
STAC: a web platform for the comparison of
algorithms using statistical tests

Ismael Rodrı́guez-Fdez, Adrián Canosa, Manuel Mucientes and Alberto Bugarı́n
Centro de Investigación en Tecnoloxı́as da Información (CITIUS)

Universidade de Santiago de Compostela
ismael.rodriguez@usc.es, adrian.canosa@rai.usc.es, {manuel.mucientes, alberto.bugarin.diz}@usc.es

Abstract—One of the most suited techniques for comparing
results obtained from computational intelligence algorithms is
the statistical hypothesis testing. This method can be used to
contrast if the difference between the algorithm with the best
results and other algorithms is actually significant. In this paper,
we present STAC (Statistical Tests for Algorithms Comparison), a
new platform for statistical analysis to verify the results obtained
from computational intelligence algorithms. STAC consists of
three different layers for performing statistical tests: a Python
library, a set of web services and a web client. We show several
use cases, in which both non-expert and expert users interact with
the web client and use the web services in different programming
languages.

Index Terms—Statistical analysis, soft computing sofware

I. INTRODUCTION

The validation of the results obtained from new computa-
tional intelligence algorithms is not a simple task. The well-
known “no free lunch” theorem [1] states that a high perfor-
mance over one class of problems usually causes a similar
negative effect over another class. Thus, it is expected not to
have a clear winner when comparing different algorithms over
a sufficiently large number of data sets. Therefore, there is a
growing interest in a systematic way of deciding whether an
algorithm performs better than another one [2], [3].

One of the most suited techniques for comparing results
of an experiment is the statistical hypothesis testing [4], [5].
This is a method of statistical inference for a hypothesis that is
testable on the basis of observing a process that is modeled via
a set of random variables. The final objective is to determine if
a sample of results supports a certain hypothesis and whether
the conclusions achieved can be generalized beyond what was
tested.

In the field of computational intelligence, this method can
be used to contrast if the difference between the algorithm
with the best results and other alternatives is significant. For
example, a statistical test can be used in order to determine
the best learning algorithm when obtaining a fuzzy rule system
using different approaches like ad-hoc methods, genetic algo-
rithms or neuro-fuzzy systems. For that, usually a two-step
approach is applied [6], [7]. Firstly, the hypothesis that the
results obtained by the algorithms are significantly different is
contrasted. This step usually involves generating a ranking of
the algorithms, from the best approach to the worst. Then, if
more than two algorithms are compared, a post-hoc process
is used in order to contrast the difference between each pair

of algorithms, controlling the family-wise error rate. With this
method, the best algorithm can be compared with each of the
other algorithms searching for significant differences in the
results.

Several papers [8], [9], [10], [11] have studied the methodol-
ogy for conducting comparisons among various computational
intelligence algorithms through statistical tests. However, cur-
rently there is still a lack of rigorous validation of the results
and conclusions obtained [12]. Moreover, the complexity and
variety of tests that can be applied in different situations be-
comes a great difficulty for extending their use mostly for non-
expert users. For this reason, there is a need for software tools
that assist the process of comparing computational intelligence
algorithms using statistical tests [13].

Nowadays, there exist different software alternatives that
perform statistical tests and can be used for comparing algo-
rithms. They can be divided into two main categories: software
packages that can be used as a library in a particular program-
ming language, and software clients that have a graphical user
interface.

Python and R have become the two main programming
languages for data analysis. Both of them have libraries for
doing statistical tests in an easy way. On the one hand,
R contains the stats package that provides functions for
statistical calculations and random numbers generation, as well
as the most useful statistical tests. On the other hand, the
SciPy library is an open-source Python library that provides
many user-friendly and efficient numerical routines. The mod-
ule scipy.stats contains a large number of probability
distributions as well as a growing library of statistical functions
which contain several statistical tests. More recently, an open-
source Java library that contains 40 non-parametric tests has
been made available [14].

In the recent years, some software clients have been pre-
sented. KEEL [15] has a module for non-parametric testing
through its desktop client that includes both ranking tests and
post-hoc analysis. In [13] a web client for statistical analysis is
presented. Furthermore, the statistical tests are also available
through XML web services described using WSDL (Web
Services Description Language).

In this paper, we present STAC (Statistical Tests for Algo-
rithms Comparison), a new platform for statistical analysis for
verifying the results obtained from computational intelligence
algorithms. The platform consists of three different layers for



doing statistical tests: a Python library, a set of web services
and a web client. Each of the layers is publicly accessible
from the STAC webpage http://tec.citius.usc.es/stac/, and the
web services can be used by any programming language or
platform using the API.

The main contributions of STAC are: i) to provide with
the best suited statistical tests for comparing computational
intelligence algorithms with a considerable flexibility in its
use, ii) to guide the user in each step of the testing process,
focusing on when to use each statistical test, and iii) to ease
the utilization for a variety of users, from non-experts that use
statistical analysis for the first time, to experts that need to
automate the process of testing.

This paper is structured as follows. First, section II gives a
short introduction to the use of statistical tests in computational
intelligence. The details of the platform and each layer are
presented in section III, and section IV describes some use
cases of both the client and the web services. Finally, section
V presents the conclusions of this work.

II. STATISTICAL TESTS FOR RESULTS VALIDATION IN
COMPUTATIONAL INTELLIGENCE

A common task in computational intelligence is the com-
parison of the results of a set of algorithms. Usually, the
question to be answered is: Which of the following algorithms
is the best for solving a problem? To answer this question, the
algorithms are executed on a set of problem related data sets.
Then, a specific measure is used to evaluate the results. When
no algorithm clearly outperforms the others, a statistical test
helps to answer the question.

When a statistical test is used for this purpose, the results
obtained for each algorithm are interpreted as a probability
distribution. Then, the question to be answered becomes Are
the distribution of the algorithms performances the same?
Therefore, the most suited statistical tests for this task are
those that contrast this hypothesis [4], [5].

Two types of statistical tests can be applied in this problem:
parametric and non-parametric tests. The differences between
them are that the parametric tests presuppose that the results of
the algorithms are independent, follow a particular distribution
(usually the normal distribution), and their deviations are
similar (homocedasticity). The first condition depends on the
experimental setup, but the other two can be tested using
also statistical tests. If these conditions are fulfilled, then a
parametric test can be applied. These tests are recommended
as they have more statistical power.

In both cases, different tests are available for two groups
(e.g. two algorithms) or for multiple groups. Moreover, the
groups can be paired or unpaired. This means that the samples
of each algorithm are related (e.g. results over the same data
sets) or not (e.g. results obtained from different users).

When a multiple comparison is performed, the statistical
test only contrasts if there are at least two algorithms with a
different distribution. Thus, a post-hoc analysis is needed to
contrast if the difference between any pair of algorithms is

significant, controlling the family wise error rate [5]. More-
over, this can be done in two different ways: using a control
method, i.e., one algorithm versus the others, or comparing all
possible pairs of algorithms.

In STAC there are several useful tests for each situation (ta-
ble I). These tests do not represent the whole set of statistical
tests, but are the most commonly used in the literature [7].
A detailed explanation of these tests can be found in [4], [5],
[7].

III. STAC PLATFORM

The STAC platform consists of three different layers: a
Python library, a list of web services and a web client. Fig. 1
shows the architecture of STAC with the different parts and
the connections between them.

The Python library contains an implementation of the sta-
tistical tests. This implementation is used directly by a list
of web services to facilitate the use of the tests from any
programming language. The web services are implemented
using the REST (Representational State Transfer) model, thus
they can be called using the HTTP protocol. Moreover, the
data used to communicate with the web services is described
using JSON (Javascript Object Notation) in order to maintain
simplicity. Finally, the web client uses AJAX (Asynchronous
Javascript And XML) to perform the statistical tests using the
web services.

In the following subsections, each of the layers is described
in depth.

A. Python Library

The first layer of STAC is an implementation in Python
of several statistical tests. Only those tests not currently
implemented in the scipy.stats module are included in
this library. Moreover, statistical tests for multiple comparison
(ANOVA, Friedman, etc.) are reimplemented in STAC. This is
due to the lack of information returned by the corresponding
implementation in scipy.stats, which is needed in order
to do the post-hoc analysis. Table I shows the list of tests
implemented for each module in the Python library, including
those imported from scipy.stats.

The function signature (i.e. inputs and outputs) for each test
follows the scipy.stats model. Thus, only the sample for
each algorithm is needed for performing the test. Also, the
functions return all the valuable information obtained in the
statistical test: the calculated statistics, the p-value, and the
information required to do a post-hoc analysis if necessary.
Table II summarizes the signatures of all the tests1.

B. Web Services

In order to make accessible the use of the statistical tests
to several programming languages, a list of web services are
provided within STAC. These services are both for the tests
of the Python library (sec. III-A), and those implemented in
scipy.stats.

1More detailed information about the Python library and its use is available
in http://tec.citius.usc.es/stac/doc/.



Table I
TESTS AVAILABLE IN STAC

Type of test Implemented Tests Python module

Normality Shapiro-Wilks, Kolmogorov-Smirnov, D’Agostino-Pearson scipy.stats

homocedasticity Levene scipy.stats

Parametric comparison between 2 t-test independent, t-test related scipy.stats

Parametric multiple comparison ANOVA between cases, ANOVA within cases stac.parametric

Parametric post-hoc Bonferroni stac.parametric

Non-parametric comparison between 2 Wilcoxon, Mann-Whitney-U scipy.stats

Non-parametric multiple comparison Friedman, Friedman Aligned Ranks, Quade stac.nonparametric

Non-parametric post-hoc 1 vs. All Bonferroni-Dunn, Holm, Finner, Hochberg, Li stac.nonparametric

Non-parametric post-hoc All vs. All Nemenyi, Holm, Finner, Hochberg, Shaffer stac.nonparametric

Figure 1. STAC platform architecture.

Table II
STAC PYTHON LIBRARY SIGNATURES

Type of Test Function Signature

Parametric multiple comparison (alg1, alg2, ...) → (statistic, p-values, pivots)

Non-parametric multiple comparison (alg1, alg2, ...) → (statistic, p-values, rankings, pivots)

Non-parametric post-hoc 1 vs. All (pivots, control) → (comparisons, statistics, p-values, adjusted p-values)

Non-parametric post-hoc All vs. All (pivots) → (comparisons, statistics, p-values, adjusted p-values)

The web services are implemented following the REST
architectural style:

• Each service is fully described by its URL. Only the
data sample values are sent through the body of the
request. This is because it is impractical to send variable

length data through the URL. It makes it unreadable and
unusable in many browsers and frameworks.

• The communication is done using a HTTP request with-
out state. Each service does a single statistical test using
only the information given by the request.



Figure 2. STAC web platform main page.

• The POST HTTP operation is used for the request mes-
sage. This is due to the need of sending data through the
body.

• The data of the request and the response are codified
using an Internet media type, in this case JSON.

The URL definition for each web service depends on the
type of statistical test performed. Moreover, when a ranking
test is applied, the post-hoc method is also a URL parameter.
Table III shows how the request message can be constructed
using these resources: it describes how to construct the URL
to call the service and what is expected from the body of the
request and the results obtained from it. When a parameter is
surrounded by < > means that it has to be substituted by a
particular value.

For the test and post-hoc parameters, Table IV can be
used to select the particular value. Furthermore, control
indicates the case (or algorithm) that is going to be the
control method in a 1 vs. All post-hoc procedure. The body
is built using JSON with only one parameter: values. This
parameter contains a dictionary of cases whose key is the name
of the case and the value is the list of samples for this case.
Finally, the result is sent in another JSON that contains the
result of the statistical test: statistics, p-values, and the result
of the hypotheses2.

C. Web Client

The last layer is a web-based front-end of the STAC web
services API. This web client is designed to facilitate the
full process of statistical analysis for those users without
any knowledge of the web services or the Python library.
Moreover, this platform contains an assistant to decide the best
suitable test for the data provided by the user, and a continuous
help in each step of the process.

The website is designed to be user-friendly and efficient.
Fig. 2 shows the index page of the STAC web platform. The
top bar contains all the actions that can be done by the user.
Each step of the process displays simple, complete and precise

2A full description of the STAC web services is available at http://tec.citius.
usc.es/stac/apidoc/.

Figure 3. STAC web platform help.

information to guide the user. Furthermore, a help link is
always available in both the top bar and the text content of
the web (Fig. 3). This help does not imply a slow down in
the workflow execution by expert users, since all the tests are
easily accessible from the top menu.

The assistant provided by the web platform can also be
accessed from the top bar. This process takes into account the
following data:

• The number of groups available (k), i.e., the number of
cases or algorithms used.

• The number of samples per group (n).
• If the groups are paired, i.e., the samples of each group

are related. A typical example in computational intelli-
gence is when different algorithms are applied to the same
data sets.

• The normality of each group (tested using a Shapiro-
Wilks test with alpha 0.1).

• The homocedasticity between groups (tested using Lev-
ene test with alpha 0.1).

From these data values, a simple decision tree is imple-
mented in order to select the statistical test that best fits to the
data provided by the user. Figure 4 shows the implemented
decision tree. The criteria used in this decision process follows
the recommendations described in [7]. This tree, with the data
used and the branches selected, is shown to the user when the
assistant process is selected. Thus, the user always knows why
a particular statistical test has been selected.

The different parameters of the selected test are shown
with the default values, which can be modified by the user
(Fig. 5). Then, when the test is applied, the results are shown
in a table below. This table contains all the information
valuable to perform the statistical analysis and the result of the
hypothesis contrast. This information can also be exported to
CSV (comma separated values) or LATEX, in order to facilitate
its use in reports and scientific papers. Finally, each test has
a list of references in the bottom of the page.



Table III
STAC WEB SERVICES DESCRIPTION

Type of Test URL Body Result

Comparison between 2 /<test> {values:{<case1>,<case2>}} statistic, p-value

Parametric multiple
comparison

/<test> {values:{<case1>,...}} statistic, p-value,
comparisons, p-values

Non-parametric multiple
comparison and Post-
hoc 1 vs. All

/<test>/<post-hoc>/<control> {values:{<case1>,...}} statistic, p-value,
comparisons, p-values

Non-parametric multiple
comparison and Post-
hoc All vs. All

/<test>/<post-hoc> {values:{<case1>,...}} statistic, p-value,
comparisons, p-values

Table IV
STAC WEB SERVICES RESOURCES

Resource Type of test Resource available

<test>

Comparison between 2 ttest, ttest rel, wilcoxon, mannwhitneyu

Parametric multiple comparison anova, anova within

Non-parametric multiple comparison friedman, friedman aligned ranks, quake

<post-hoc>
Post-hoc 1 vs. All bonferroni, holm, finner, hochberg,li

Post-hoc All vs All nemenyi, holm, finner, hochberg, shaffer

Figure 4. STAC assistant decision tree.

IV. EXAMPLE OF USE OF STAC AND REAL USE CASES

This section describes an example of use of STAC that
shows users how to proceed with the tool and several real
use cases in a number of application fields. We firstly focus
on the description of the web client and the web services. The
Python library is not commented, since its use is very similar
to the scipy.stats module.

A. Use of the web client
The STAC web platform was developed to help both ex-

perts and non-experts in the field of algorithms analysis. The
typical workflow a new user has to follow consists of several
independent steps (which may be skipped by expert users):

1) Upload the file that contains the data (Fig. 6). This can
be done directly from the home page. A help content



Figure 7. Selection of the statistical test and its parameters.

Figure 5. STAC web platform test application.

is available to select the file format. In what follows,
we will use as example a comparison of the test error
of four genetic fuzzy systems taken from [16]. Figure
6 shows the test errors of the genetic fuzzy systems for
each of the twelve datasets.

2) The user can start the assistant process if not sure about
the type of test to be applied (Fig. 7).

3) Once the statistical test has been selected, the user has
to give the values of the parameters. Fig. 8 shows the
selection of the Friedman test with Holm post-hoc and
a significance level of 0.05.

4) When clicking on the Apply button, the results are shown

Figure 6. Content of the uploaded example file.

in a table. Following with the example, Fig. 9 displays
a table with the contrast hypothesis of the Friedman
test. Then, the following table indicates the ranking of
the algorithms and, finally, the last table summarizes
the pairwise comparisons performed using the post-hoc
method.

5) Finally, the results table can be exported to LATEX(Fig.
10).
At any moment of the process, the user can access the
help content, and have access to further information
about the test and the implications of its use.

B. Use of the web services

The STAC web services can be used in multiple
programming languages. In fact, the web client uses



Figure 8. Statistical test performed together with its results.

Javascript to call the services in order to perform the
statistical tests. This can be done easily using the jQuery
library. 3 Figure 11 shows a code example to use the
web service /wilcoxon from javascript through an
AJAX call. Each element of the request (url, header,
body...) is passed to the call function, and a callback is
implemented when the call is successful and returns the
result.
In the same way, Fig. 12 shows how to use the web
services from Java. In particular, the unirest library4 was
used in order to show the simplicity in the use of REST
services. In this case, the method blocks the flow of the
program, thus there is no need of a callback function.
Thus, any user can implement a simple program to
perform statistical tests in a few lines.

Finally, another use case employs the web services to per-
form statistical analysis directly on a spreadsheet. We selected
Google Sheets5 due to its increasing use and popularity. In
order to apply the statistical analysis through STAC web
services, we codify a Google Script. An example for the
Wilcoxon test is shown in Fig. 13. This code can be called as
a spreadsheet function, and the result is printed in the same
spreadsheet using the nearby cells (Fig. 14).

C. Real use cases

The STAC platform has already been used in a number of
research experiments both in the computational intelligence

3jQuery is a fast, small, and feature-rich JavaScript library (http://jquery.
com/).

4unirest is a simplified, lightweight HTTP client library available in multiple
languages (http://unirest.io).

5Google Sheets is an on-line spreadsheet application that allows to create
and format spreadsheets, also in a collaborative way (https://docs.google.com/
spreadsheets/).

Figure 9. Results of the statistical test.

Figure 10. Result exported in LATEXformat.

Figure 11. STAC web service call from Javascript.

Figure 12. STAC web service call from Java.

and machine learning fields. Each of them present a different
scenario with different needs from the algorithms analysis
point of view, that have been very satisfactorily covered by
STAC.

In [17] a statistical analysis was used to compare the time
needed to assess the students in e-learning with two different



Figure 13. STAC web service call from Google Script.

Figure 14. Google Spreadsheet result after applying a STAC web service.

tools. Since data are not paired, i.e. the students are different
for each tool, an unpaired test was needed. In this case, the
Mann-Whitney-U test was used for comparing the results.
[18] presents a comparison of five process mining algorithms.
In order to perform a comparison between all of them, a
Friedman ranking test was used together with the Holm post-
hoc procedure. In the field of Linguistic Descriptions of Data,
[19] presented a performance comparison of five classifiers
applied to the task of automatically generating textual weather
forecasts from raw meteorological data. A Friedman test with
a Finner post-hoc method was used to validate the obtained
results. Finally, in the field of autonomous robotics, in [20]
a Friedman Aligned-Rank test is applied to compare the use
of different sensors for robot localisation in crowded envi-
ronments. Those sensors that show no significant differences
using the Holm post-hoc procedure, are grouped together to
increase the performance.

V. CONCLUSIONS

We have presented a new platform that performs statistical
analysis for the comparison of results obtained by computa-
tional intelligence algorithms. This platform has been designed
with three main characteristics: i) to provide with the best
suited statistical tests for comparing computational intelligence
algorithms, ii) to guide the user in each step of the testing
process, focusing on the selection of the appropriate statistical
test, and iii) the usability for a wide variety of users, from
non-experts that use statistical analysis for the first time, to
experts statistical tests. The platform has three different layers
for doing the statistical tests: a Python library, a set of web
services and a web client. STAC has already been used in a
number of papers in several research fields and by users with
different degrees of expertise. Furthermore, STAC allows the
use of the web services from different programming languages
and also in a spreadsheet application.

ACKNOWLEDGEMENTS

This work was supported by the Spanish Ministry of
Economy and Competitiveness under projects TIN2011-
22935, TIN2011-29827-C02-02 and TIN2014-56633-C3-1-R,
and the Galician Ministry of Education under the projects
EM2014/012 and CN2012/151. I. Rodriguez-Fdez is supported
by the Spanish Ministry of Education, under the FPU national
plan (AP2010-0627).

REFERENCES

[1] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation, vol. 1,
no. 1, pp. 67–82, 1997.

[2] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
The Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[3] A. P. Engelbrecht, Computational intelligence: an introduction. John
Wiley & Sons, 2007.

[4] J. H. Zar et al., Biostatistical analysis. Pearson Education India, 1999.
[5] D. J. Sheskin, Handbook of parametric and nonparametric statistical

procedures. crc Press, 2003.
[6] S.-Z. Zhao and P. N. Suganthan, “Comprehensive comparison of conver-

gence performance of optimization algorithms based on nonparametric
statistical tests,” in 2012 IEEE Congress on Evolutionary Computation
(CEC), 2012, pp. 1–7.

[7] S. Garcı́a, A. Fernández, J. Luengo, and F. Herrera, “Advanced non-
parametric tests for multiple comparisons in the design of experiments
in computational intelligence and data mining: Experimental analysis of
power,” Information Sciences, vol. 180, no. 10, pp. 2044–2064, 2010.

[8] T. G. Dietterich, “Approximate statistical tests for comparing supervised
classification learning algorithms,” Neural computation, vol. 10, no. 7,
pp. 1895–1923, 1998.

[9] S. Garcı́a, J. Luengo, and F. Herrera, Data Preprocessing in Data
Mining. Springer, 2015.

[10] J. Derrac, S. Garcı́a, D. Molina, and F. Herrera, “A practical tutorial
on the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms,” Swarm and
Evolutionary Computation, vol. 1, no. 1, pp. 3–18, 2011.

[11] A. M. Palacios, L. Sanchez, and I. Couso, “Ci-lqd: A software tool for
modeling and decision making with low quality data,” in Proceedings of
IEEE International Conference on Fuzzy Systems 2013, 2013, pp. 1–8.

[12] T. Bartz-Beielstein and M. Preuss, “The future of experimental research,”
in Experimental Methods for the Analysis of Optimization Algorithms.
Springer, 2010, pp. 17–49.

[13] J. A. Parejo, J. Garcı́a, A. Ruiz-Cortés, and J. C. Riquelme, “Statservice:
Herramienta de análisis estadı́stico como soporte para la investigación
con metaheurı́sticas,” in Actas del VIII Congreso Expañol sobre Meta-
heurı́sticas, Algoritmos Evolutivos y Bio-inspirados, 2012.

[14] J. Derrac, S. Garcı́a, and F. Herrera, “Javanpst: Nonparametric statistical
tests in java,” arxiv:1501.04222 [stats.CO], 2015.

[15] J. Alcalá-Fdez, L. Sánchez, S. Garcı́a, M. J. del Jesús, S. Ventura,
J. Garrell, J. Otero, C. Romero, J. Bacardit, V. M. Rivas et al.,
“Keel: a software tool to assess evolutionary algorithms for data mining
problems,” Soft Computing, vol. 13, no. 3, pp. 307–318, 2009.

[16] I. Rodrı́guez-Fdez, M. Mucientes, and A. Bugarı́n, “An instance selection
algorithm for regression and its application in variance reduction,”
in Proceedings of the 2013 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), 2013.

[17] A. Rodriguez Groba, B. Vazquez Barreiros, M. Lama, A. Gewerc, and
M. Mucientes, “Using a learning analytics tool for evaluation in self-
regulated learning,” in Frontiers in Education Conference (FIE), 2014
IEEE. IEEE, 2014, pp. 1–8.

[18] B. Vázquez-Barreiros, M. Mucientes, and M. Lama, “Prodigen: Mining
complete, precise and minimal structure process models with a genetic
algorithm,” Information Sciences, vol. 294, pp. 315–333, 2015.

[19] J. Janeiro, I. Rodrı́guez-Fdez, A. Ramos-Soto, and A. Bugarı́n, “Data
mining for automatic linguistic description of data,” in 7th International
Conference on Agents and Artificial Intelligence, 2015, pp. 556–562.

[20] A. Canedo-Rodrı́guez, V. Álvarez Santos, C. Regueiro, R. Iglesias,
S. Barro, and J. Presedo, “Particle filter robot localisation through robust
fusion of laser, wifi, compass, and a network of external cameras,”
Information Fusion, Accepted, 2015.


