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Abstract—In many real problems the regression models have to
be accurate but, also, interpretable in order to provide qualitative
understanding of the system. In this realm, the use of fuzzy
rule base systems, particularly TSK, is widely extended. TSK
rules combine the interpretability and expressiveness of rules
with the ability of fuzzy logic for representing uncertainty, and
the precision of the polynomials in the consequents. In this
paper we present a new genetic fuzzy system to automatically
learn accurate and simple linguistic TSK fuzzy rule bases that
accurately model regression problems. In order to reduce the
complexity of the learned models while keeping a high accuracy,
we propose a Genetic Fuzzy System which consists of three
stages: instance selection, multi-granularity fuzzy discretization
of the input variables, and the evolutionary learning of the rule
base using Elastic Net regularization. This proposal was validated
using 28 real-world datasets and compared with three state of
the art genetic fuzzy systems. Results show that our approach
obtains the simplest models while achieving a similar accuracy
to the best approximative models.

Index Terms—Genetic Fuzzy Systems, regression, instances
selection, multi-granularity fuzzy discretization

I. INTRODUCTION

The main objective of a machine learning algorithm is
to obtain models that accurately predict the expected output
using the provided inputs. In addition, the application of
these models generally requires interpretability [1], since it
is desirable to have information that facilitates the qualitative
understanding of the model. Moreover, when the complexity
of the learned models is high, although the training error
decreases, the models overfits the training data and, thus, the
test error increases. On the other hand, when the model is too
simple, it can underfit the data and produce a high training
and test error.

For regression problems, the use of fuzzy rule base systems
is very extended. It usually combines the interpretability and
expressiveness of the rules with the ability of fuzzy logic for
representing uncertainty. One of the most widely used learning
algorithms for automatic modeling of fuzzy rule bases are
Genetic Fuzzy Systems (GFSs) [2], i.e., the combination of
evolutionary algorithms and fuzzy logic. Evolutionary algo-
rithms are appropriate for learning fuzzy rules due to their
flexibility —that allows them to codify any part of the fuzzy
rule base system—, and due to their capability to manage the
balance between accuracy and complexity of the model in an
effective way.

Fuzzy sets improve modeling tasks in regression problems,
particularly through the use of Takagi Sugeno Kang (TSK)
systems [3]. In particular, recent developments using multi-
objective evolutionary fuzzy systems can be found in [4],
[5], where both Mamdani and TSK systems were proposed
to solve large-scale regression problems. Moreover, in [6] an
adaptive fuzzy inference system was proposed to cope with
high dimensional problems.

The interpretability of GFSs for regression has been mostly
addressed through the control of the complexity of the rule
base and, particularly, taking into account the number of rules
and/or the number of labels through a multi-objective approach
[7]. More recently, the use of instance selection techniques
has received more attention in both classification [8], [9] and
regression [10] problems. This approach faces two problems
at once: decreases the complexity for large-scale problems and
reduces the overfitting, as the rules can be generated with a
part of the training data and the error of the rule base can be
estimated with another part (or the whole) training set.

Furthermore, the complexity of fuzzy rule base models is
highly influenced by the number of labels (granularity) used
for each variable. When no expert knowledge is available to
determine the fuzzy labels, two different approaches can be
applied: uniform discretization combined with lateral displace-
ments [11], or non-uniform discretization [12]. Moreover, the
data base can be of two types: (i) linguistic, in which all
rules share the same fuzzy partition for each variable; (ii) and
approximative, which uses a different definition of the fuzzy
labels for each rule in the rule base. The former implies more
interpretability and simpler models while the latter usually
obtains more accurate solutions. Recently, [13], [14] have
applied non-uniform discretization techniques to classification
problems.

Finally, the use of TSK fuzzy rule bases implies another
complexity dimension: the polynomial in the consequent —
usually with degree 1 or 0. Prediction accuracy can be achieved
learning the consequent through the least squares method.
However, that choice often provides a low bias but a large
variance. This problem can be solved by shrinking (`2, also
known as Ridge regularization) or setting some coefficients
to zero (`1, also called Lasso regularization). Moreover, a
combination of both regularizations, called Elastic Net [15]
can be used.

In this paper we propose the new GFS algorithm L-TSK



(Linguistic TSK), for obtaining accurate and simple linguistic
TSK (type-1) fuzzy rule base models to solve regression
problems. The main contributions of this work are: i) a new
instance selection method for regression, ii) a novel multi-
granularity fuzzy discretization of the input variables, in order
to obtain non-uniform fuzzy partitions with different degrees
of granularity, iii) an evolutionary algorithm that uses a fast
and scalable method with Elastic Net regularization to generate
accurate and simple TSK (type-1) fuzzy rules.

This work is structured as follows: Sec. II describes the
different stages of the GFS: the instance selection method,
the discretization approach, and the evolutionary algorithm.
Sec. III shows the results of the approach in 28 regression
problems, and the comparison with other proposals through
statistical tests. Finally, the conclusions are presented in Sec.
IV.

II. PROPOSED METHOD

This section presents the three main components of our
method: a two-stage preprocessing —composed of the instance
selection and multi-granularity fuzzy discretization modules—
, and a genetic algorithm (Fig. 1). Both preprocessing tech-
niques are executed in order to improve the simplicity of
the fuzzy rule bases obtained by the evolutionary algorithm.
On one hand, the instance selection reduces the variance of
the models focusing the generated rules on the representative
examples. On the other hand, the multi-granularity fuzzy
discretization decreases the complexity of the fuzzy partitions
and, therefore, it is not necessary to establish an upper bound
in the number of rules in the evolutionary stage.

A. Instance Selection for Regression

The instance selection method for regression is an im-
provement of CCISR (Class Conditional Instance Selection
for Regression) [10]. The main differences with CCISR are:
• The output variable is discretized in order to simplify the

generation of the different graphs of the process.
• The error measure is based on the 1−nearest neighbor

(1NN ) for regression, thus reducing the complexity of
the calculations.

The instance selection method is based on a relation called
class conditional nearest neighbor (ccnn) [16], defined on pairs
of points from a labeled training set as follows: for a given
class c, ccnn associates to instance a its nearest neighbor
computed among only those instances (excluded a) in class
c. Thus, this relation describes proximity information condi-
tioned to a class label.

In regression problems, the outputs are real values instead of
labels and, therefore, they must be discretized in order to use
the ccnn relation. Traditionally, an unsupervised discretization
process needs the definition of the number of intervals or their
shape [17]. In our approach, the shape of the intervals is guided
by the output density, i.e., the split points are selected in the
zones where the density of the output is minimum.

We use Kernel Density Estimation (KDE) with a gaussian
kernel in order to estimate the probability density function of

Evolutionary Learning

Initialization

Selection

Recombination

Local Search

Replacement

Evaluation

✓  e1: x1, …, xp, y
1

✘  e2: x1, …, xp, y
2

✘  e3: x1, …, xp, y
3

✓  e4: x1, …, xp, y
4

Instance Selection
Multigranularity

Fuzzy Discretization

g2:

g3:

Preprocessing

Figure 1. The Genetic Fuzzy System with the three stages.

the output variable (y) in a non-parametric way. In order to
select the appropriate kernel bandwidth, Scott’s rule is applied.
[18]. Once the probability density function is obtained, the
local minimum determines the split points, and, therefore,
which labels/classes are used for the ccnn relation.

Two different graphs can be constructed using this relation:
• Within-class directed graph (Gwc): consists in a graph

where each instance has an edge pointing to the nearest
instance of the same class.

• Between-class directed graph (Gbc): is a graph where
each instance has an edge pointing to the nearest instance
of any different class.

These graphs are used to define an instance scoring function
by means of a directed information-theoretic measure (the
K-divergence) applied to the in-degree distributions of these
graphs. The scoring function (named Score) is used to
develop an effective large margin instance selection method,
called Class Conditional selection (Fig. 2).

The instance selection algorithm starts from a set of training
examples:

E = {e1, e2, . . . , en} (1)

where n is the number of examples. Also, it uses the leave-
one-out mean squared error (MSE) with 1NN (this error is
called ε) in order to estimate the information loss.



First, an initial core of instances from E is selected, sorted
by Score. The size of this initial set is:

k0 = max

(
c,

⌈
εE · |E|

max(y)−min(y)

⌉)
(2)

where c is the number of classes obtained from KDE and εE

is the error using the set of examples in E. This choice is
motivated because (i) there is at least one example for each
class, and (ii) the error in the second part can be interpreted
as the miss-classification probability. After this, the instance
selection method iteratively selects instances and adds them to
set S, choosing in first place those with the highest score. The
process terminates when the empirical error (εS) increases.

1: {e1, . . . , en} = E sorted in decreasing order of
Score

2: S = {e1, . . . , ek0}
3: go on = true
4: ub = n− |{el / Score(el) <= 0}|
5: l = k0 + 1
6: while l < ub ∧ go on do
7: Temp = S ∪ {e l}
8: if εS ≤ εE then
9: go on = false

10: if εTemp < εS ∧ go on then
11: S = Temp
12: l = l + 1
13: else
14: go on = false

15: return S

Figure 2. Pseudocode of Class Conditional selection [16].

In order to further improve the number of selected instances,
the method uses the Thin-out post-processing (Fig. 3). This
algorithm selects points close to the decision boundary of
the 1NN rule. This is achieved by selecting instances having
positive in-degree in the between-class graph set S (GS

bc) and
storing them in Sf . Also, S1 is the subset of examples that are
in S but not in Sf . Then an iterative process is done as follows:
points having positive in-degree in the GS1

bc are added to Sf

if they were not “isolated” in the previous iteration, that is,
if their in-degree was not zero (line 6). This iterative process
terminates when the empirical error increases (line 7).

B. Multi-granularity Fuzzy Discretization for Regression

The objective of fuzzy discretization is to automatically
obtain a good set of fuzzy labels for a variable. Further-
more, multi-granularity refers to the definition of a different
number of fuzzy labels for each granularity. Specifically, a
granularity givar divides the variable var in i fuzzy labels, i.e.,
givar = {Ai,1

var, . . . , A
i,i
var}. In order to preserve interpretability

between contiguous granularities, we follow a hierarchical top-
down approach for the multi-granularity discretization: the
linguistic fuzzy labels of a granularity are equal to the labels of

1: Sf = {el ∈ S with in-degree in GS
bc > 0}

2: Sprev = S
3: S1 = S \ Sf

4: go on = true
5: while go on do
6: St = {e ∈ S1 with in-degree in GS1

bc > 0 and
with in-degree in GSprev

bc > 0}
7: go on = εSf∪St < εSf

8: if go on then
9: Sf = Sf ∪ St

10: Sprev = S1

11: S1 = S \ Sf

12: return Sf

Figure 3. Pseudocode of Thin-out selection [16].

the previous granularity, except for one of the previous labels
which is replaced by two new fuzzy linguistic labels.

In regression problems (TSK type-1 in our case), the
discretization process must search for the split point that
minimizes the error when a linear model is applied to each
of the resulting intervals. Hence, in a top-down approach
only a new split point is added at each step, obtaining two
new intervals. The generation of the fuzzy linguistic labels
can be divided into two stages. First, the variable X must
be discretized to obtain a set of split points Cg for each
granularity g. Then, given the split points, the fuzzy labels
can be defined for each granularity.

In order to select the maximum number of split points for a
variable, we have used the well-known Bayesian Information
Criterion (BIC). This measure can be separated into two parts:
the error and the complexity of the model. In this case, the
error is obtained from the summation of the MSE of a least
squares fitted model for each interval of the discretization. On
the other hand, the complexity of the model is determined by
the number of parameters, in this case the number of inner
splits and the parameters fitted by each regression.

The pseudocode of the discretization method for a variable
is shown in Fig. 4. First, the split points for granularity 1 are
defined using the domain limits (line 2). The BIC measure
for this first granularity is calculated (line 3) using MSE ,
a function that gets a set of examples X , learns a linear
regression model using least squares and, finally, calculates
the mean squared error of the model. In this case, the number
of parameters is two, corresponding to the coefficients of the
linear model. After that, an iterative process is executed: at
each step, the split points of a new granularity are defined
adding a new split point to the previous granularity (lines 4-
15).

In order to obtain the split point for the new granularity,
first, the best split point (ci) for each interval between the split
points of the previous granularity ([Cg

i , G
g
i+1) is obtained using

the golden section search method [19]. This method searches
for the value that minimizes the function LinearError (Fig.



1: g = 1
2: Cg = {min(X),max(X)}
3: BICg = |X| · log(MSE (X )) + 2 · log(|X |)
4: repeat
5: ci =GOLDENSECTIONSEARCH(Cg

i , Cg
i+1, LIN-

EARERROR({x ∈ X : Cg
i < x < Cg

i+1})) ∀i =
0...|Cg| − 1

6: imin = argmini LINEARERROR({x ∈ X : Cg
i <

x < Cg
i+1}, ci)

7: Cg+1 = Cg ∪ {cimin
}

8: g = g + 1
9: BICg = |X| · log(

∑|Cg|−1
i=0 MSE ({x ∈ X :

C g
i < x < C g

i+1}) + (|C g | − 2 ) · 2 · log(|X |)
10: if BICg < BICmin then
11: it = 0
12: min = g
13: else
14: it = it+ 1

15: until min >
√
|X|/it

16: return C1, . . . , Cmin

Figure 4. Pseudocode of the discretization method.

5) in an interval. LinearError gets a set of examples X
and a split point c and calculates the total squared error of X ,
which is calculated with the corresponding linear regression
models at each side of the split point. Then, the split point that
minimizes the LinearError is selected and added to the
new granularity split points (lines 6-7), and the BIC measure
is calculated (line 9). The number of parameters used for the
BIC measure is 2 (coefficients of the linear regression) for
each interval. The number of intervals is calculated as |Cg|−2,
where 2 is subtracted to disregard the split points at the end
of the variable X domain.

1: function LINEARERROR(X , c)
2: Xl = {x ∈ X : x < c}
3: Xr = {x ∈ X : x > c}
4: return SE(Xl) · |Xl|

|X| + SE(Xr) · |Xr|
|X|

Figure 5. Pseudocode of the function to be minimized by the discretization
method.

Finally, when the granularity with minimum BIC is greater
than

√
|X|/it, where it is the number of iterations without

improvement in the BIC value, the algorithm stops (lines
10-15). This criteria ensures that at the beginning of the
discretization process —the granularity is low—, the BIC may
worsen for more iterations, while with larger granularities, the
algorithm is more strict in the stopping criterion.

After obtaining the discretization of the variable for each
granularity, the method proposed in [12] is applied for each Cg

in order to obtain the multi-granularity fuzzy partitions. This
method uses a fuzziness parameter that indicates how fuzzy are

the linguistic labels. A fuzziness of 0 indicates crisp intervals,
while a fuzziness of 1 indicates the selection of a fuzzy set
with the smallest kernel —set of points with membership equal
to 1.

C. Evolutionary Algorithm

The evolutionary algorithm is used in order to learn a
linguistic TSK fuzzy rule base model. The integration of
the evolutionary algorithm with the preprocessing stage is as
follows:
• First, the instance selection process is executed over the

training examples Etra in order to obtain a subset of
representative examples ES

• Then, the multi-granularity fuzzy discretization process
obtains the fuzzy partitions for each input variable.

• Finally, the evolutionary algorithm searches for the best
combination of granularities and generates the entire
linguistic TSK fuzzy rule base, using both Etra and ES .

In what follows, we describe in detail the different compo-
nents of the evolutionary algorithm.

1) Chromosome Codification: A double-coding scheme is
used: a vector of granularities for each variable (C1) and a
vector of real numbers that represent lateral displacements
(C2). The second part of the chromosome is based on the 2-
tuple representation of the labels [20]. This approach applies
a displacement of a linguistic term within the [−0.5, 0.5)
interval that expresses the movement of a label between
its two adjacent labels. However, since the keypoints for
the fuzzy partitions are the split points obtained from the
multi-granularity fuzzy discretization (Sec. II-B), the lateral
displacements are applied to these split points. Thus, the length
of C2 depends on the granularity for each input variable:
|C2| =

∑
(g − 1),∀g ∈ C1.

2) Initialization: The initial pool of individuals is generated
by a combination of two initialization procedures. A half of the
individuals are generated with the same random granularity for
each variable, while the other half is created with a different
random granularity for each variable. In either case, when
the product of the granularities indicated in C1 (i.e., the
maximum number of rules that can be obtained) is greater
than the product of the number of input variables times the
hightest maximum granularity of the variables, then a variable
is randomly selected and its granularity is set to 0 until the
previous condition is no longer satisfied. This is done in
order to avoid too complex solutions in the initialization stage
—during the evolutionary learning this upper bound to the
number of rules does not apply. The lateral displacements are
initialized to 0 in all cases.

3) Fast Rule Base Generation: An ad-hoc method is used
to construct the rule base from the data base codified in
the chromosome, i.e. the fuzzy partitions indicated in C1

after applying the displacement in C2. The Wang & Mendel
algorithm [21] is used to create the antecedent part of the rule
base for each individual. The method is quick and simple, and
obtains a representative rule base given the definition of the
data base and a set of examples.



The consequent part of the rules is learned using the Elastic
Net method [15] in order to obtain the coefficients of the
degree 1 polynomial for each rule. Thus, overfitting is avoided
using the double regularization (`1 and `2) of Elastic Net. In
order to obtain a solution using the Elastic Net method, the
Stochastic Gradient Descent (SGD) optimization technique is
used [22], [23]. This approach provides a fast and scalable
method for obtaining regression models.

Only those examples in Es are used to obtain the rule base
from the codified chromosome. In this manner, those examples
that are not representative are not taken into account for the
generation of the rules. Thus, the method avoids the creation
of too specific rules, and reduces the time needed to create the
rule base.

4) Evaluation: The fitness function is based on the estima-
tion of the error of the generated rule base:

fitness = MSE (Etra) (3)

where Etra is the full training dataset. Using all the examples
for evaluation can be seen, in some way, as a validation
process, as the rule base was constructed with a subset of
them (ES).

5) Selection and Replacement: The selection is performed
by a binary tournament. On the other hand, the replacement
method joins the previous and current populations, and selects
the N best individuals as the new population.

6) Recombination: Two crossover operations are defined:
one-point crossover for exchanging the C1 parts (it also
exchanges the corresponding C2 genes) and, when the C1 parts
are equal , the parent-centric BLX (PCBLX) [24] is used to
crossover the C2 part. In order to prevent the crossover of too
similar individuals, an incest prevention is implemented. When
the euclidean distance of the lateral displacements is less than
a particular threshold L, the individuals are not crossed.

The mutation (applied with probability pmut) consists in
the application of one of two possible operations with equal
probability to a randomly selected gene of the C1 part: i)
decreasing the granularity by 1 or ii) increasing the granularity
to a more specific granularity (all the granularities have the
same chance). In order to calculate the new lateral displace-
ments in the corresponding C2 part, the displacements of the
previous granularity are taken into account. The displacement
associated with a particular split point is calculated adding the
displacements of the nearest split points of the previous granu-
larity (before mutation) weighted by the distance between the
split points.

7) Local Search: After the replacement, all the new in-
dividuals (i.e., the C1 part of the chromosome was not tried
before) are used in a local search process. This stage generates
nls new C1 parts with equal or less granularity —with equal
probability— than the selected individual. Then, the C2 part
is generated randomly with a uniform distribution in the
[−0.5, 0.5) interval. The new chromosomes are decoded and
evaluated and, if any solution obtains better fitness, then it
replaces the original individual.

Table I
THE 28 DATASETS OF THE EXPERIMENTAL STUDY.

Problem Abbr. Variables Cases
Electrical Length ELE1 2 495
Plastic Strength PLA 2 1650
Quake QUA 3 2178
Electrical Maintenance ELE2 4 1056
Friedman FRIE 5 1200
Auto MPG6 MPG6 5 398
Delta Ailerons DELAIL 5 7129
Daily Electricity Energy DEE 6 365
Delta Elevators DELELV 6 9517
Analcat ANA 7 4052
Auto MPG8 MPG8 7 398
Abalone ABA 8 4177
Concrete Compressive Strength CON 8 1030
Stock prices STP 9 950
Weather Ankara WAN 9 1609
Weather Izmir WIZ 9 1461
Forest Fires FOR 12 517
Mortgage MOR 15 1049
Treasury TRE 15 1049
Baseball BAS 16 337
California Housing CAL 8 20640
MV Artificial Domain MV 10 40768
House-16H HOU 16 22784
Elevators ELV 18 16559
Computer Activity CA 21 8192
Pole Telecommunications POLE 26 14998
Pumadyn PUM 32 8192
Ailerons AIL 40 13750

8) Restart and Stop Criteria: The restart mechanism uses
the incest prevention threshold L. First, L is initialized as the
maximum length of the C2 part, i.e. the product of the number
of input variables times the biggest maximum granularity
of the variables, divided by 4. This implies that the incest
prevention allows crossovers between individuals that have
a distance higher than a quarter of the maximum euclidean
distance. Then, for each iteration, L is decreased in different
ways:

• L is decreased by 0.2 in all the iterations, in order to
increase convergence.

• If there is no new individual in the population, then L is
decreased by 0.1.

• If the best individual does not change, L is also decreased
by 0.1.

Finally, when L reaches 0, the population is restarted, and L
is reinitialized. Only the best individual so far is kept, and in
order to complete the population, the local search process is
executed using the chromosome of the best individual. When
the restart criterion is fulfilled twice, the algorithm stops, i.e.,
one single restart is executed.

III. RESULTS

In order to analyze the performance of the proposal, we
have used 28 real-world regression problems with different
complexity. These problems were obtained from the KEEL
project [25]. Table I shows the characteristics of the datasets.



A. Experimental Setup

In order to assess L-TSK performance, we compare its
performance to other three genetic approaches which are
among the most accurate genetic fuzzy systems for regression
in the literature:
• FSMOGFS

e+TUNe [4]: a multi-objective evolutionary al-
gorithm that learns approximative Mamdani fuzzy rule
bases. This algorithm learns the granularities from uni-
form multi-granularity fuzzy partitions (up to granularity
7) and lateral displacement of the labels. It includes a
post-processing algorithm for tuning parameters of the
membership functions and for rule selection.

• L-METSK-HDe [5]: a multi-objective evolutionary al-
gorithm that learns linguistic type-0 TSK fuzzy rule
bases. The algorithm learns the granularities from uni-
form multi-granularity fuzzy partitions (up to granularity
7).

• A-METSK-HDe [5]: a multi-objective evolutionary algo-
rithm that learns approximative type-1 TSK fuzzy rule
bases. The algorithm starts with the solution obtained on
the first stage and applies a tuning of the membership
functions, rule selection and a Kalman-based calculation
of the consequents of the rules.

Regarding the parameters used for the approach presented
in this paper, the proposal was designed to keep the number
of parameters as low as possible. For the instance selection
technique, no parameters are needed. In the multi-granularity
fuzzy discretization, a 1E−5 precision value was used for the
golden section search to stop. The fuzziness parameter used
for the generation of the fuzzy intervals from the split points
was 1, i.e., the highest fuzziness value. For the evolutionary
algorithm, the values of the parameters were: population size
of 61, a maximum number of evaluations of 50, 000 , 0.2
for the mutation probability pmut, and 5 for the nls. For the
generation of the TSK fuzzy rule bases, the weight of the
tradeoff between `1 and `2 regularizations on the Elastic Net
was set to 0.95 and the maximum number of iterations of the
SGD was 100.

A 5-fold cross validation was used in all the experiments.
Moreover, 6 trials (with different seeds for the random number
generation) were executed for each 5-fold cross validation.
Thus, a total of 30 runs were obtained for each dataset. The
results shown in the next section are the mean value of the 30
runs.

B. Statistical Analysis

Table II shows the average results of the approach in this
paper (L-TSK) and the three algorithms selected for compar-
ison. Two different results are shown for each algorithm and
dataset: the number of rules of the obtained rule base, and the
test error. These indicators allow to compare both the accuracy
and the complexity of the learned models. In some papers,
the number of labels is also taken into account to measure the
simplicity of the rule bases, but since our proposal generates
all the possible rules of a data base, the number of labels is

implicit in the number of rules. Moreover, the values with the
best accuracy —lowest error— and best number of rules are
marked in bold face.

It can be seen that the number of rules of our approach
is the lowest in the majority of the datasets. It should be
noted that the number of rules in the large scale problems
(the last 8 problems) is also low despite the high number of
examples. Only in 5 problems the FSMOGFS

e+TUNe Mamdani
proposal produces a lower number of rules. In the case of
accuracy, in 16 of the 28 problems our approach achieves
the best results. In the other 12 datasets, the best results are
for FSMOGFS

e+TUNe (best in 3 problems) and A-METSK-HD
(best in 9 problems).

In order to analyze the statistical significance of these results
the STAC platform [26] was used to apply the statistical tests.
A Friedman test was used for both the number of rules and the
test error in order to get a ranking of the algorithms and check
if the differences between them are statistically significant.

Table III shows the ranking for the test error, with the p-
value of the test. Our proposal gets the lowest ranking, i.e.,
has the best results in accuracy among all the algorithms.
Then, the next algorithms in the ranking are the approximative
approaches, due to its fine tuning of the rules, followed by
the linguistic approach L-METSK-HD. In order to compare
whether the difference between our proposal and the ap-
proximative ones is significant, a Holm post-hoc procedure
was performed (Table IV). The differences are statistically
significant against the FSMOGFS

e+TUNe Mamdani proposal
(p-value below 0.01) and L-METSK-HD, but not with the
A-METSK-HD TSK-based approach. However, even with a
linguistic representation of the rules, our approach obtains
greater accuracy than the approximative approaches, while
getting simpler models.

In order to compare the complexity of the models obtained
for each algorithm, the same Friedman test was performed to
the number of rules in table II (Table V). Once again, our
proposal has the lowest ranking. The next algorithm in the
ranking is the FSMOGFS

e+TUNe Mamdani approach, followed
by the METSK-HD approaches. In order to assess whether the
difference among the proposals is significant, a Holm post-hoc
procedure was also performed (Table VI). The differences are
statistically significant (p-values below a significance level of
0.1). This shows that our approach obtains the simpler models
among all the methods.

Although each of the steps performed in the algorithm
increase the computational complexity of our approach, they
contribute to focus the search on the simplest models. The
time consumed by L-TSK is in the same order of magnitude as
A-METSK-HD using a processor with similar characteristics.
Our method obtains solutions in the range between 1 to 23
minutes for datasets 1-20 (the most simple ones) and solutions
in the range from 1 hour to 30 hours for datasets 21-28 (the
most complex ones).



Table II
AVERAGE RESULTS FOR THE DIFFERENT ALGORITHMS. THE TEST ERRORS IN THIS TABLE SHOULD BE MULTIPLIED BY

105, 10−8, 10−6, 109, 108, 10−6, 10−4, 10−8 IN THE CASE OF ELE1, DELAIL, DELELV, CAL, HOU, ELV, PUM, AIL RESPECTIVELY.

algorithms L-TSK FSMOGFS
e+TUNe L-METSK-HD A-METSK-HD

# Rules Test Error # Rules Test Error # Rules Test Error # Rules Test Error
ELE1 2 2.1622 8.1 1.954 15 1.925 11.4 2.022
PLA 1 1.1792 18.6 1.194 23 1.218 19.2 1.136
QUA 7 0.0181 3.2 0.0178 35.9 0.0185 18.3 0.0181
ELE2 4.5 7265 8 10548 59 20095 36.9 3192
FRIE 8 0.7276 22 3.138 95.1 3.084 66 1.888
MPG6 9.9 3.6438 20 4.562 99.6 4.469 53.6 4.478
DELAIL 4.8 1.4646 6.2 1.528 98.3 1.621 36.8 1.402
DEE 5.1 0.0805 18.3 0.093 96.4 0.095 50.6 0.103
DELELV 6 1.0463 7.9 1.086 91 1.119 39.1 1.031
ANA 3.2 0.0091 10 0.003 48.9 0.006 33.3 0.004
MPG8 7.9 3.9065 23 4.747 98.7 5.61 64.2 5.391
ABA 5.3 2.3482 8 2.509 42.4 2.581 23.1 2.392
CON 7 21.066 15.4 32.977 96.5 38.394 53.7 23.885
STP 65.2 0.3403 23 0.912 100 0.78 66.4 0.387
WAN 5.4 0.9408 8 1.635 91.1 1.773 48 1.189
WIZ 13.1 0.6749 10 1.011 55.4 1.296 29.1 0.944
FOR 5.33 2118 10 2628 93.7 4633 40.6 5587
MOR 6.9 0.0072 7 0.019 40.9 0.028 27.2 0.013
TRE 6.9 0.0282 9 0.044 42.8 0.052 28.1 0.038
BAS 5.6 259452 17 261322 95.7 320133 59.8 368820
CAL 32 2.4034 8.4 2.95 99.8 2.638 55.8 1.71
MV 7.4 0.0934 14 0.158 76.4 0.244 56.5 0.061
HOU 9.2 14.4553 11.7 9.4 68.9 10.368 30.5 8.64
ELE 6.4 2.9132 8 9 76.4 8.9 34.9 7.02
CA 9.3 4.6511 14 5.216 71.3 5.88 32.9 4.949
POLE 40.1 136.7707 13.1 102.816 100 150.673 46.3 61.018
PUM 8 0.5403 17.6 0.292 87.5 0.594 63.3 0.287
AIL 13.4 1.402 15 2 99.1 1.822 48.4 1.51

Table III
FRIEDMAN TEST RANKING RESULTS FOR THE TEST ERROR IN TABLE II.

Algorithm Ranking
L-TSK 1.73
A-METSK-HD 2.018
FSMOGFS

e+TUNe 2.786
L-METSK-HD 3.464
p-value < 1E − 5

Table IV
HOLM POST-HOC ADJUSTED P-VALUES FOR THE TEST ERROR RANKING IN

TABLE III.

Comparison Adjusted p-value
L-TSK vs L-METSK-HD < 1E − 5
L-TSK vs FSMOGFS

e+TUNe 0.004
L-TSK vs A-METSK-HD 0.408

Table V
FRIEDMAN TEST RANKING RESULTS FOR THE NUMBER OF RULES IN

TABLE II.

Algorithm Ranking
L-TSK 1.178
FSMOGFS

e+TUNe 1.821
A-METSK-HD 3
L-METSK-HD 4
p-value < 1E − 5

Table VI
HOLM POST-HOC ADJUSTED P-VALUES FOR THE NUMBER OF RULES

RANKING IN TABLE V.

Comparison Adjusted p-value
L-TSK vs L-METSK-HD < 1E − 5
L-TSK vs A-METSK-HD < 1E − 5
L-TSK vs FSMOGFS

e+TUNe 0.062

IV. CONCLUSIONS

In this paper, the L-TSK (Linguistic TSK) genetic fuzzy
system was presented, for learning simple TSK fuzzy rule
bases in regression problems. This new approach has two
general-purpose preprocessing stages for regression problems:
a new instance selection for regression and a novel non uni-
form multi-granularity fuzzy discretization. The evolutionary
learning algorithm incorporates an automatic generation of the
TSK fuzzy rule bases from fuzzy partitions that uses Elastic
Net in order to obtain consequents with low overfitting.

L-TSK was compared with three state of the art algorithms
that learn different types of fuzzy rules: approximative Mam-
dani, linguistic type-0 TSK and approximative type-1 TSK.
The results were analyzed using statistical tests, which show
that L-TSK obtains a high accuracy comparable with the
approximative TSK approach, but with a lower number of
rules. This is of particular interest in problems where both



high accuracy and interpretability are demanded, in order to
provide qualitative understanding of the model to the users.
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