D-03 D-04 D-05
Response Time (ms) 500 1,690 760 1,470 4,070

#Graph services 81 141 154 331 238

#Graph services (opt) 21 57 15 160 126

Local Search #Services 5 20 10 40 32
Time (s) 0.613 0.998 2.608 7.767 2.920

Global Search #Services 5 20 10 - 32
Time (s) 0.617 1.580 2.613 - 24.971

V. CONCLUSIONS

In this paper we have presented a hybrid algorithm to
automatically build semantic input-output based compositions
minimizing the total number of services while guaranteeing the
optimal QoS. Results obtained with the Web Service Challenge

TABLE II. WSC VALIDATION WITH THROUGHPUT

D-01 D-02 D-03 D-04 D-05
Throughput (inv/s) 15,000 6,000 4,000 4,000 4,000

#Graph services 81 141 154 331 238

#Graph services (opt) 10 43 90 156 69

Local Search #Services 5 20 15 62 31
Time (s) 0.343 1.173 1.933 8.571 2.562

Global Search #Services 5 20 10 - 30
Time (s) 0.345 1.246 2.085 - 119.322

2009-2010 datasets show that the combination of graph opti-
mizations with a local-global search strategy performs better
than other state-of-the-art approaches.
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