
A Dynamic QoS-Aware Semantic Web Service
Composition Algorithm

Pablo Rodriguez-Mier, Manuel Mucientes, and Manuel Lama

Centro de Investigación en Tecnolox́ıas da Información (CITIUS)
Universidade de Santiago de Compostela, Spain

{pablo.rodriguez.mier,manuel.mucientes,manuel.lama}@usc.es

Abstract. The aim of this work is to present a dynamic QoS-aware
semantic web service composition algorithm that finds the minimal so-
lution graph that satisfies the composition request considering multiple
QoS criteria and semantic input-output message structure matching re-
strictions. Our proposal starts computing an initial solution by selecting
only those services from the dataset that are relevant to the user request
and meet the semantic restrictions. Then, an optimal QoS-aware com-
position is calculated using Dijkstra shortest path algorithm. Once the
solution is obtained, the number of services is minimized using the opti-
mal aggregated QoS value calculated in the previous step as a bound to
prune the state space search. Moreover, a set of extensive experiments
with five different datasets from the Web Service Challenge 2009-2010 is
presented to prove the efficiency of our proposal.

Keywords: Automatic composition, Shortest Path, QoS optimization,
Semantic Web Services

1 Introduction

QoS-Aware web service composition has attracted a lot of attention from dif-
ferent fields in recent years. In [6], the authors distinguish two different types
of composition algorithms: static and dynamic algorithms. Static algorithms re-
quire a predefined workflow with abstract processes. Each abstract process can
be implemented by a wide variety of web services with different QoS measures
that meet the functionality requirements of the process. The goal is to select
the best services for each abstract process that fulfills the QoS constraints im-
posed by the user. Thus, these algorithms are only focused on service selection
based on QoS and therefore are more related to the service discovery field. Rel-
evant examples of this category are [10, 9, 2]. None of these approaches generate
composite web services by combining different atomic services automatically.
Dynamic algorithms, on the other hand, are more focused on calculating the
overall composition structure, satisfying the global QoS. Within this category,
the most interesting proposals are [5, 8, 1, 3]. However, most of them can maxi-
mize only one QoS attribute and do not consider service minimization, leading
to huge solutions with redundant services.



This paper addresses the problem of the dynamic QoS-Aware semantic web
service composition considering multiple QoS attributes and minimizing the total
number of services from the composition result. The novelties of our proposal
are: 1) A multi-objective Dijkstra-based label setting algorithm that finds the
optimal QoS composition (minimizing the total response time and maximizing
the throughput) and 2) a combinatorial search algorithm that minimizes the
number of services from a solution, keeping the optimal QoS. The algorithm
uses the optimal values calculated in the previous phase to effectively reduce the
search space size.

The rest of the paper is organized as follows: Sec. 2 introduces the basis
of the semantic web service composition and explains the QoS model used to
compute the global QoS. Sec. 3 illustrates the proposed algorithm for web service
composition. Sec. 4 analyzes the algorithm with five different repositories and
section 5 concludes the paper.

2 QoS-Based Semantic Composition Model

We define a web service by a 3-Tuple S = {IS,OS,QS} where IS = {I1S, I
2
S, ...}

is the set of inputs consumed by the service, OS = {O1
S,O

2
S, ...} is the set of

outputs retrieved when the service is invoked and QS = {Q1
S,Q

2
S, ..., Q

n
S} is

the set of quality attributes of the service. Inputs and outputs of a service are
semantically annotated by concepts that are defined in an ontology. Although
concepts from an ontology can be related to each other by different types of
relations in our approach we only use the subclass/superclass relationship, so we
consider that an output of a service oS1 matches the input of other service iS2
when oS1 is equal or a subclass of iS2 (oS1 ⊆ iS2).

A web service can be invoked only if all their inputs are matched. Given
a request R = {IR,OR}, and given a web service S = {IS,OS,QS}, the web
service S can be invoked only if IR ⊆ IS (all inputs matched), i.e., for each
input is ∈ IS there exists an input ir ∈ IR such that ir ⊆ is. Also, OR will be
satisfied only if OS ⊆ OR, i.e., for each output or ∈ OR there exists an output
os ∈ OS such that os is equal or subclass of or (os ⊆ or).

2.1 QoS Computation Model for DAG Compositions

Considering the previous description, the QoS-aware composition problem tack-
led in this paper can be formulated as the automatic construction of a directed
acyclic graph (DAG) that models the dependencies among the different web
services involved in the composition with a global optimal value of QoS. The
DAG contains two special nodes, Source (without incoming edges) and Sink
(without outgoing edges), which provides the requested inputs and consumes
the requested outputs respectively. Each directed edge is an ordered pair of
two connected vertex (services) (Si, Sj) of the graph and represents a semantic
matching between Si and Sj (i.e., one or many outputs from Si match one or
many inputs from Sj).



The calculation of the global value of QoS for a composite web service de-
pends directly on the DAG structure. We consider the two quality QoS attributes
defined in the Web Service Challenge 2009-2010: response time, which should be
minimized, and throughput, which should be maximized. The total QoS value of
a composite service corresponds with the aggregated QoS of the Sink node of the
composition DAG. To compute the best QoS of a composite service, we define
a recursive function for each QoS attribute over the service domain (QNR(S),
QNT (S)):

– Resp. time: QNR(Si, {S
1
i , ..., S

n
i }) = Max{QNR(S

1
i ), ..., QNR(S

n
i )} +R(Si)

– Throughput: QNT (Si, {S
1
i , ..., S

n
i }) = Min{QNT (S

1
i ), ..., QNT (S

n
i ), T (Si)}

Where {S1
i , ..., S

n
i } are the direct predecessors from the service node Si and

R(Si), T (Si) are the functions that returns the response time and the throughput
respectively associated to the service Si. QNR(Sink) returns the total QoS of a
composite service. Note that R(Source), R(Sink) = 0 and T(Source), T (Sink) =
∞ since Source and Sink are not real services.

3 Algorithm Description

The problem tackled in this paper consists of generating the best composition
from the point of view of the QoS and cost (number of services) given a semantic
request provided by an user. The steps followed by our proposal are: 1) Discover
relevant services for the query; 2) Construct a matching digraph representing
all possible matchings between these services; 3) Find the composition DAG
with the optimal QoS value using a Dijkstra-shortest path algorithm over the
matching digraph and 4) minimize the number of services of the solution using
a backward search.

Finding the web service composition with the minimal cost has been proved
to be NP-Complete [4]. However, in most cases the optimal QoS can be used as
a bound to prune effectively the search space, discarding all those states that
worsen the optimal value. In these section, we explain these steps in detail.

3.1 Service filtering

The first step before calculating the composition is to filter all those services from
the repository that are relevant to the request, discarding the rest. The filtering
technique is explained in detail in [7]. Given a user request Ruser = {IR,OR,WR}
a matching digraph with the relevant services and all the matching relations
among their inputs and outputs is generated layer by layer. Each layer contains
those services whose required inputs are generated in previous layers. First and
last layers contain the virtual services Source = {∅, IR, {0,∞}} and Sink =
{OR, ∅, {0,∞}}, respectively, where Source provides the inputs of the request
and Sink receives the outputs specified in the request. The calculation of the
layers stops when there are no more services to add. When the process completes,
the resultant graph contains all relevant services with their input/output concept
matching relationships. The services contained in each layer are:



– L0 = {Source}, LN = {Sink}
– Li = {Si : Si /∈ Lj(j < i) ∧ ISi ∩ Oi−1 �= ∅ ∧ ISi ⊆ IR ∪ O0 ∪ . . . ∪ Oi−1}

Fig. 1. A matching digraph representing the relations between the filtered (relevant)
services for a request. Circles are services and diamonds are concepts (inputs and out-
puts). A directed edge between two concepts (c1, c2) represents a c1 ⊆ c2 relationship.
Note that services from subsequent layers can provide inputs to services from previous
layers, and therefore cycles are allowed.

3.2 Optimal QoS-Aware Composition

The matching digraph represented in Fig. 1 has two type of nodes: services and
concepts. Concepts are the traditional OR-nodes in a directed graph. Each in-
coming edge to a concept node represents a different path to obtain that concept.
Thus, the optimal cost of a concept is determined by the best value among all
their incoming paths. Conversely, services are a special type of nodes (AND-
nodes) as they are unreachable until all their inputs are matched. The cost to
reach a service node is calculated using the worst value among all their concepts.
If a concept of a service has not been resolved (has a cost of ∞) then the cost
to reach the service (and hence the cost of their outputs) is ∞ too. As our algo-
rithm is multi-objective (minimizes response time and maximizes throughput)
both QoS attributes have to be scaled and combined properly using the weights
assigned to the request. The normalization of the QoS attributes is described in
detail in [10] so is omitted here.

To find the optimal providers for each concept, we define a Dijkstra-based
label setting algorithm that minimizes the objective function by exploring the
service graph from the Source to the Sink node. The objective function of a
composition is defined as GlobalQoS(R, T ) = w1∗R+w2∗ (1−T), where R and
T are the total response time and total throughput (scaled between [0,1]) of the
composition and w1,w2 ∈ [0, 1] ∧ w1 + w2 = 1.

The pseudocode of the Dijkstra algorithm is shown in Alg. 1. The algo-
rithm starts adding the Source service to the queue. Then, services in the
queue are analyzed in order of increasing cost. The cost of each service Si is
their aggregated value of QoS. This value is calculated as aggregatedQoS(Si) =



Algorithm 1 Optimal QoS-Aware Service Composition

1: #Services are ordered in queue by their aggregatedQoS(Service) value
2: queue ← (0, Source) #0 = best cost, 1 = worst cost
3: while queue �= ∅ do
4: SA ← queue #Extract lower cost service
5: newAggregatedQoS = aggregatedQoS(SA)
6: for all SB matched by SA do
7: inputsMatched = {im : im ∈ (OSA ∩ ISB) ∧ im ∈ ISB)}
8: for all im ∈ inputsMatched do
9: if newAggregatedQoS < im.aggregatedQoS then
10: im.aggregatedQoS = newAggregatedQoS
11: im.op = SA #op means optimalPredecessor
12: end if
13: end for
14: newCost = aggregatedQoS(SB)
15: queue ← (newCost, SB) #(Re)order the neighbor in queue
16: end for
17: end while

GlobalQoS(QNR(Si, Pred),QNT (Si, Pred)). Pred = {S1
i , ..., S

n
i } is the set of

the optimal predecessors for each input of Si, i.e., P red = {i1.op, ..., ij .op} (i.op
is the optimal predecessor that provides the input i) where {i1, ..., ij} ∈ ISi . If op-
timal predecessors have not been determined yet, then aggreatedQoS(Si) = ∞.

3.3 Service minimization

The reconstruction of the optimal QoS-Aware service composition using the
optimal providers leads, in most cases, to inefficient compositions with redundant
services, which increases the cost of the final composition. For example, following
Alg. 1, we obtain that the best compositions contains the services {S2, S3, S4} as
they are the best providers for each input. However, as the best aggregatedQoS
for S4 is determined by the worst cost (input i4), S3 can be removed without
affecting the global value of QoS (input i5 can be provided by S2 with a cost of 80
ms). Thus, we develop a state space search algorithm that finds the composition
with the minimum number of services using Dijkstra backwards (from Sink to
Source), keeping the optimal QoS value calculated previously. The algorithm
navigates state by state, selecting in each transition the best combination of
services that provides the required inputs for each state, using the optimal QoS
as a bound to discard all those actions that worsen the optimal value of QoS.

The search space is the set of all reachable states from the initial state by any
sequence of actions. We define the minimization problem as a backward search
over the state space. The elements that conform the search space problem are:

– State: is defined as a 2-tuple {I,O} where I = {i1, ..., in} is the set of required
inputs and O = {o1, ..., on} is the set of the provided outputs.

– Initial state: {ISink, ∅} where ISink are the required inputs by the Sink node.



– Goal state: {∅,OSource} where OSource are the outputs provided by the
Source service.

– Action: A = {S1, ..., Sn} is the set of services that provides the required
outputs.

– φ(A): operator function that collects all outputs generated by an Action.
– γ(A): operator function that collects all inputs required by an Action.
– Transition function: f : StateA × Action → StateB. The resulting state is

defined as StateB = {γ(Action), φ(Action)}.
– Path cost function δ(S): function that returns the size of the path P =

A1 ∪ A2, ..., ∪AN where P is the union set of all actions from initial state
to S. Note that P contains all the different services selected from the initial
state to S. The problem is to reach the goal state with the minimum cost.

Given a state S = {I,O}, the possible actions that can be applied to S are
all those combinations of services from the matching digraph that covers the
inputs I ∈ S, i.e., φ(A) ⊆ I. Since we know the best aggregated QoS value of
the composition, we can filter all those actions that exceed the bound. Consider
the example in Fig. 1 and suppose that Alg. 1 determined that the best providers
for all inputs are (Source, S2, S3, S4, Sink). The global QoS of the composite
service using these services is QNR(Sink) = Max(80, 90) = 90. The initial
state can be defined as SI = {{i6, i7}, ∅}. The possible actions that can be
applied to this state are A1 = {S1, S4} and A2 = {S2, S4}. Although S1 is
not considered by the algorithm as the best provider for i6, S1 can replace S2
without affecting the global QoS. The resulting states after applying actions A1

and A2 are SA1 = {{i1, i5}, {o1, o4}} and SA2 = {{i2}, {o2, o4}} Note that in
the next iteration, SA2

reach the solution with the minimum path cost, so the
optimal solution consists only of services S2 and S4. Using Dijkstra to traverse
the graph, we can guarantee the optimality of the solutions found.

4 Experiments

In order to prove the validity and efficiency of our algorithm in different situ-
ations, we carried out some experiments using five datasets from Web Service
Challenge 2009-2010. Table 1 shows the results obtained for each dataset using
different weights for response time (w1) and throughput (w2).

The minimization of the services for each solution can be done by searching
over the entire service graph (global minimization, GM) or considering only
the optimal providers obtained for each input (local minimization, LM). When
the LM is performed, instead of considering all alternatives for each input, the
algorithm prunes all those optimal redundant services from the original result
that are not necessary to obtain the best aggregated value of QoS.

Column #I. Serv shows the initial services obtained before applying the min-
imization. These services are the optimal providers for each input found with the
Alg.1. Column #S. (LM/GM) shows the minimum number of services obtained
using local or global minimization. Columns #Rt.(LM/GM) and #Th.(LM/GM)



present the results for the response time and the throughput of the composite
service. Note that results obtained for response time when w1 = 0 and for the
throughput when w2 = 0 are not relevant, as the algorithm does not mini-
mize/maximize the attributes weighted with 0. The last column shows the time
elapsed (in milliseconds) between the initial user request and the delivery of the
composition result (results are not translated to BPEL, they are provided as
DAGs).

4.1 Results discussion

Table 1 shows the results of the algorithm describing all the characteristics de-
fined in the Web Service Challenge 2009-2010. All tests were executed in a Intel
Core 2 Quad Q9550 2.83 GHz with 8 GB RAM, under Ubuntu 10.04 64-bit, with
a time limit of 30 seconds for each test (results marked with a dash are those
that took more than 30 seconds). The quality of the results is evaluated mea-
suring the best response time, the best throughput and the number of services.
Since we do not generate BPEL code, we cannot measure the total composition
length.

An important difference between the solutions of the participants from the
Web Service Challenge 2009-2010 and our solutions is that they do not mini-
mize both quality attributes (they use the same algorithm to minimize each QoS
attribute independently). Thus, their results should be compared with our solu-
tions when w1 = 0,w2 = 1 or w1 = 1,w2 = 0, as they cannot provide interme-
diate solutions. In all cases we obtained the same best solutions as the winners,
with less number of services for datasets 4 and 5. Note that the performance
of our algorithm is slightly worse due to the minimization process. Solutions
for the dataset 4 with the global service minimization cannot be obtained in
a reasonable period of time due to the combinatorial explosion. However, local
minimization can be used efficiently when the priority is to obtain good quality
solutions in a short time.

5 Conclusions

In this paper we have presented a dynamic QoS-Aware semantic web service com-
position that finds optimal compositions minimizing the total response time and
maximizing the throughput. We also presented a method to effectively reduce the
total number of services from a composition without affecting the global value of
QoS. This technique can also perform a local or a global search to minimize the
total services depending on time requirements. Moreover, a full validation has
been done using five different datasets from the Web Service Challenge 2009-
2010, showing a good performance as in all cases the best solutions with the
best values of QoS and the minimum number of services were found.



Table 1. Results obtained by our algorithm

Dataset Optimal QoS solution
WSC-2009’01 w1/w2 #I. Serv. #S. (LM/GM) Rt.(LM/GM) Th.(LM/GM) Time (ms) (LM/GM)

1.0/0.0 13 5/5 500/500 3000/3000 274/389
0.5/0.5 7 5/5 760/760 15000/15000 277/291
0.0/1.0 7 5/5 930/930 15000/15000 270/298

WSC-2009’02 1.0/0.0 25 20/20 1690/1690 3000/2000 868/1988
0.5/0.5 24 20/20 1800/1770 6000/6000 860/3103
0.0/1.0 24 20/20 1970/2000 6000/6000 117/7530

WSC-2009’03 1.0/0.0 11 10/10 760/760 2000/4000 1071/1545
0.5/0.5 33 10/10 840/760 4000/4000 1069/1533
0.0/1.0 31 18/11 1780/1110 4000/4000 1101/5249

WSC-2009’04 1.0/0.0 50 40/- 1470/- 2000/- 4399/-
0.5/0.5 73 64/- 3540/- 4000/- 4586/-
0.0/1.0 72 62/- 3840/- 4000/- 4506/-

WSC-2009’05 1.0/0.0 41 32/32 4070/4070 1000/1000 2646/2801
0.5/0.5 41 32/32 4280/4200 4000/4000 2667/2680
0.0/1.0 41 32/30 5470/4750 4000/4000 2657/10953

6 Acknowledgement

This work was supported by the Spanish Ministry of Economy and Competitive-
ness (MEC) under grant TIN2011-22935. Pablo Rodŕıguez-Mier is supported by
the Spanish Ministry of Education, under the FPU national plan. Manuel Mu-
cientes is supported by the Ramón y Cajal program of the MEC.

References

1. Aiello, M., Khoury, E.E., Lazovik, A., Ratelband, P.: Optimal QoS-Aware Web
Service Composition. In: IEEE CEC’2009. pp. 491–494 (2009)

2. Ardagna, D., Pernici, B.: Adaptive Service Composition in Flexible Processes.
IEEE Trans. on Soft. Eng. 33(6), 369–384 (2007)

3. Jiang, W., Zhang, C., Huang, Z., Chen, M., Hu, S., Liu, Z.: QSynth: A Tool for
QoS-aware Automatic Service Composition. In: IEEE ICWS’2010. pp. 42–49

4. Oh, S.c., Lee, D., Kumara, S.R.T.: Effective Web Service Composition in Diverse
and Large-Scale Service Networks. IEEE Trans. on Soft. Eng. 1(1), 15–32 (2008)

5. Oh, S.C., Lee, J.Y., Cheong, S.H., Lim, S.M., Kim, M.W., Lee, S.S., Park, J.B.,
Noh, S.D., Sohn, M.M.: WSPR*: Web-Service Planner Augmented with A* Algo-
rithm. In: IEEE CEC’2009. pp. 515–518

6. Rao, J., Su, X.: A survey of automated web service composition methods. In:
SWSWPC 2004. pp. 43–54 (2004)

7. Rodriguez-Mier, P., Mucientes, M., Lama, M.: Automatic web service composition
with a heuristic-based search algorithm. In: IEEE ICWS’2011. pp. 81–88

8. Yan, Y., Xu, B., Gu, Z., Luo, S.: A QoS-Driven Approach for Semantic Service
Composition. In: IEEE CEC’2009. pp. 523–526

9. Yu, T., Lin, K.j.: Service Selection Algorithms for Composing Complex Services
with Multiple QoS Constraints. In: ICSOC 2005. pp. 130–143

10. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:
QoS-Aware Middleware for Web Services Composition. IEEE Trans. on Soft. Eng.
30(5), 311–327 (2004)


