
International Journal of Web Services Research, 9(2), 1-20, April-June 2012 1

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords: A* Algorithm (A Star Algorithm), Dependency Graph, Semantic Input-Output Matching, Web
Service Composition, Web Services

1. INTRODUCTION

Nowadays, Service-Oriented Architectures
(SOA) (Papazoglou & Georgakopoulos, 2003)
are gaining importance because of the ability to
build interoperable services that can be shared

over a network within multiple platforms. Thus,
companies are starting to apply this principle
to their business, allowing them to remain cost
effective, flexible and competitive. Applications
in SOA are built based on services consumed
by clients that are not concerned with the
underlying implementation. Specifically, web

An Optimal and Complete
Algorithm for Automatic

Web Service Composition
Pablo Rodriguez-Mier, University of Santiago de Compostela, Spain

Manuel Mucientes, University of Santiago de Compostela, Spain

Juan C. Vidal, University of Santiago de Compostela, Spain

Manuel Lama, University of Santiago de Compostela, Spain

ABSTRACT
The ability of web services to build and integrate loosely-coupled systems has attracted a great deal of at-
tention from researchers in the field of the automatic web service composition. The combination of different
web services to build complex systems can be carried out using different control structures to coordinate the
execution flow and, therefore, finding the optimal combination of web services represents a non-trivial search
effort. Furthermore, the time restrictions together with the growing number of available services complicate
further the composition problem. In this paper the authors present an optimal and complete algorithm which
finds all valid compositions from the point of view of the semantic input-output message structure matching.
Given a request, a service dependency graph which represents a suboptimal solution is dynamically gener-
ated. Then, the solution is improved using a backward heuristic search based on the A* algorithm which finds
all the possible solutions with different number of services and runpath. Moreover, in order to improve the
scalability of our approach, a set of dynamic optimization techniques have been included. The proposal has
been validated using eight different repositories from the Web Service Challenge 2008, obtaining all optimal
solutions with minimal overhead.

DOI: 10.4018/jwsr.2012040101

2 International Journal of Web Services Research, 9(2), 1-20, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

services are the preferred standard-based way
to realize SOA.

Web Services are self-contained modular
applications described by a collection of op-
erations that are network-accessible through
standardized web protocols, and whose fea-
tures are defined using a standard XML-based
language (Alonso, Casati, Kuno, & Machiraju,
2004). One of the advantages of web services
is to enable greater and easier integration and
interoperability among systems and applica-
tions through web service composition. This
advantage allows web services to be combined
by connecting their inputs and ouputs to cre-
ate larger services (composite services) whose
execution is orchestrated by a set of control
structures defined in composition languages like
WS-BPEL (Weerawarana, Curbera, Leymann,
Storey, & Ferguson, 2005; Rouached, Fdhila,
& Godart, 2010). Thus, the goal of web service
composition is to construct new services from
existing web services in order to satisfy a request
(basically a set of provided inputs and a set of
wanted outputs by the client) which cannot be
solved by a single web service. The matching
between inputs and outputs can either be done
syntactically, using the information described
in WSDL (Christensen, Curbera, Meredith, &
Weerawarana, 2001), or semantically, using se-
mantic markup languages like OWL-S (Burstein
et al., 2004) or WSMO (de Bruijn et al., 2005).

The automatic composition problem may
seem trivial problem when there are a limited
number of services in a single-service archi-
tecture. However, the problem increases in
complexity when the goal is to obtain optimal
compositions over large web service reposito-
ries using different control structures to manage
the composition flow. In fact, the web service
composition problem can be reduced to the
boolean satisfiability problem, i.e., the problem
is NP-complete and therefore it cannot be solved
in polynomial time (Lee & Kumara, 2005).

Research in this field has grown rapidly
in recent years. Some approaches (Hoffmann,
Bertoli, & Pistore, 2007; Sirin, Parsia, Wu, Hen-
dler, & Nau, 2004; Klusch, Gerber, & Schmidt,
2005; Pistore, Barbon, Bertoli, Shaparau, &

Traverso, 2004; Xu, Chen, & Reiff-Marganiec,
2011) treat the service composition as an
artificial intelligence (AI) planning problem,
where a sequence of actions lead from a initial
state (inputs and preconditions) to a goal state
(required outputs). These techniques work well
when the repository size is relatively small and
the number of constraints is high. However,
most of these proposals have some drawbacks:
high complexity, high computational cost and
inability to maximize the parallel execution of
web services.

Other approaches (Aversano & Taneja,
2006; Ghafarian & Kahani, 2009; Rodrıguez-
Mier, Mucientes, Lama, & Couto, 2010) scale
better than other techniques when the interac-
tions among services and the number of con-
straints is huge. Despite being scalable, these
techniques do not guarantee to obtain the opti-
mal solution, and also are extremely slow and
memory intensive. The most recent approaches
(On & Larson, 2005; Kona, Bansal, Blake, &
Gupta, 2008; Yan, Xu, & Gu, 2008; Wu, Li,
Wu, & Yin, 2011; Weise, Bleul, Kirchhoff, &
Geihs, 2008; Shiaa, Fladmark, & Thiell, 2008;
Hennig & Balke, 2010; Hashemian & Mavad-
dat, 2006; Jiang, Zhang, Huang, Chen, Hu, &
Liu, 2010), consider the problem as a graph/
tree search problem, where a search algorithm
is applied over a sub-optimal graph in order to
find a optimal (or near-optimal) solution. These
proposals are simpler than the AI planners due, in
part, to the use of a smaller number of constraints
during the search. However, most of these ap-
proaches rely on very complex dependency
graphs that have not been optimized to reduce
data redundancy. Therefore, the scalability of
these algorithms may also be adversely affected
when the interaction among services and data
is huge due to the redundancy of the repository.

This paper addresses the problem of the
web service composition as a graph search
problem from the point of view of the semantic
input-output message structure matching, i.e.,
we do not take into consideration the non-
functional properties (NFPs). The novelties of
our proposal are:

International Journal of Web Services Research, 9(2), 1-20, April-June 2012 3

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

1. The method is able to calculate, given a
request, an extended service dependency
graph which represents a valid but sub-
optimal solution for the request.

2. The heuristic search algorithm, based on
the well-known A*, finds all optimal solu-
tions from the point of view of the number
of services and execution path (runpath).
This, it maximizes the parallel execution
of services and minimizes the number of
services.

3. We define set of optimizations to reduce
the graph size, based on the redundancy
analysis and service dominance.

4. We include a method to reduce dynami-
cally the possible paths to explore dur-
ing the search by filtering equivalent
compositions.

We have validated our algorithm with the
eight datasets defined by the Web Service Chal-
lenge 2008 (Bansal, Blake, Kona, Bleul, Weise,
& Jaeger, 2008). Also we have compared our
approach with the results of the participants of
the Web Service Challenge 2008.

The rest of the paper is organized as
follows: Section 2 describes the different ap-
proaches that have already been proposed.
Section 3 introduces the basis of web service
composition. Section 4 illustrates the proposed
A* algorithm for web service composition. Sec-
tion 5 presents some optimization techniques
to improve the performance of the algorithm.
Section 6 analyzes the algorithm with eight
different repositories and compares the results
with other approaches. Section 7 points out the
conclusions.

2. RELATED WORK

Heuristic algorithms have proved their ef-
ficiency in the field of the automatic web
service composition. Particularly, the use of
graph-based and tree-based search algorithms
has been studied before (Liang & Su, 2005; Mi-
lanovic & Malek, 2006) to solve a web service
composition in large repositories, showing great

results. Although there are similarities among all
proposals, they differ in many concepts, such as
performance, information handling, graph/tree
encoding, solution quality, etc. In this section, a
brief analysis of some approaches is presented.

Shiaa et al. (2008) present an approach to
automatic service composition with semantic
matching. Given a request (goals, inputs and
outputs), a set of matching services are discov-
ered from the repository, applying semantic
matching between service properties and the
composition request. Then, a graph is created
dynamically by connecting semantically similar
nodes (single services) to each other. Once the
graph is created, a search over it is performed
building acyclic tree structures from goal nodes
to start nodes. One major drawback of this
proposal is that it does not take into account
the use of heuristics in order to speed up the
search, so searching for an optimal composi-
tion in large repositories may be infeasible.
Moreover, there are no experimental results to
validate the model.

Kona et al. (2008) propose a simple but
effective approach for semantic web service
composition. In this work, a composition is
generated as a directed acyclic graph from a user
request. The graph (divided in a set of layers)
is calculated iteratively, starting with the input
parameters provided by the requester. In each
step, all possible services from the repository
that can be invoked are added to the current layer.
Although the useless services are filtered, the
algorithm cannot find an optimal composition.
A heuristic search over the graph is required
in order to minimize the number of services in
the composition.

Yan et al. (2008) present an automatic
service composition algorithm using AND/OR
graph. In this proposal, an AND/OR graph is
created from a request, connecting services by
their inputs and outputs. Then, a search over
the graph is performed using the AO* search
algorithm. Although this proposal shows a
great performance over large repositories, the
algorithm does not guarantee to obtain the
optimal compositions from the point of view
of the number of services, as can be seen in

4 International Journal of Web Services Research, 9(2), 1-20, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

the results of the competition. Moreover, the
authors have not implemented optimization
techniques in order to improve the scalability
of the algorithm.

Oh, Lee, and Kumara (2007) and Oh et
al. (2009) propose a Web-Service Planner
using the A* search algorithm (WSPR*), an
improvement of the WSPR planner, which was
at third place in the WSC’08. In this approach,
the use of the A* algorithm allows finding an
optimal composition based on some heuristic
costs. The heuristic function is defined as the
set of required parameters found by the algo-
rithm. This heuristic function has an important
drawback: it is not able to guide the search when
only the last services of a composition produce
all the required parameters. On the other hand,
the transition function only allows the addition
of a single service in each step.

Wu et al. (2011) presented AWSP, an au-
tomatic web service planner based on heuristic
state space search. In this work, an A* is used
to search minimal compositions in terms of
execution path. The search is performed using
different operators which allow the movement
from one state to another, adding a new service
in each step. This movement can be done either
forward or backward, although the last one is
clearly better. To do this, two different heuris-
tics were implemented based on a parameter
distance defined by the authors. This approach
has some drawbacks: firstly, authors do not
consider the use of stratified methods previous
to the search. These methods allow to quickly
reduce the search space size, and can be used
in dynamic environments as the computation
of service graphs has not an important impact
on the overall performance. This, in dynamic
environments, where inputs and outputs can
change, the recalculation of the graph can be
done without affecting too much the perfor-
mance. In second place, the algorithm cannot
manage parallel execution of services. Third,
they do not take into account the detection of
redundancy, which can seriously affect search
performance. Finally, in fourth place, more tests
are required to confirm the advantages of this

approach, comparing it with other similar AI
planners as WSPR*.

Aiello, Benthem, and Khoury (2008) got
the second place in the Web Service Challenge
2008 with RugCo, an automatic web service
compositor. This algorithm uses a tree based
search to find compositions that satisfy a re-
quest. The search is performed expanding nodes
and resolving the new dependencies generated
in each step until no more dependencies are
discovered. Since during the search a large
number of expanded nodes are generated, the
authors introduce a heuristic approximation
(beam search) to analyze only the most promis-
ing nodes. Despite the authors found solutions
for the three datasets proposed in the WSC’08,
the major drawbacks of this approach are: 1)
the beam search does not guarantee to obtain
optimal solutions, as only the most promising
nodes are expanded, so the algorithm is neither
complete nor optimal; 2) the search minimizes
the number of services in the composition, but
not the execution path; and 3) beam search does
not scale well with the size of the search space,
which implies bad performance in large datasets.

Weise, Bleul, Kirchhoff, and Geihs (2008)
obtained the forth place in the WSC’08 with
an architecture which combines three different
algorithms (uninformed search based on ID-
DFS, a greedy search and a genetic algorithm)
(Weise, Bleul, Comes, & Geihs, 2008). The
architecture integrates a module called “Strat-
egy Planner” which decides the best algorithm
in each case. The results obtained with this
system are not surprising. The ID-DFS is an
uninformed search based on the depth-first
search (DFS) with iterative deepening (ID).
This method is very simple and ineffective to
solve a web service composition problem as
the time complexity grows exponentially with
the depth. When the dataset is too big for the
ID-DFS algorithm, the greedy algorithm is used
instead of the ID-DFS. This approach is very
similar to the DFS, but a heuristic is used to
sort the set of candidate nodes to explore. The
greedy algorithm works as bad as the ID-DFS
in the worst case scenario. On the other hand,
a genetic algorithm is used for all those cases

International Journal of Web Services Research, 9(2), 1-20, April-June 2012 5

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

where the ID-DFS and the greedy search can-
not find a solution. This algorithm uses a set of
evolutionary operators to obtain near-optimal
compositions minimizing multiple objectives.
However, the results obtained in the WSC’08
show the ineffectiveness of this approach. The
major drawback of this algorithm is the fitness
function. The fitness is measured by calculating
two objectives: composition size and number of
wanted (unsatisfied) parameters. This evalua-
tion does not work well when the solutions have
a long runpath and the last service or services
provide all wanted parameters. In this scenario,
there is no information about which solution is
better until the complete composition is reached,
so in each generation, the best individuals are
those with a less number of services. This
evaluation can prevent the algorithm to find a
solution. Moreover, the algorithm is an order of
a magnitude slower than the other approaches.

With this state of the art, we can conclude
that the main differences between our proposal
and other approaches are:

1. The construction of a non-redundant ser-
vice dependency graph at the first stage by
removing unused services and combining
the equivalent ones. Other approaches
use simple filtering techniques that do not
remove all data redundancy.

2. The use of the A* algorithm backwards,
handling multiple services in each step in
order to maximize the execution in parallel
of the web services.

3. The detection of all valid compositions with
different number of services and runpath.
Other approaches only find an optimal
composition with minimum number of
services or minimum runpath.

4. The use of dynamic optimization during the
search that reduces the number of possible
paths to explore by combining equivalent
combination of services.

In the following sections we describe in
detail the composition problem and how it can
be solved with our proposal.

3. WEB SERVICE
COMPOSITION

In order to compose web services, we must
define the relationship among services. From
a functional point of view, a web service is a
software component that receives a set of inputs
and generates a set of outputs after the execu-
tion. Thus, a web service W can be described
by a set of inputs Win={I1,I2,…} and a set of
outputs Wout={O1,O2,…}. Outputs from a service
can be provided as inputs to other service only
if there is a semantic relationship between them.
In our approach, we have modeled this restric-
tion as a hierarchical class/subclass relationship
between concepts, so we consider that an out-
put of a service Oso matches the input of other
service Isi when Oso is a subclass of Isi. In gen-
eral, when a concept Ci is a subclass of a concept
Cj(Ci⊆Cj), then there is a semantic matching
between Ci and Cj. Another important concept
is a web service request. A request R is composed
by a set of inputs R I I

ij in in
= { }()1 2, ,... provided

by the requester, and a set of outputs
R O O
out out out
= { }()1 2, ,... that the requester ex-

pects to obtain. Given a request Ruser={Rin, Rout},
where Ruser={Rin,Rout} and R O O

out R R
= { }1 2, ,... ,

and given a web service S={Sin,Sout} where
S I I
in S S
= { }1 2, ,... and S O O

out S S
= { }1 2, ,... , the

web service S can be invoked only if R S
in in
⊇ ,

i.e., for each input Is∈Sin there exists an input
IR∈Rin such that IR is equal or subclass of
IS(IR⊆IS). Also, Rout will be satisfied only if
Rout⊆Sout, i.e., for each output OR∈Rout there
exists an output OS∈Sout such that OS is equal
or subclass of OR(OS⊆OR).

Considering this description for web
services, the composition problem can be
formulated as the automatic construction of
a workflow that coordinates the execution
of a set of services that interact among them
through their inputs and outputs (applying the
semantic matching). This workflow, therefore,
has services and a set of control structures that
define both the behavior of the execution flow

6 International Journal of Web Services Research, 9(2), 1-20, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

and the inputs/outputs of the services related to
those structures. Despite the amount of differ-
ent control structures defined in composition
languages like WS-BPEL, we take into account
only two of the most important ones: sequence
and split. These structures allow building most
of the possible compositions and they work as
follows:

• Sequence structure: the output of a service
is the input of one of the following services
of the sequence. This is the basic control
structure of the workflow languages.

• Parallel (split): two or more services are
executed in parallel and, as result, produce
several and different outputs.

Regarding to the complexity analysis of
the search space, the number of combinations
to be analyzed using a brute-force algorithm
grows very fast. To demonstrate this, we can
assume that, given a service, each of its inputs
is provided by a different service (worst case).
The complexity in this scenario is O(mnd),
where m is the average number of services in
the repository that generate the same output,
n is the average number of inputs from web

services and d is the depth at which all inputs
are resolved. Since there are m services that
provide each required input, the number of
possible choices in order to resolve all inputs
from a service is mn. Each of these combinations
represents a set of services executed in parallel
that can be expanded again. Figure 1 shows the
size of the search space for different values of
the runpath (d = 1...5), with n = 1, n = 2, n = 3
(one, two and three inputs respectively for each
service in repository) and m = 5 (5 services per
output on average).

As can be seen, this kind of composition
has an exponential growth of paths to explore.
The search space size in the case of a reposi-
tory of services with three inputs on average
(n) and four possible choices to provide an
input to a service (m), where the solution has
a runpath of 10 (i.e., d=10 splits connected in
sequence), reaches the value of possible paths
to explore. Given the large number of combina-
tions, the problem of searching an optimal
execution path is not trivial, and it is therefore
necessary to reduce the number of combinations.
In order to reduce the search space size, our
algorithm includes some optimization tech-
niques, which are described in Section 5.

Figure 1. Search space size for n=1, n=2, n=3 (1, 2 and 3 inputs per service) and m=5 (5 services
per output on average) with variable runpath

International Journal of Web Services Research, 9(2), 1-20, April-June 2012 7

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

4. A* ALGORITHM FOR WEB
SERVICES COMPOSITION

As previously discussed, given the large number
of possible paths to explore, a fast algorithm is
required in order to find an optimal solution in
a reasonable period of time. Although the high
space complexity makes the use of traditional
search algorithms unpractical for large reposi-
tories, the problem can be solved by using a
good heuristic in the search and applying some
optimization techniques and data preprocessing.

The A* algorithm, developed by Hart,
Nilsson, and Raphael (1968), is one of the most
popular path finding algorithms. This algorithm
uses a heuristic function h(n) to estimate the
cost from the current node to a goal node, and
a function g(n) to calculate the cost from the
starting node to the current node. Therefore,
the search cost is defined as f(n)=g(n)+h(n).
Choosing a good h function has an important
impact on the search process. The better this
function is, the faster the solution will become.
However, there is a restriction on it: h cannot
overestimate the cost to reach the goal; other-
wise, the algorithm could find a solution with
higher cost than the optimal one.

Our proposal, based on A* algorithm,
follows the next steps: first, a web service
dependency graph is computed (Section 4.1.).
Then, a reduction on the number of services
is performed by eliminating unused services
and combining equivalent services (Section
5). Finally, the A* search is applied over the
reduced graph, which finds all optimal service
compositions, with minimum number of ser-
vices and execution path (Section 4.2.). These
steps will be described in the following sections.

4.1. Extended Web Service
Dependency Graph

Web services composition requires the com-
bination of many atomic services that can be
executed in sequence or in parallel as previously
mentioned. Given a service request, an extended
service dependency graph with a subset of the
original services from an external repository is
dynamically generated. This subset contains the

solutions that meet the request and consists of
a set of layered services (splits) connected in
sequence. Each layer contains all services from
the repository that can be executed with the
outputs of the previous one. Figure 2 shows an
example of a SDG with i layers and n services
in each layer. The expression for a layer can be
defined as follows:

Li={Si:Si∉Lj(j<i)∧Isi∩Oi-1
≠∅∧Isi⊆IR⋃O0∪…∪Oi-1}

where, for each layer Li:

• Si is a service on the ith layer.
• Oi is the set of outputs generated in the

ith layer.
• Isi is the set of inputs required for the ex-

ecution of service Si.
• IR is the set of inputs provided by the

requester.

The construction of the graph can be done
in a simple manner. Algorithm 1 describes
with pseudocode the construction of the graph
iteratively. Lines 1-5 initialize the variables
used throughout the algorithm: newOutputs
(outputs generated in the last layer that have
not been generated previously), Ia (available
inputs for the current layer), i (current layer)
and Layers (set of all generated layers). Note
that newOutputs and Ia are initialized with the
same value IR, as the provided inputs are the
first available inputs to the composition and
have not been used yet by any service. The main
loop starts at line 6. Inside this loop, each layer
is calculated following these steps:

1. Obtain all outputs from the previous layers.
These outputs are the available inputs to
the current layer (L. 8-10).

2. For each service in the repository.
a. Check if the service has not appeared

in previous layers (L. 13).
b. Check if the service can be invoked

(i.e., receives all its inputs from previ-
ous layers) (L.14).

8 International Journal of Web Services Research, 9(2), 1-20, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

c. Check if the service use at least one
output that has not been used previ-
ously (L. 15).

d. If (a), (b), and (c) are true, then the
service is added to the current layer.

3. If the available inputs to this layer contain
the wanted outputs (solution reached) and
the previous layer produces at least one of
the wanted outputs, then a dummy service
(R
o
n) is added to the current layer. All R

o
n

services are the initial nodes of the search
(each initial node will lead to a solution
with different runpath) (L.20-25).

4. Once all services are selected for the i-th
layer, newOutputs is updated by adding the
outputs of the i-th layer and deleting the
outputs generated in previous layers. Note
that with this operation, only the outputs
that have not been used before will remain
for the next iteration (L. 26).

In order to speed up the calculation of the
graph, we used a pre-computed table that maps
each input to the services that use it. Thus, for
each output generated in a layer, we can obtain
all possible services for the next layer very
quickly. Figure 3 shows an example of a service
dependency graph with five layers and two
different solutions. The dark gray services cor-
respond with the services of the solution with
the largest runpath (the first and the last layers

are not computed for the runpath). Ri, Ro
1 and

R
o
2 are dummy services. Ri is a service which

provides the requested inputs, R
o
1 is a service

which uses the requested outputs (so there is a
solution with a runpath of 2) and R

o
2 is a service

which uses the requested outputs but in the
layer 4 (runpath of 3). Thus, in this example,
two different solutions for the same request can
be observed: Sequence(Ri, Split, (S1,2, S2,3),S2,2,
R
o
1) and Sequence(Ri, S1,1, S2,1, Split (S3,2, S3,3),
R
o
2).

Generally, stratified methods like this have
a high performance, and allow reducing the
total search space easily, as some constraints
(in this case, inputs and outputs) are exploited
to reduce the number of services that can be
used. These methods work well in static envi-
ronments, where the service information does
not change. In real word, where the inputs and
outputs, service availability and other param-
eters may change, these methods must be
adapted. Basically, to ensure the validity in
dynamic environments, a fast check can be done
while the algorithm is searching for a solution.
If any change is detected on any of the ser-
vices selected by the search algorithm, the
service dependency graph must be recalculated
starting from the layer which contains the
service. Specifically, two situations may occur:

Figure 2. Example of i layers, with n services per layer

International Journal of Web Services Research, 9(2), 1-20, April-June 2012 9

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

• A service is not accessible: given that our
algorithm finds all possible solutions, when
a service becomes unavailable, the solu-
tions which contain the unavailable service
must be discarded. The other solutions will
be still valid.

• A new service is available: in this case, the
service dependency graph must be partially
rebuilt starting from layer Li+1, where Li is
the layer at which the inputs required by
the new service are provided (i.e., the layer
which contains the service, according to the
definition of Li defined before).

4.2. A* Algorithm Description

Once the graph is calculated, a search over it
must be performed. The search algorithm will
traverse the graph backwards, from the solu-
tion (the service whose inputs are the outputs
wanted by the requester), to the initial node (the
service whose outputs are the provided inputs).
As mentioned before, our heuristic algorithm is
based on an implementation of the A* heuristic
search. There are three principal concepts in this

type of algorithms: the neighborhood function,
the cost function and the heuristic function.
These concepts will be explained.

In order to perform the search process, the
search space must be divided into nodes. Each
node will contain a set of services from a graph
layer that can be executed in parallel. Thus, a
path will be composed of a list of neighbor
nodes, which represents the sequential execution
of the path. Thus, the starting node will only
contain the service labeled as R0 in Figure 2.
This service represents the outputs wanted by
the requester, as their inputs match with them.
To generate all possible neighbors from a node,
the following steps are performed:

1. Calculate, for each input of a node, a list
of services from the previous layer that
provide it. If there are no services in the pre-
vious layer for that input, a dummy service
that generates this input and receives the
same input is created. This dummy holds
the dependency so it can be resolved later.

2. Make all combinations among services
from each list. These combinations will

Figure 3. Example of two solutions with different runpath and different number of services:
Sequence(Ri, Split, (S1,2, S2,3),S2,2,Ro

1) and Sequence(Ri, S1,1, S2,1, Split (S3,2, S3,3),Ro
2)

10 International Journal of Web Services Research, 9(2), 1-20, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

generate all possible neighbors from the
current node.

3. Remove all equivalent neighbors. This
process will be described in Section 5.

For example, given a node N with a service
S in layer Li, with IS={a,b} and a set of services
X, Y, Z in layer Li-1 where OX={a},OY={b}, and
OZ={a,b}, we construct a list of services for
each input of S:

• Set(a) = {X, Z}
• Set(b) = {Y, Z}

Then, we generate all combinations. Each
combination will constitute a neighbor node
from N. The possible combinations are: (X,Y),

(X,Z), (Y,Z), (Z). All these nodes generate all
the required inputs for node N (a, b).

On the other hand, the behavior of the A*
algorithm depends on two functions: g(N), the
cost, and h(N), the heuristic. N is a composite
service obtained as a path over a set of nodes
(Ni), where Ni is the set of services in layer Li.
One of the goals is to minimize the number of
web services in a composition, therefore, the
cost function should calculate the length of a
composition based on the number of services.
On this basis, we define a function g(N) as:

g N t N
ii L

L

N
() = ()=

≠∑ cos (1)

where LN is the first layer of the current com-
position service, #L is the number of layers and
cost is a function that retrieves the number of

Algorithm 1. Extended service dependency graph algorithm

International Journal of Web Services Research, 9(2), 1-20, April-June 2012 11

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

services from node Ni . The dummy services in
a node will not contribute to this cost.

The other function is the heuristic. This
function should estimate the cost to the solution.
A good choice is to use, as heuristic, the layer
in which the node is located. The layer number
indicates the distance to the initial node. Thus,
a service in layer 3 means that the algorithm
needs three more steps in order to reach the
start node. The heuristic function is defined as:

h N distance N
i() = () (2)

Putting (1) and (2) together, function f(n)
is defined as:

f N t N distance N
i i() = ()+ ()∑ cos

(3)

Figure 3 shows an example of a different
composition paths detected with this algorithm.
In the next section, a set of optimization tech-
niques are explained. In the next section, a set
of optimization techniques are explained.

5. OPTIMIZATION TECHNIQUES

In order to achieve a significant performance
improvement on the search process, we de-
signed two techniques that reduce the number
of possible paths to explore: Offline Service
Compression and Online Node Reduction.

5.1. Offline Service Compression

The essence of this technique is to replace
equivalent services from each layer in the graph
by the representative service, which implies a
lower number of paths to explore during the
search. This process is subdivided into two steps:
remove unused services and detect equivalent
services. These steps are described:

1. Remove unused services.
a. Create an empty list M. This list will

contain all the required inputs to get
the solution.

b. Create an empty list U. This list will
contain all unused services.

c. Traverse backwards the graph, starting
from the final layer.

d. For each layer Li in the graph:
i. Create an empty list R. This list

will contain all the required inputs
for this layer.

ii. For each service S in the current
layer:
1. Check if Os⊆M, where Os are

the service outputs. If M is
empty, skip this step.

2. If S meets the condition or M
is empty, add all inputs from
S to the list R.

3. In other case, add S to the list
U.

iii. Add all inputs from R to the list
M.

e. Finally, remove from the graph, each
service in U.

2. Detect and replace equivalent services by
the representative service. For each layer
in the graph:
a. Group services by the equivalence

of their inputs. Two services have
equivalent inputs if the services from
the graph that provide their inputs are
the same.

b. For each group:
i. Check if Si⪰Sj for each service Si

and Sj from a group.
ii. If Si meets the previous restric-

tions, then select Si as the rep-
resentative service. Sj must be
deleted.

One service Si with parameters
P P P P
S S S S

n

j j j j
= { }1 2, ,..., dominates other service

Sj(Si⪰Sj) with parameters P P P P
S S S S

n

j j j j
= { }1 2, ,...,

if:

∀ ∈ …{ } ≥

∧∃ ∈ { } >

k n P P

k n P P
S
k

S
k

S
k

S
k

i j

i j

1, ,

,..., ,1
 (4)

12 International Journal of Web Services Research, 9(2), 1-20, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

In our case, we consider only the outputs
of a service Si OSi() as the single parameter of

Si. The inputs are not considered as the ser-
vices are grouped by the equivalence of their
inputs. To clarify this point, the dominance
between two services Si and Sj with outputs O

Si

and O
Sj

 respectively can be done as follows:

1. Set Listi as the list of services from the
graph such that their inputs are a subset of
O
Si

.
2. Set Listi as the list of services from the

graph such that their inputs are a subset of
O
Sj

.

3. Compare both lists. If Listi⊇Listj then go
to the next step. Else, the restriction is
not met and therefore Si and Sj cannot be
combined.

4. Check if O
Si

 resolves the same or more

inputs from each common service than O
Sj

.

For example, if O
Si

={a,b} and O
Sj

={a,c},

and Listi⊇Listj=X(a,b,c), Y(a,c), where
X(a,b,c) and Y(a,c) are services that receive
as inputs (a,b,c) and (a,c) respectively, we
must verify which inputs are resolved with
O
Si

 and O
Sj

. So, in this example, O
Si

resolves input a, b from X and a from Y,
and O

Sj
 resolves a from X and a, c from

Y. Therefore, Si⪲Sj.

This technique can be used in both static
and dynamic environments. Suppose that
service S, which generates the outputs a and
b, (S→(a,b)) is the representative service of
the group which contains services U→(a) and
V→(b). If service S becomes unavailable, then
services U and V can be selected to replace the
representative service. The generation of all
possible replacements can be done in the same
way as the calculation of the neighborhood of
a node, as explained in Section 4.2.

B. Online Node Reduction

This technique consists in the combination of
equivalent neighbors during the A* search pro-
cess. Given that a node can generate equivalent
neighbors (different combination of services
that together are equivalent) a mechanism to
delete this type of redundancy must be imple-
mented. Two nodes are equivalent if they meet
two conditions:

1. Neighbors from the node must have the
same f(n) value.

2. Services from graph that provide the inputs
required for each neighbor must be the
same.

The first condition is obvious: two neigh-
bors cannot be reduced if the f(n) value is
different, as they will generate different paths
to the solution. The second condition refers
to the equivalence of the inputs. As before,
a list of services that provides the required
input for each neighbor must be calculated and
then compared. Only nodes with same lists of
services and f(n) value can be combined. This
technique is performed while the neighbors are
being generated.

6. EXPERIMENTS

Our analysis consists in two parts: (1) we
validate the algorithm with eight different re-
positories from Web Service Challenge 2008
and (2) we measure the speed up obtained with
the optimization techniques.

6.1. Web Service Challenge
2008 Datasets

In order to evaluate the correctness and the
performance of our algorithm in different situ-
ations, we have carried out some experiments1
using eight public repositories from Web Ser-
vice Challenge 2008 (Georgetown University,
2008a). These repositories contain from 158
to 8119 services defined using WSDL. Also,

International Journal of Web Services Research, 9(2), 1-20, April-June 2012 13

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

inputs and outputs are semantically described in
a XML file. Although there are other benchmark
datasets for automatic web service composition
(Oh & Lee, 2009; Georgetown University,
2005), the most efficient algorithms have been
evaluated using the WSC datasets.

Table 1 shows in detail the characteristics
of each dataset. The first column indicates the
number of services in the repository (#Services).
As can be seen, the number of services is vari-
able and enough for a full validation. Table also
shows the total number of inputs (#Inputs) and
the total number of outputs (#Outputs). The
solutions provided by the WSC’08 are showed
in Table 2. Column ‘#Services” indicates the
number of services for the shortest2 solution
(in number of services). Column “exec. path”
shows the runpath for that solution. Finally,
column “#Solutions” indicates the number of
different solutions for that dataset.

6.2. Results

Our algorithm was implemented using Ja-
vaTM JDK 1.6 and tested with JavaTM SE
build 1.6.0 22-b04 64-bit. All the experiments
were performed under an Ubuntu 64-bit server
workstation (kernel 2.6.32-27) with 2.93GHz
Intel R Xeon R X5670 and 16GB RAM DDR-
3. Table 3 shows the results obtained with a
minimum runpath and a minimum number of
services. Table 2 is organized as follows: the
first column indicates the dataset name. The
second column indicates the number of services
in the service dependency graph (including
dummy services). “#Sol” represents the number

of solutions obtained by our algorithm, and
“Iter.” indicates the number of steps executed
by the A* search algorithm until the solution
was reached. “Time” is the elapsed time until
a solution was found (including the time spent
in the generation of the service dependency
graph), while “#Serv.” indicates the number
of services obtained by the algorithm. Finally,
“runpath” represents the length of the execu-
tion path of the solution. Columns 8-11 have
the same meaning as columns 4-7 but for the
solutions with minimum runpath.

As can be seen, in all cases (except in
WSC’08-6) the solution with minimum number
of services is the solution with minimum runpath
too. The first thing that must be noticed is that
the solutions obtained by our algorithm are the
best for all datasets (according to the solutions
provided by WSC’08, see Table 2), except in
the case of the dataset WSC’08-6, where our
algorithm finds a solution with lower number
of services (35 vs. 40) and a solution with
shorter runpath (7 vs. 10). Our approach also
scales well with the number of services (3,345
ms for the dataset with 4,113 services and 3,608
ms for the dataset with 8,119 services).

Moreover, the algorithm finds all possible
solutions (Column “#Sol.”) for all datasets,
showing a great performance as in all cases the
bests solutions were found in a very short period
of time. This feature is an important advantage
over the other approximations since it shows
that is possible to compose services automati-
cally using an optimal and complete algorithm.

Table 1. Characteristics of the Web service challenge repositories

14 International Journal of Web Services Research, 9(2), 1-20, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

6.3. Comparison

In order to prove the validity of our approach,
a comparison with the participants of the
challenge has been done, following the rules
defined by the WSC’08 (Georgetown Univer-
sity, 2008b). The quality of each composition
is measured using three parameters (number of
services, runpath and time) in accordance with
the scoring rules as follows:

• +6 Points for finding the minimum set
(Min. Services) of services that solves
the challenge.

• +6 Points for finding the composition with
the minimum execution length (Min. Ex-
ecution) that solves the challenge.
 ◦ +6 Points for the composition system

which finds the minimum set of ser-
vices or execution steps that solves
the challenge in the fastest time (Time
(ms)).

 ◦ +4 Points for the composition system
which solves the challenge in the
second fastest time.

 ◦ +2 Points for the composition system
which solves the challenge in the third
fastest time.

As can be seen, these rules are conflicting,
given that some solutions have the minimum
runpath but not the minimum number of ser-
vices. For example, in the WSC’06 dataset, the
solution with the minimum number of services
(35 services) has a runpath of 14. On the other
side, the solution with the minimum runpath
has 42 services. With these rules, both solutions
obtain 6 points, as the first one has the minimum
number of services and the second one the
minimum runpath. Despite our algorithm finds
both solutions, only one solution is taken into
account. Thus, our algorithm is clearly penalized
by this rating. Regardless of this disadvantage,
our algorithm obtained 44 points, the same score
as the winners. Note that the time has not been

Table 2. Solutions provided by the WSC’08

Table 3. Algorithm results for the eight datasets

International Journal of Web Services Research, 9(2), 1-20, April-June 2012 15

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

measured under the same conditions because
the source code of the other participants was
not available. Therefore, the objective criteria
for the comparative analysis should be only the
number of services and the runpath.

If we compare the quality of the solutions,
our algorithm finds better solutions than the
other approaches. As can be seen in Table 4, the
result with the minimum runpath for the dataset
WSC’08-6 obtained by our algorithm has 42
services, while the University of Tsinghua ob-
tained a solution with 46 services and the same
runpath. On the other hand, if we compare the
solution with the minimum number of services,
our algorithm finds a composition with 35
services and a runpath of 14, which is clearly
better than that provided by the University of
Groningen with 37 services and a runpath of 17.

6.4. Optimization Effect

All the above experiments were performed us-
ing all the optimization techniques described
in Section 5. In this section, we compare the
effect of the optimization over the global
performance on each dataset, and it is divided
into three parts: (1) performance using offline
service compression; (2) performance using
online node reduction; and (3) performance
improvement with both optimizations.

6.4.1. Offline Service Compression

The results are presented in Table 5. As can be
seen, the average compression obtained over
the graph using “Offline service compression’’
was close to 40%. The other columns show the
average inputs per service, the average outputs
per service and the average number of available
services in the service dependency graph that
provides the same output (with and without
optimization). These values can be used to
estimate the complexity for each dataset, as
explained in Section 3. Note that the number of
services per output decreases as the compres-
sion ratio increases (Column 11). This ratio has
an important effect on the search performance.
More specifically, a worse performance occurs
when the number of available services per out-
put is high, since the generation of neighbors
in each step is slower. Despite the reduction
obtained over the graph size, the complexity of
the repository 6 still remained too high, so the
algorithm cannot find a solution in a reasonable
period of time (all tests were executed using a
time limit of 5 minutes).

6.4.2. Online Node Reduction

This technique reports a large improvement in
performance, as the algorithm obtains solutions

Table 4. Comparison with the participants of the WSC’08

16 International Journal of Web Services Research, 9(2), 1-20, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

in all repositories, including the WSC 2008-6
(23,704 ms, see Table 5). In most cases, this
method obtains at least the same performance as
the offline service compression. Table 6 shows
in detail the time obtained for each dataset and
using different optimizations. Column 2 indi-
cates the time needed to get the solution with
the minimum number of services without any
optimization. Columns 3, 4, and 5 show the
same information but using different techniques.
Note that “Offline Service Compression’’ is
not enough to obtain a solution in the dataset
WSC’08-6.

6.4.3. Both Optimizations

After applying both techniques, our algorithm
is able to solve the eight datasets showing a
good performance. Table 7 shows the percent-
age of optimization obtained with the differ-
ent techniques. In Figure 4, we compare the
speedup3 obtained with each optimization over
the non-optimized algorithm. Note that with all

optimizations, the speedup is over 1.0x, i.e.,
there is a substantial performance improvement.
The improvement on the WSC’06 dataset can-
not be measured as there are no results without
optimizations, but a comparison can be done
using only the results obtained with “Online
node reduction” and “All optimizations.” For
this case, using the values in Table 6, we obtain
a speedup of 7x with all optimizations (23,704
ms vs. 3,306 ms). This is due to the large number
of equivalent combinations of services (neigh-
bor nodes) that can be generated in each step.

7. CONCLUSION

In this paper we have presented a complete and
optimal algorithm for automatic web service
composition based on a heuristic search over a
services graph. The graph has been optimized
applying different techniques that reduce useless
and equivalent services. The proposed A*-based
composition algorithm is executed over the re-

Table 5. Complexity of the service dependency graph (SDG) with and without using offline
service compression

Table 6. Performance of the algorithm using different optimizations

International Journal of Web Services Research, 9(2), 1-20, April-June 2012 17

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

duced graph using dynamic node reduction and
a cost function, which minimizes the number
of services and maximizes the parallelization.
Moreover, a full validation has been done using
eight different repositories from Web Service
Challenge 2008, showing a good performance
as in all the tests the best solutions, regarding
the number of services and runpath, were always
found. Also, our algorithm is able to find all the
existing solutions. This is not fulfilled by the
other algorithms of the WSC’08.

As future work we plan to extend our algo-
rithm by including non-functional properties in

our model, such as cost, reliability, throughput,
etc. Quality of Service (QoS) characteristics
are important criteria for building real world
compositions. Our algorithm can be easily
adapted to handle these features.

ACKNOWLEDGMENTS

This work was supported in part by the Direc-
ción Xeral de I+D of the Xunta de Galicia under
grant 09SIN065E and the Spanish Ministry of
Science and Innovation under grant TIN2011-
22935. Manuel Mucientes is supported by the

Table 7. Speedup obtained with the different optimizations

Figure 4. Speedup with different optimizations

18 International Journal of Web Services Research, 9(2), 1-20, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Ramón y Cajal program of the Spanish Ministry
of Science and Innovation.

REFERENCES

Aiello, M., Benthem, N., & Khoury, E. (2008, July).
Visualizing compositions of services from large
repositories. In Proceedings of the 10th IEEE Confer-
ence on e-Commerce Technology and the Fifth IEEE
Conference on Enterprise Computing, e-Commerce
and e-Services (pp. 359-362). Washington, DC: IEEE
Computer Society.

Alonso, G., Casati, F., Kuno, F., & Machiraju, V.
(2004). Web services: Concepts, architectures and
applications. New York, NY: Springer.

Aversano, L., & Taneja, K. (2006). A genetic pro-
gramming approach to support the design of service
compositions. International Journal of Computer
Systems Science & Engineering, 21(4), 247–254.

Bansal, A., Blake, M. B., Kona, S., Bleul, S., Weise,
T., & Jaeger, M. C. (2008). WSC-08: Continuing the
Web services challenge. In Proceedings of the 10th
IEEE Conference on e-Commerce Technology and
the Fifth IEEE Conference on Enterprise Comput-
ing, e-Commerce and e-Services (pp. 351-354).
Washington, DC: IEEE Computer Society.

Burstein, M., Hobbs, J., Lassila, O., Mcdermott, D.,
Mcilraith, S., & Narayanan, S. …Sycara, K. (2004).
OWL-S: Semantic markup for Web services. Retrieved
from http://www.w3.org/Submission/OWL-S/

Christensen, E., Curbera, F., Meredith, G., &
Weerawarana, S. (2001). Web Services Description
Language (WSDL) 1.1. Retrieved from http://www.
w3.org/TR/wsdl

de Bruijn, J. D., Bussler, C., Domingue, J., Fensel,
D., Hepp, M., & Keller, U. (2005). Web service
modeling ontology. Applied Ontology, 1(1), 76–106.

Georgetown University. (2005). Introducing the
Web service challenge. Retrieved from http://
ws-challenge.georgetown.edu/ws-challenge/Tech-
Details.htm

Georgetown University. (2008a). Challenge results.
Retrieved from http://cec2008.cs.georgetown.edu/
wsc08/downloads/ChallengeResults.rar

Georgetown University. (2008b). WSC results.
Retrieved from http://cec2008.cs.georgetown.edu/
wsc08/downloads/WSCResult.pdf

Ghafarian, T., & Kahani, M. (2009, July). Seman-
tic web service composition based on ant colony
optimization method. In Proceedings of the First
International Conference on Networked Digital
Technologies (pp. 171-176). Washington, DC: IEEE
Computer Society.

Hart, P., Nilsson, N., & Raphael, B. (1968). A formal
basis for the heuristic determination of minimum
cost paths. IEEE Transactions on Systems Science
and Cybernetics, 4(2), 100–107. doi:10.1109/
TSSC.1968.300136

Hashemian, S., & Mavaddat, F. (2006). A graph-
based framework for composition of stateless Web
services. In Proceedings of the European Conference
on Web Services (pp. 75-86). Washington, DC: IEEE
Computer Society.

Hennig, P., & Balke, W.-T. (2010, July). Highly
scalable Web service composition using binary
tree-based parallelization. In Proceedings of the
IEEE International Conference on Web Services (pp.
123-130). Washington, DC: IEEE Computer Society.

Hoffmann, J., Bertoli, P., & Pistore, M. (2007).
Web service composition as planning, revisited:
In between background theories and initial state
uncertainty. In Proceedings of the 22nd National
Conference of the American Association for Artificial
Intelligence (pp. 1013-1018). Palo Alto, CA: AAAI.

Jiang, W., Zhang, C., Huang, Z., Chen, M., Hu, S., &
Liu, Z. (2010, July). QSynth: A tool for QoS-aware
automatic service composition. In Proceedings of the
IEEE International Conference on Web Services (pp.
42-49). Washington, DC: IEEE Computer Society.

Klusch, M., Gerber, A., & Schmidt, M. (2005).
Semantic Web service composition planning with
OWLS-Xplan. In Proceedings of the AAAI Fall
Symposium on Semantic Web and Agents, Arlington,
VA. Palo Alto, CA: AAAI.

Kona, S., Bansal, A., Blake, M. B., & Gupta, G.
(2008, September). Generalized semantics-based
service composition. In Proceedings of the IEEE
International Conference on Web Services (pp. 219-
227). Washington, DC: IEEE Computer Society.

Lee, D., & Kumara, S. R. T. (2005). A comparative
illustration of AI planning-based Web services com-
position. SIGecom Exchanges, 5(5), 1–10.

Liang, Q., & Su, S. (2005). AND/OR graph and search
algorithm for discovering composite Web services.
International Journal of Web Services Research, 2(4),
48–67. doi:10.4018/jwsr.2005100103

International Journal of Web Services Research, 9(2), 1-20, April-June 2012 19

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Milanovic, N., & Malek, M. (2006). Search strate-
gies for automatic Web service composition. Inter-
national Journal of Web Services Research, 3(2),
1–32. doi:10.4018/jwsr.2006040101

Oh, S., & Lee, D. (2009). WSBen: A Web services
discovery and composition benchmark toolkit. In-
ternational Journal of Web Services Research, 6(1),
1–19. doi:10.4018/jwsr.2009092301

Oh, S., Lee, D., & Kumara, S. (2007). Web service
planner (WSPR): an effective and scalable web ser-
vice composition algorithm. International Journal
of Web Services Research, 4(1), 1–22. doi:10.4018/
jwsr.2007010101

Oh, S., Lee, J.-Y., Cheong, S.-H., Lim, S.-M., Kim,
M.-W., & Lee, S.-S. …Sohn, M. M. (2009, July).
WSPR*: Web-service planner augmented with A*
algorithm. In Proceedings of the IEEE Conference
on Commerce and Enterprise Computing (pp. 515-
518). Washington, DC: IEEE Computer Society.

On, B., & Larson, E. (2005). BF*: Web services
discovery and composition as graph search problem.
In Proceedings of the IEEE International Conference
on e-Technology, e-Commerce and e-Service (pp.
784-786). Washington, DC: IEEE Computer Society.

Papazoglou, M., & Georgakopoulos, D. (2003).
Service-oriented computing. Communications of
the ACM, 46(10), 25–28.

Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., &
Traverso, P. (2004). Planning and monitoring web
service composition. In C. Bussler & D. Fensel (Eds.),
Proceedings of the 11th International Conference on
Artificial Intelligence: Methodology, Systems and
Applications (LNCS 3192, pp. 106-115).

Rodríıguez-Mier, P., Mucientes, M., Lama, M., &
Couto, M. I. (2010). Composition of web services
through genetic programming. Evolutionary Intel-
ligence, 3(3-4), 171–186. doi:10.1007/s12065-010-
0042-z

Rouached, M., Fdhila, W., & Godart, C. (2010). Web
services compositions modelling and choreographies
analysis. International Journal of Web Services Re-
search, 7(2), 87–110. doi:10.4018/jwsr.2010040105

Shiaa, M., Fladmark, J., & Thiell, B. (2008, July).
An incremental graph-based approach to automatic
service composition. In Proceedings of the IEEE
International Conference on Services Computing (pp.
397-404). Washington, DC: IEEE Computer Society.

Sirin, E., Parsia, B., Wu, D., Hendler, J., & Nau, D.
(2004). HTN planning for Web service composition
using SHOP2. Web Semantics: Science Services
and Agents on the World Wide Web, 1(4), 377–396.
doi:10.1016/j.websem.2004.06.005

Weerawarana, S., Curbera, F., Leymann, F., Storey,
T., & Ferguson, D. F. (2005). Web services platform
architecture: SOAP, WSDL, WS-Policy, WS-Address-
ing, WS-BPEL, WS-Reliable Messaging, and more.
Upper Saddle River, NJ: Prentice Hall.

Weise, T., Bleul, S., Comes, D., & Geihs, K. (2008,
June). Different approaches to semantic Web service
composition. In Proceedings of the Third Interna-
tional Conference on Internet and Web Applications
and Services (pp. 90-96). Washington, DC: IEEE
Computer Society.

Weise, T., Bleul, S., Kirchhoff, M., & Geihs, K.
(2008, July). Semantic Web service composition for
service-oriented architectures. In Proceedings of the
10th IEEE Conference on e-Commerce Technology
and the Fifth IEEE Conference on Enterprise Com-
puting, e-Commerce and e-Services (pp. 355-358).
Washington, DC: IEEE Computer Society.

Wu, B., Li, Y., Wu, J., & Yin, J. (2011). AWSP: An
automatic Web service planner based on heuristic
state space search. In Proceedings of the IEEE Inter-
national Conference on Web Services (pp. 403-410).
Washington, DC: IEEE Computer Society.

Xu, J., Chen, K., & Reiff-Marganiec, S. (2011). Using
Markov decision process model with logic scoring
of preference model to optimize HTN Web services
composition. International Journal of Web Services
Research, 8(2), 53–73. doi:10.4018/jwsr.2011040103

Yan, Y., Xu, B., & Gu, Z. (2008). Automatic service
composition using AND/OR graph. In Proceedings of
the 10th IEEE Conference on e-Commerce Technol-
ogy and the Fifth IEEE Conference on Enterprise
Computing, e-Commerce and e-Services (pp. 335-
338). Washington, DC: IEEE Computer Society.

ENDNOTES
1 An online application is available to test our

algorithm with the same datasets used in
this experiments: http://citius.usc.es/wiki/
inv:composit

20 International Journal of Web Services Research, 9(2), 1-20, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Pablo Rodriguez-Mier is a PhD student within the Information Technologies Research Center
(CITIUS) at the University of Santiago de Compostela. He received the MSc degree in computer
science from the University of Santiago de Compostela in 2011. His research interests include
automatic composition and service-oriented computing.

Manuel Mucientes received the MSc and PhD degrees in physics from the University of Santiago
de Compostela, Spain, in 1997 and 2002, respectively. He is currently a Ramón y Cajal research
fellow with the Information Technologies Research Center (CITIUS), University of Santiago de
Compostela. He has authored or coauthored more than 50 papers in international journals, book
chapters, and conferences. His current research interests are evolutionary algorithms, genetic
fuzzy systems, motion planning, and control in robotics, visual SLAM (Simultaneous Localization
and Mapping), web services and process mining.

Juan C. Vidal was born in Lausanne, Switzerland, in 1975. He received the BEng degree in
computer science from the University of La Coruña, Spain, in 2000, worked as senior consultant
for an IT firm several years, and received his PhD degree from the University of Santiago de
Compostela, Spain, 2010. His research interests include knowledge discovery, semantic anno-
tation, semantic modeling of workflows and services, and the use of artificial intelligence for
business intelligence.

Manuel Lama is associate professor in the Department of Electronics and Computer Science at
the University of Santiago de Compostela. He received his PhD in computer science from the
University of Santiago de Compostela in 2000. His research interests focuses on discovery and
composition of web services, semantic annotation, and process mining.

2 Note that these values are only indicative.
Smaller values have been found by our algo-
rithm and by other participants.

3 The speedup is calculated as the division of
the non-optimized result by the optimized
result. Thus, a speedup of 2.0x indicates that
the optimized result is two times faster than
the non-optimized one.

