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1. INTRODUCTION

Nowadays, Service-Oriented Architectures 
(SOA) (Papazoglou & Georgakopoulos, 2003) 
are gaining importance because of the ability to 
build interoperable services that can be shared 

over a network within multiple platforms. Thus, 
companies are starting to apply this principle 
to their business, allowing them to remain cost 
effective, flexible and competitive. Applications 
in SOA are built based on services consumed 
by clients that are not concerned with the 
underlying implementation. Specifically, web 
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services are the preferred standard-based way 
to realize SOA.

Web Services are self-contained modular 
applications described by a collection of op-
erations that are network-accessible through 
standardized web protocols, and whose fea-
tures are defined using a standard XML-based 
language (Alonso, Casati, Kuno, & Machiraju, 
2004). One of the advantages of web services 
is to enable greater and easier integration and 
interoperability among systems and applica-
tions through web service composition. This 
advantage allows web services to be combined 
by connecting their inputs and ouputs to cre-
ate larger services (composite services) whose 
execution is orchestrated by a set of control 
structures defined in composition languages like 
WS-BPEL (Weerawarana, Curbera, Leymann, 
Storey, & Ferguson, 2005; Rouached, Fdhila, 
& Godart, 2010). Thus, the goal of web service 
composition is to construct new services from 
existing web services in order to satisfy a request 
(basically a set of provided inputs and a set of 
wanted outputs by the client) which cannot be 
solved by a single web service. The matching 
between inputs and outputs can either be done 
syntactically, using the information described 
in WSDL (Christensen, Curbera, Meredith, & 
Weerawarana, 2001), or semantically, using se-
mantic markup languages like OWL-S (Burstein 
et al., 2004) or WSMO (de Bruijn et al., 2005).

The automatic composition problem may 
seem trivial problem when there are a limited 
number of services in a single-service archi-
tecture. However, the problem increases in 
complexity when the goal is to obtain optimal 
compositions over large web service reposito-
ries using different control structures to manage 
the composition flow. In fact, the web service 
composition problem can be reduced to the 
boolean satisfiability problem, i.e., the problem 
is NP-complete and therefore it cannot be solved 
in polynomial time (Lee & Kumara, 2005).

Research in this field has grown rapidly 
in recent years. Some approaches (Hoffmann, 
Bertoli, & Pistore, 2007; Sirin, Parsia, Wu, Hen-
dler, & Nau, 2004; Klusch, Gerber, & Schmidt, 
2005; Pistore, Barbon, Bertoli, Shaparau, & 

Traverso, 2004; Xu, Chen, & Reiff-Marganiec, 
2011) treat the service composition as an 
artificial intelligence (AI) planning problem, 
where a sequence of actions lead from a initial 
state (inputs and preconditions) to a goal state 
(required outputs). These techniques work well 
when the repository size is relatively small and 
the number of constraints is high. However, 
most of these proposals have some drawbacks: 
high complexity, high computational cost and 
inability to maximize the parallel execution of 
web services.

Other approaches (Aversano & Taneja, 
2006; Ghafarian & Kahani, 2009; Rodrıguez-
Mier, Mucientes, Lama, & Couto, 2010) scale 
better than other techniques when the interac-
tions among services and the number of con-
straints is huge. Despite being scalable, these 
techniques do not guarantee to obtain the opti-
mal solution, and also are extremely slow and 
memory intensive. The most recent approaches 
(On & Larson, 2005; Kona, Bansal, Blake, & 
Gupta, 2008; Yan, Xu, & Gu, 2008; Wu, Li, 
Wu, & Yin, 2011; Weise, Bleul, Kirchhoff, & 
Geihs, 2008; Shiaa, Fladmark, & Thiell, 2008; 
Hennig & Balke, 2010; Hashemian & Mavad-
dat, 2006; Jiang, Zhang, Huang, Chen, Hu, & 
Liu, 2010), consider the problem as a graph/
tree search problem, where a search algorithm 
is applied over a sub-optimal graph in order to 
find a optimal (or near-optimal) solution. These 
proposals are simpler than the AI planners due, in 
part, to the use of a smaller number of constraints 
during the search. However, most of these ap-
proaches rely on very complex dependency 
graphs that have not been optimized to reduce 
data redundancy. Therefore, the scalability of 
these algorithms may also be adversely affected 
when the interaction among services and data 
is huge due to the redundancy of the repository.

This paper addresses the problem of the 
web service composition as a graph search 
problem from the point of view of the semantic 
input-output message structure matching, i.e., 
we do not take into consideration the non-
functional properties (NFPs). The novelties of 
our proposal are:
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1.  The method is able to calculate, given a 
request, an extended service dependency 
graph which represents a valid but sub-
optimal solution for the request.

2.  The heuristic search algorithm, based on 
the well-known A*, finds all optimal solu-
tions from the point of view of the number 
of services and execution path (runpath).
This, it maximizes the parallel execution 
of services and minimizes the number of 
services.

3.  We define set of optimizations to reduce 
the graph size, based on the redundancy 
analysis and service dominance.

4.  We include a method to reduce dynami-
cally the possible paths to explore dur-
ing the search by filtering equivalent 
compositions.

We have validated our algorithm with the 
eight datasets defined by the Web Service Chal-
lenge 2008 (Bansal, Blake, Kona, Bleul, Weise, 
& Jaeger, 2008). Also we have compared our 
approach with the results of the participants of 
the Web Service Challenge 2008.

The rest of the paper is organized as 
follows: Section 2 describes the different ap-
proaches that have already been proposed. 
Section 3 introduces the basis of web service 
composition. Section 4 illustrates the proposed 
A* algorithm for web service composition. Sec-
tion 5 presents some optimization techniques 
to improve the performance of the algorithm. 
Section 6 analyzes the algorithm with eight 
different repositories and compares the results 
with other approaches. Section 7 points out the 
conclusions.

2. RELATED WORK

Heuristic algorithms have proved their ef-
ficiency in the field of the automatic web 
service composition. Particularly, the use of 
graph-based and tree-based search algorithms 
has been studied before (Liang & Su, 2005; Mi-
lanovic & Malek, 2006) to solve a web service 
composition in large repositories, showing great 

results. Although there are similarities among all 
proposals, they differ in many concepts, such as 
performance, information handling, graph/tree 
encoding, solution quality, etc. In this section, a 
brief analysis of some approaches is presented.

Shiaa et al. (2008) present an approach to 
automatic service composition with semantic 
matching. Given a request (goals, inputs and 
outputs), a set of matching services are discov-
ered from the repository, applying semantic 
matching between service properties and the 
composition request. Then, a graph is created 
dynamically by connecting semantically similar 
nodes (single services) to each other. Once the 
graph is created, a search over it is performed 
building acyclic tree structures from goal nodes 
to start nodes. One major drawback of this 
proposal is that it does not take into account 
the use of heuristics in order to speed up the 
search, so searching for an optimal composi-
tion in large repositories may be infeasible. 
Moreover, there are no experimental results to 
validate the model.

Kona et al. (2008) propose a simple but 
effective approach for semantic web service 
composition. In this work, a composition is 
generated as a directed acyclic graph from a user 
request. The graph (divided in a set of layers) 
is calculated iteratively, starting with the input 
parameters provided by the requester. In each 
step, all possible services from the repository 
that can be invoked are added to the current layer. 
Although the useless services are filtered, the 
algorithm cannot find an optimal composition. 
A heuristic search over the graph is required 
in order to minimize the number of services in 
the composition.

Yan et al. (2008) present an automatic 
service composition algorithm using AND/OR 
graph. In this proposal, an AND/OR graph is 
created from a request, connecting services by 
their inputs and outputs. Then, a search over 
the graph is performed using the AO* search 
algorithm. Although this proposal shows a 
great performance over large repositories, the 
algorithm does not guarantee to obtain the 
optimal compositions from the point of view 
of the number of services, as can be seen in 
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the results of the competition. Moreover, the 
authors have not implemented optimization 
techniques in order to improve the scalability 
of the algorithm.

Oh, Lee, and Kumara (2007) and Oh et 
al. (2009) propose a Web-Service Planner 
using the A* search algorithm (WSPR*), an 
improvement of the WSPR planner, which was 
at third place in the WSC’08. In this approach, 
the use of the A* algorithm allows finding an 
optimal composition based on some heuristic 
costs. The heuristic function is defined as the 
set of required parameters found by the algo-
rithm. This heuristic function has an important 
drawback: it is not able to guide the search when 
only the last services of a composition produce 
all the required parameters. On the other hand, 
the transition function only allows the addition 
of a single service in each step.

Wu et al. (2011) presented AWSP, an au-
tomatic web service planner based on heuristic 
state space search. In this work, an A* is used 
to search minimal compositions in terms of 
execution path. The search is performed using 
different operators which allow the movement 
from one state to another, adding a new service 
in each step. This movement can be done either 
forward or backward, although the last one is 
clearly better. To do this, two different heuris-
tics were implemented based on a parameter 
distance defined by the authors. This approach 
has some drawbacks: firstly, authors do not 
consider the use of stratified methods previous 
to the search. These methods allow to quickly 
reduce the search space size, and can be used 
in dynamic environments as the computation 
of service graphs has not an important impact 
on the overall performance. This, in dynamic 
environments, where inputs and outputs can 
change, the recalculation of the graph can be 
done without affecting too much the perfor-
mance. In second place, the algorithm cannot 
manage parallel execution of services. Third, 
they do not take into account the detection of 
redundancy, which can seriously affect search 
performance. Finally, in fourth place, more tests 
are required to confirm the advantages of this 

approach, comparing it with other similar AI 
planners as WSPR*.

Aiello, Benthem, and Khoury (2008) got 
the second place in the Web Service Challenge 
2008 with RugCo, an automatic web service 
compositor. This algorithm uses a tree based 
search to find compositions that satisfy a re-
quest. The search is performed expanding nodes 
and resolving the new dependencies generated 
in each step until no more dependencies are 
discovered. Since during the search a large 
number of expanded nodes are generated, the 
authors introduce a heuristic approximation 
(beam search) to analyze only the most promis-
ing nodes. Despite the authors found solutions 
for the three datasets proposed in the WSC’08, 
the major drawbacks of this approach are: 1) 
the beam search does not guarantee to obtain 
optimal solutions, as only the most promising 
nodes are expanded, so the algorithm is neither 
complete nor optimal; 2) the search minimizes 
the number of services in the composition, but 
not the execution path; and 3) beam search does 
not scale well with the size of the search space, 
which implies bad performance in large datasets.

Weise, Bleul, Kirchhoff, and Geihs (2008) 
obtained the forth place in the WSC’08 with 
an architecture which combines three different 
algorithms (uninformed search based on ID-
DFS, a greedy search and a genetic algorithm) 
(Weise, Bleul, Comes, & Geihs, 2008). The 
architecture integrates a module called “Strat-
egy Planner” which decides the best algorithm 
in each case. The results obtained with this 
system are not surprising. The ID-DFS is an 
uninformed search based on the depth-first 
search (DFS) with iterative deepening (ID). 
This method is very simple and ineffective to 
solve a web service composition problem as 
the time complexity grows exponentially with 
the depth. When the dataset is too big for the 
ID-DFS algorithm, the greedy algorithm is used 
instead of the ID-DFS. This approach is very 
similar to the DFS, but a heuristic is used to 
sort the set of candidate nodes to explore. The 
greedy algorithm works as bad as the ID-DFS 
in the worst case scenario. On the other hand, 
a genetic algorithm is used for all those cases 
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where the ID-DFS and the greedy search can-
not find a solution. This algorithm uses a set of 
evolutionary operators to obtain near-optimal 
compositions minimizing multiple objectives. 
However, the results obtained in the WSC’08 
show the ineffectiveness of this approach. The 
major drawback of this algorithm is the fitness 
function. The fitness is measured by calculating 
two objectives: composition size and number of 
wanted (unsatisfied) parameters. This evalua-
tion does not work well when the solutions have 
a long runpath and the last service or services 
provide all wanted parameters. In this scenario, 
there is no information about which solution is 
better until the complete composition is reached, 
so in each generation, the best individuals are 
those with a less number of services. This 
evaluation can prevent the algorithm to find a 
solution. Moreover, the algorithm is an order of 
a magnitude slower than the other approaches.

With this state of the art, we can conclude 
that the main differences between our proposal 
and other approaches are:

1.  The construction of a non-redundant ser-
vice dependency graph at the first stage by 
removing unused services and combining 
the equivalent ones. Other approaches 
use simple filtering techniques that do not 
remove all data redundancy.

2.  The use of the A* algorithm backwards, 
handling multiple services in each step in 
order to maximize the execution in parallel 
of the web services.

3.  The detection of all valid compositions with 
different number of services and runpath. 
Other approaches only find an optimal 
composition with minimum number of 
services or minimum runpath.

4.  The use of dynamic optimization during the 
search that reduces the number of possible 
paths to explore by combining equivalent 
combination of services.

In the following sections we describe in 
detail the composition problem and how it can 
be solved with our proposal.

3. WEB SERVICE 
COMPOSITION

In order to compose web services, we must 
define the relationship among services. From 
a functional point of view, a web service is a 
software component that receives a set of inputs 
and generates a set of outputs after the execu-
tion. Thus, a web service W can be described 
by a set of inputs Win={I1,I2,…} and a set of 
outputs Wout={O1,O2,…}. Outputs from a service 
can be provided as inputs to other service only 
if there is a semantic relationship between them. 
In our approach, we have modeled this restric-
tion as a hierarchical class/subclass relationship 
between concepts, so we consider that an out-
put of a service Oso matches the input of other 
service Isi when Oso is a subclass of Isi. In gen-
eral, when a concept Ci is a subclass of a concept 
Cj(Ci⊆Cj), then there is a semantic matching 
between Ci and Cj. Another important concept 
is a web service request. A request R is composed 
by a set of inputs R I I

ij in in
= { }( )1 2, ,...  provided 

by the requester, and a set of outputs
R O O
out out out
= { }( )1 2, ,...  that the requester ex-

pects to obtain. Given a request Ruser={Rin, Rout}, 
where Ruser={Rin,Rout} and R O O

out R R
= { }1 2, ,... , 

and given a web service S={Sin,Sout} where 
S I I
in S S
= { }1 2, ,...  and S O O

out S S
= { }1 2, ,... , the 

web service S can be invoked only if R S
in in
⊇ , 

i.e., for each input Is∈Sin there exists an input 
IR∈Rin such that IR is equal or subclass of 
IS(IR⊆IS). Also, Rout will be satisfied only if 
Rout⊆Sout, i.e., for each output OR∈Rout there 
exists an output OS∈Sout such that OS is equal 
or subclass of OR(OS⊆OR).

Considering this description for web 
services, the composition problem can be 
formulated as the automatic construction of 
a workflow that coordinates the execution 
of a set of services that interact among them 
through their inputs and outputs (applying the 
semantic matching). This workflow, therefore, 
has services and a set of control structures that 
define both the behavior of the execution flow 
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and the inputs/outputs of the services related to 
those structures. Despite the amount of differ-
ent control structures defined in composition 
languages like WS-BPEL, we take into account 
only two of the most important ones: sequence 
and split. These structures allow building most 
of the possible compositions and they work as 
follows:

• Sequence structure: the output of a service 
is the input of one of the following services 
of the sequence. This is the basic control 
structure of the workflow languages.

• Parallel (split): two or more services are 
executed in parallel and, as result, produce 
several and different outputs.

Regarding to the complexity analysis of 
the search space, the number of combinations 
to be analyzed using a brute-force algorithm 
grows very fast. To demonstrate this, we can 
assume that, given a service, each of its inputs 
is provided by a different service (worst case). 
The complexity in this scenario is O(mnd), 
where m is the average number of services in 
the repository that generate the same output, 
n is the average number of inputs from web 

services and d is the depth at which all inputs 
are resolved. Since there are m services that 
provide each required input, the number of 
possible choices in order to resolve all inputs 
from a service is mn. Each of these combinations 
represents a set of services executed in parallel 
that can be expanded again. Figure 1 shows the 
size of the search space for different values of 
the runpath (d = 1...5), with n = 1, n = 2, n = 3 
(one, two and three inputs respectively for each 
service in repository) and m = 5 (5 services per 
output on average).

As can be seen, this kind of composition 
has an exponential growth of paths to explore. 
The search space size in the case of a reposi-
tory of services with three inputs on average 
(n) and four possible choices to provide an 
input to a service (m), where the solution has 
a runpath of 10 (i.e., d=10 splits connected in 
sequence), reaches the value of possible paths 
to explore. Given the large number of combina-
tions, the problem of searching an optimal 
execution path is not trivial, and it is therefore 
necessary to reduce the number of combinations. 
In order to reduce the search space size, our 
algorithm includes some optimization tech-
niques, which are described in Section 5.

Figure 1. Search space size for n=1, n=2, n=3 (1, 2 and 3 inputs per service) and m=5 (5 services 
per output on average) with variable runpath
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4. A* ALGORITHM FOR WEB 
SERVICES COMPOSITION

As previously discussed, given the large number 
of possible paths to explore, a fast algorithm is 
required in order to find an optimal solution in 
a reasonable period of time. Although the high 
space complexity makes the use of traditional 
search algorithms unpractical for large reposi-
tories, the problem can be solved by using a 
good heuristic in the search and applying some 
optimization techniques and data preprocessing.

The A* algorithm, developed by Hart, 
Nilsson, and Raphael (1968), is one of the most 
popular path finding algorithms. This algorithm 
uses a heuristic function h(n) to estimate the 
cost from the current node to a goal node, and 
a function g(n) to calculate the cost from the 
starting node to the current node. Therefore, 
the search cost is defined as f(n)=g(n)+h(n). 
Choosing a good h function has an important 
impact on the search process. The better this 
function is, the faster the solution will become. 
However, there is a restriction on it: h cannot 
overestimate the cost to reach the goal; other-
wise, the algorithm could find a solution with 
higher cost than the optimal one.

Our proposal, based on A* algorithm, 
follows the next steps: first, a web service 
dependency graph is computed (Section 4.1.). 
Then, a reduction on the number of services 
is performed by eliminating unused services 
and combining equivalent services (Section 
5). Finally, the A* search is applied over the 
reduced graph, which finds all optimal service 
compositions, with minimum number of ser-
vices and execution path (Section 4.2.). These 
steps will be described in the following sections.

4.1. Extended Web Service 
Dependency Graph

Web services composition requires the com-
bination of many atomic services that can be 
executed in sequence or in parallel as previously 
mentioned. Given a service request, an extended 
service dependency graph with a subset of the 
original services from an external repository is 
dynamically generated. This subset contains the 

solutions that meet the request and consists of 
a set of layered services (splits) connected in 
sequence. Each layer contains all services from 
the repository that can be executed with the 
outputs of the previous one. Figure 2 shows an 
example of a SDG with i layers and n services 
in each layer. The expression for a layer can be 
defined as follows:

Li={Si:Si∉Lj(j<i)∧Isi∩Oi-1 
≠∅∧Isi⊆IR⋃O0∪…∪Oi-1} 

where, for each layer Li:

• Si is a service on the ith layer.
• Oi is the set of outputs generated in the 

ith layer.
• Isi is the set of inputs required for the ex-

ecution of service Si.
• IR is the set of inputs provided by the 

requester.

The construction of the graph can be done 
in a simple manner. Algorithm 1 describes 
with pseudocode the construction of the graph 
iteratively. Lines 1-5 initialize the variables 
used throughout the algorithm: newOutputs 
(outputs generated in the last layer that have 
not been generated previously), Ia (available 
inputs for the current layer), i (current layer) 
and Layers (set of all generated layers). Note 
that newOutputs and Ia are initialized with the 
same value IR, as the provided inputs are the 
first available inputs to the composition and 
have not been used yet by any service. The main 
loop starts at line 6. Inside this loop, each layer 
is calculated following these steps:

1.  Obtain all outputs from the previous layers. 
These outputs are the available inputs to 
the current layer (L. 8-10).

2.  For each service in the repository.
a.  Check if the service has not appeared 

in previous layers (L. 13).
b.  Check if the service can be invoked 

(i.e., receives all its inputs from previ-
ous layers) (L.14).
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c.  Check if the service use at least one 
output that has not been used previ-
ously (L. 15).

d.  If (a), (b), and (c) are true, then the 
service is added to the current layer.

3.  If the available inputs to this layer contain 
the wanted outputs (solution reached) and 
the previous layer produces at least one of 
the wanted outputs, then a dummy service 
(R
o
n ) is added to the current layer. All R

o
n  

services are the initial nodes of the search 
(each initial node will lead to a solution 
with different runpath) (L.20-25).

4.  Once all services are selected for the i-th 
layer, newOutputs is updated by adding the 
outputs of the i-th layer and deleting the 
outputs generated in previous layers. Note 
that with this operation, only the outputs 
that have not been used before will remain 
for the next iteration (L. 26).

In order to speed up the calculation of the 
graph, we used a pre-computed table that maps 
each input to the services that use it. Thus, for 
each output generated in a layer, we can obtain 
all possible services for the next layer very 
quickly. Figure 3 shows an example of a service 
dependency graph with five layers and two 
different solutions. The dark gray services cor-
respond with the services of the solution with 
the largest runpath (the first and the last layers 

are not computed for the runpath). Ri, Ro
1  and 

R
o
2  are dummy services. Ri is a service which 

provides the requested inputs, R
o
1  is a service 

which uses the requested outputs (so there is a 
solution with a runpath of 2) and R

o
2  is a service 

which uses the requested outputs but in the 
layer 4 (runpath of 3). Thus, in this example, 
two different solutions for the same request can 
be observed: Sequence(Ri, Split, (S1,2, S2,3),S2,2,
R
o
1 ) and Sequence(Ri, S1,1, S2,1, Split (S3,2, S3,3),
R
o
2 ).

Generally, stratified methods like this have 
a high performance, and allow reducing the 
total search space easily, as some constraints 
(in this case, inputs and outputs) are exploited 
to reduce the number of services that can be 
used. These methods work well in static envi-
ronments, where the service information does 
not change. In real word, where the inputs and 
outputs, service availability and other param-
eters may change, these methods must be 
adapted. Basically, to ensure the validity in 
dynamic environments, a fast check can be done 
while the algorithm is searching for a solution. 
If any change is detected on any of the ser-
vices selected by the search algorithm, the 
service dependency graph must be recalculated 
starting from the layer which contains the 
service. Specifically, two situations may occur:

Figure 2. Example of i layers, with n services per layer
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• A service is not accessible: given that our 
algorithm finds all possible solutions, when 
a service becomes unavailable, the solu-
tions which contain the unavailable service 
must be discarded. The other solutions will 
be still valid.

• A new service is available: in this case, the 
service dependency graph must be partially 
rebuilt starting from layer Li+1, where Li is 
the layer at which the inputs required by 
the new service are provided (i.e., the layer 
which contains the service, according to the 
definition of Li defined before).

4.2. A* Algorithm Description

Once the graph is calculated, a search over it 
must be performed. The search algorithm will 
traverse the graph backwards, from the solu-
tion (the service whose inputs are the outputs 
wanted by the requester), to the initial node (the 
service whose outputs are the provided inputs). 
As mentioned before, our heuristic algorithm is 
based on an implementation of the A* heuristic 
search. There are three principal concepts in this 

type of algorithms: the neighborhood function, 
the cost function and the heuristic function. 
These concepts will be explained.

In order to perform the search process, the 
search space must be divided into nodes. Each 
node will contain a set of services from a graph 
layer that can be executed in parallel. Thus, a 
path will be composed of a list of neighbor 
nodes, which represents the sequential execution 
of the path. Thus, the starting node will only 
contain the service labeled as R0 in Figure 2. 
This service represents the outputs wanted by 
the requester, as their inputs match with them. 
To generate all possible neighbors from a node, 
the following steps are performed:

1.  Calculate, for each input of a node, a list 
of services from the previous layer that 
provide it. If there are no services in the pre-
vious layer for that input, a dummy service 
that generates this input and receives the 
same input is created. This dummy holds 
the dependency so it can be resolved later.

2.  Make all combinations among services 
from each list. These combinations will 

Figure 3. Example of two solutions with different runpath and different number of services: 
Sequence(Ri, Split, (S1,2, S2,3),S2,2,Ro

1 ) and Sequence(Ri, S1,1, S2,1, Split (S3,2, S3,3),Ro
2 )
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generate all possible neighbors from the 
current node.

3.  Remove all equivalent neighbors. This 
process will be described in Section 5.

For example, given a node N with a service 
S in layer Li, with IS={a,b} and a set of services 
X, Y, Z in layer Li-1 where OX={a},OY={b}, and 
OZ={a,b}, we construct a list of services for 
each input of S:

• Set(a) = {X, Z}
• Set(b) = {Y, Z}

Then, we generate all combinations. Each 
combination will constitute a neighbor node 
from N. The possible combinations are: (X,Y), 

(X,Z), (Y,Z), (Z). All these nodes generate all 
the required inputs for node N (a, b).

On the other hand, the behavior of the A* 
algorithm depends on two functions: g(N), the 
cost, and h(N), the heuristic. N is a composite 
service obtained as a path over a set of nodes 
(Ni), where Ni is the set of services in layer Li. 
One of the goals is to minimize the number of 
web services in a composition, therefore, the 
cost function should calculate the length of a 
composition based on the number of services. 
On this basis, we define a function g(N) as:

g N t N
ii L

L

N
( ) = ( )=

≠∑ cos  (1)

where LN is the first layer of the current com-
position service, #L is the number of layers and 
cost is a function that retrieves the number of 

Algorithm 1. Extended service dependency graph algorithm 
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services from node Ni . The dummy services in 
a node will not contribute to this cost.

The other function is the heuristic. This 
function should estimate the cost to the solution. 
A good choice is to use, as heuristic, the layer 
in which the node is located. The layer number 
indicates the distance to the initial node. Thus, 
a service in layer 3 means that the algorithm 
needs three more steps in order to reach the 
start node. The heuristic function is defined as:

h N distance N
i( ) = ( )  (2)

Putting (1) and (2) together, function f(n) 
is defined as:

f N t N distance N
i i( ) = ( )+ ( )∑ cos  

(3)

Figure 3 shows an example of a different 
composition paths detected with this algorithm. 
In the next section, a set of optimization tech-
niques are explained. In the next section, a set 
of optimization techniques are explained.

5. OPTIMIZATION TECHNIQUES

In order to achieve a significant performance 
improvement on the search process, we de-
signed two techniques that reduce the number 
of possible paths to explore: Offline Service 
Compression and Online Node Reduction.

5.1. Offline Service Compression

The essence of this technique is to replace 
equivalent services from each layer in the graph 
by the representative service, which implies a 
lower number of paths to explore during the 
search. This process is subdivided into two steps: 
remove unused services and detect equivalent 
services. These steps are described:

1.  Remove unused services.
a.  Create an empty list M. This list will 

contain all the required inputs to get 
the solution.

b.  Create an empty list U. This list will 
contain all unused services.

c.  Traverse backwards the graph, starting 
from the final layer.

d.  For each layer Li in the graph:
i.  Create an empty list R. This list 

will contain all the required inputs 
for this layer.

ii.  For each service S in the current 
layer:
1.  Check if Os⊆M, where Os are 

the service outputs. If M is 
empty, skip this step.

2.  If S meets the condition or M 
is empty, add all inputs from 
S to the list R.

3.  In other case, add S to the list 
U.

iii.  Add all inputs from R to the list 
M.

e.  Finally, remove from the graph, each 
service in U.

2.  Detect and replace equivalent services by 
the representative service. For each layer 
in the graph:
a.  Group services by the equivalence 

of their inputs. Two services have 
equivalent inputs if the services from 
the graph that provide their inputs are 
the same.

b.  For each group:
i.  Check if Si⪰Sj for each service Si 

and Sj from a group.
ii.  If Si meets the previous restric-

tions, then select Si as the rep-
resentative service. Sj must be 
deleted.

One service Si with parameters 
P P P P
S S S S

n

j j j j
= { }1 2, ,...,  dominates other service 

Sj(Si⪰Sj) with parameters P P P P
S S S S

n

j j j j
= { }1 2, ,...,  

if:

∀ ∈ …{ } ≥

∧∃ ∈ { } >

k n P P

k n P P
S
k

S
k

S
k

S
k

i j

i j

1, ,

,..., ,1
 (4)
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In our case, we consider only the outputs 
of a service Si OSi( )  as the single parameter of 

Si. The inputs are not considered as the ser-
vices are grouped by the equivalence of their 
inputs. To clarify this point, the dominance 
between two services Si and Sj with outputs O

Si
 

and O
Sj

 respectively can be done as follows:

1.  Set Listi as the list of services from the 
graph such that their inputs are a subset of 
O
Si

.
2.  Set Listi as the list of services from the 

graph such that their inputs are a subset of 
O
Sj

.

3.  Compare both lists. If Listi⊇Listj then go 
to the next step. Else, the restriction is 
not met and therefore Si and Sj cannot be 
combined.

4.  Check if O
Si

 resolves the same or more 

inputs from each common service than O
Sj

. 

For example, if O
Si

={a,b} and O
Sj

={a,c}, 

and Listi⊇Listj=X(a,b,c), Y(a,c), where 
X(a,b,c) and Y(a,c) are services that receive 
as inputs (a,b,c) and (a,c) respectively, we 
must verify which inputs are resolved with 
O
Si

 and O
Sj

. So, in this example, O
Si

 

resolves input a, b from X and a from Y, 
and O

Sj
 resolves a from X and a, c from 

Y. Therefore, Si⪲Sj.

This technique can be used in both static 
and dynamic environments. Suppose that 
service S, which generates the outputs a and 
b, (S→(a,b)) is the representative service of 
the group which contains services U→(a) and 
V→(b). If service S becomes unavailable, then 
services U and V can be selected to replace the 
representative service. The generation of all 
possible replacements can be done in the same 
way as the calculation of the neighborhood of 
a node, as explained in Section 4.2.

B. Online Node Reduction

This technique consists in the combination of 
equivalent neighbors during the A* search pro-
cess. Given that a node can generate equivalent 
neighbors (different combination of services 
that together are equivalent) a mechanism to 
delete this type of redundancy must be imple-
mented. Two nodes are equivalent if they meet 
two conditions:

1.  Neighbors from the node must have the 
same f(n) value.

2.  Services from graph that provide the inputs 
required for each neighbor must be the 
same.

The first condition is obvious: two neigh-
bors cannot be reduced if the f(n) value is 
different, as they will generate different paths 
to the solution. The second condition refers 
to the equivalence of the inputs. As before, 
a list of services that provides the required 
input for each neighbor must be calculated and 
then compared. Only nodes with same lists of 
services and f(n) value can be combined. This 
technique is performed while the neighbors are 
being generated.

6. EXPERIMENTS

Our analysis consists in two parts: (1) we 
validate the algorithm with eight different re-
positories from Web Service Challenge 2008 
and (2) we measure the speed up obtained with 
the optimization techniques.

6.1. Web Service Challenge 
2008 Datasets

In order to evaluate the correctness and the 
performance of our algorithm in different situ-
ations, we have carried out some experiments1 
using eight public repositories from Web Ser-
vice Challenge 2008 (Georgetown University, 
2008a). These repositories contain from 158 
to 8119 services defined using WSDL. Also, 
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inputs and outputs are semantically described in 
a XML file. Although there are other benchmark 
datasets for automatic web service composition 
(Oh & Lee, 2009; Georgetown University, 
2005), the most efficient algorithms have been 
evaluated using the WSC datasets.

Table 1 shows in detail the characteristics 
of each dataset. The first column indicates the 
number of services in the repository (#Services). 
As can be seen, the number of services is vari-
able and enough for a full validation. Table also 
shows the total number of inputs (#Inputs) and 
the total number of outputs (#Outputs). The 
solutions provided by the WSC’08 are showed 
in Table 2. Column ‘#Services” indicates the 
number of services for the shortest2 solution 
(in number of services). Column “exec. path” 
shows the runpath for that solution. Finally, 
column “#Solutions” indicates the number of 
different solutions for that dataset.

6.2. Results

Our algorithm was implemented using Ja-
vaTM JDK 1.6 and tested with JavaTM SE 
build 1.6.0 22-b04 64-bit. All the experiments 
were performed under an Ubuntu 64-bit server 
workstation (kernel 2.6.32-27) with 2.93GHz 
Intel R Xeon R X5670 and 16GB RAM DDR-
3. Table 3 shows the results obtained with a 
minimum runpath and a minimum number of 
services. Table 2 is organized as follows: the 
first column indicates the dataset name. The 
second column indicates the number of services 
in the service dependency graph (including 
dummy services). “#Sol” represents the number 

of solutions obtained by our algorithm, and 
“Iter.” indicates the number of steps executed 
by the A* search algorithm until the solution 
was reached. “Time” is the elapsed time until 
a solution was found (including the time spent 
in the generation of the service dependency 
graph), while “#Serv.” indicates the number 
of services obtained by the algorithm. Finally, 
“runpath” represents the length of the execu-
tion path of the solution. Columns 8-11 have 
the same meaning as columns 4-7 but for the 
solutions with minimum runpath.

As can be seen, in all cases (except in 
WSC’08-6) the solution with minimum number 
of services is the solution with minimum runpath 
too. The first thing that must be noticed is that 
the solutions obtained by our algorithm are the 
best for all datasets (according to the solutions 
provided by WSC’08, see Table 2), except in 
the case of the dataset WSC’08-6, where our 
algorithm finds a solution with lower number 
of services (35 vs. 40) and a solution with 
shorter runpath (7 vs. 10). Our approach also 
scales well with the number of services (3,345 
ms for the dataset with 4,113 services and 3,608 
ms for the dataset with 8,119 services).

Moreover, the algorithm finds all possible 
solutions (Column “#Sol.”) for all datasets, 
showing a great performance as in all cases the 
bests solutions were found in a very short period 
of time. This feature is an important advantage 
over the other approximations since it shows 
that is possible to compose services automati-
cally using an optimal and complete algorithm.

Table 1. Characteristics of the Web service challenge repositories 
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6.3. Comparison

In order to prove the validity of our approach, 
a comparison with the participants of the 
challenge has been done, following the rules 
defined by the WSC’08 (Georgetown Univer-
sity, 2008b). The quality of each composition 
is measured using three parameters (number of 
services, runpath and time) in accordance with 
the scoring rules as follows:

• +6 Points for finding the minimum set 
(Min. Services) of services that solves 
the challenge.

• +6 Points for finding the composition with 
the minimum execution length (Min. Ex-
ecution) that solves the challenge.
 ◦ +6 Points for the composition system 

which finds the minimum set of ser-
vices or execution steps that solves 
the challenge in the fastest time (Time 
(ms)).

 ◦ +4 Points for the composition system 
which solves the challenge in the 
second fastest time.

 ◦ +2 Points for the composition system 
which solves the challenge in the third 
fastest time.

As can be seen, these rules are conflicting, 
given that some solutions have the minimum 
runpath but not the minimum number of ser-
vices. For example, in the WSC’06 dataset, the 
solution with the minimum number of services 
(35 services) has a runpath of 14. On the other 
side, the solution with the minimum runpath 
has 42 services. With these rules, both solutions 
obtain 6 points, as the first one has the minimum 
number of services and the second one the 
minimum runpath. Despite our algorithm finds 
both solutions, only one solution is taken into 
account. Thus, our algorithm is clearly penalized 
by this rating. Regardless of this disadvantage, 
our algorithm obtained 44 points, the same score 
as the winners. Note that the time has not been 

Table 2. Solutions provided by the WSC’08 

Table 3. Algorithm results for the eight datasets 
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measured under the same conditions because 
the source code of the other participants was 
not available. Therefore, the objective criteria 
for the comparative analysis should be only the 
number of services and the runpath.

If we compare the quality of the solutions, 
our algorithm finds better solutions than the 
other approaches. As can be seen in Table 4, the 
result with the minimum runpath for the dataset 
WSC’08-6 obtained by our algorithm has 42 
services, while the University of Tsinghua ob-
tained a solution with 46 services and the same 
runpath. On the other hand, if we compare the 
solution with the minimum number of services, 
our algorithm finds a composition with 35 
services and a runpath of 14, which is clearly 
better than that provided by the University of 
Groningen with 37 services and a runpath of 17.

6.4. Optimization Effect

All the above experiments were performed us-
ing all the optimization techniques described 
in Section 5. In this section, we compare the 
effect of the optimization over the global 
performance on each dataset, and it is divided 
into three parts: (1) performance using offline 
service compression; (2) performance using 
online node reduction; and (3) performance 
improvement with both optimizations.

6.4.1. Offline Service Compression

The results are presented in Table 5. As can be 
seen, the average compression obtained over 
the graph using “Offline service compression’’ 
was close to 40%. The other columns show the 
average inputs per service, the average outputs 
per service and the average number of available 
services in the service dependency graph that 
provides the same output (with and without 
optimization). These values can be used to 
estimate the complexity for each dataset, as 
explained in Section 3. Note that the number of 
services per output decreases as the compres-
sion ratio increases (Column 11). This ratio has 
an important effect on the search performance. 
More specifically, a worse performance occurs 
when the number of available services per out-
put is high, since the generation of neighbors 
in each step is slower. Despite the reduction 
obtained over the graph size, the complexity of 
the repository 6 still remained too high, so the 
algorithm cannot find a solution in a reasonable 
period of time (all tests were executed using a 
time limit of 5 minutes).

6.4.2. Online Node Reduction

This technique reports a large improvement in 
performance, as the algorithm obtains solutions 

Table 4. Comparison with the participants of the WSC’08 
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in all repositories, including the WSC 2008-6 
(23,704 ms, see Table 5). In most cases, this 
method obtains at least the same performance as 
the offline service compression. Table 6 shows 
in detail the time obtained for each dataset and 
using different optimizations. Column 2 indi-
cates the time needed to get the solution with 
the minimum number of services without any 
optimization. Columns 3, 4, and 5 show the 
same information but using different techniques. 
Note that “Offline Service Compression’’ is 
not enough to obtain a solution in the dataset 
WSC’08-6.

6.4.3. Both Optimizations

After applying both techniques, our algorithm 
is able to solve the eight datasets showing a 
good performance. Table 7 shows the percent-
age of optimization obtained with the differ-
ent techniques. In Figure 4, we compare the 
speedup3 obtained with each optimization over 
the non-optimized algorithm. Note that with all 

optimizations, the speedup is over 1.0x, i.e., 
there is a substantial performance improvement. 
The improvement on the WSC’06 dataset can-
not be measured as there are no results without 
optimizations, but a comparison can be done 
using only the results obtained with “Online 
node reduction” and “All optimizations.” For 
this case, using the values in Table 6, we obtain 
a speedup of 7x with all optimizations (23,704 
ms vs. 3,306 ms). This is due to the large number 
of equivalent combinations of services (neigh-
bor nodes) that can be generated in each step.

7. CONCLUSION

In this paper we have presented a complete and 
optimal algorithm for automatic web service 
composition based on a heuristic search over a 
services graph. The graph has been optimized 
applying different techniques that reduce useless 
and equivalent services. The proposed A*-based 
composition algorithm is executed over the re-

Table 5. Complexity of the service dependency graph (SDG) with and without using offline 
service compression 

Table 6. Performance of the algorithm using different optimizations 
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duced graph using dynamic node reduction and 
a cost function, which minimizes the number 
of services and maximizes the parallelization. 
Moreover, a full validation has been done using 
eight different repositories from Web Service 
Challenge 2008, showing a good performance 
as in all the tests the best solutions, regarding 
the number of services and runpath, were always 
found. Also, our algorithm is able to find all the 
existing solutions. This is not fulfilled by the 
other algorithms of the WSC’08.

As future work we plan to extend our algo-
rithm by including non-functional properties in 

our model, such as cost, reliability, throughput, 
etc. Quality of Service (QoS) characteristics 
are important criteria for building real world 
compositions. Our algorithm can be easily 
adapted to handle these features.
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this experiments: http://citius.usc.es/wiki/
inv:composit
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2  Note that these values are only indicative. 
Smaller values have been found by our algo-
rithm and by other participants.

3  The speedup is calculated as the division of 
the non-optimized result by the optimized 
result. Thus, a speedup of 2.0x indicates that 
the optimized result is two times faster than 
the non-optimized one.


