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ABSTRACT

Depth estimation and all-in-focus image restoration from de-
focused RGB images are related problems, although most of
the existing methods address them separately. The few ap-
proaches that solve both problems use a pipeline processing
to derive a depth or defocus map as an intermediary product
that serves as a support for image deblurring, which remains
the primary goal. In this paper, we propose a new Deep Neu-
ral Network (DNN) architecture that performs in parallel the
tasks of depth estimation and image deblurring, by attaching
them the same importance. Our Two-headed Depth Estima-
tion and Deblurring Network (2HDED:NET) is an encoder-
decoder network for Depth from Defocus (DFD) that is ex-
tended with a deblurring branch, sharing the same encoder.
The network is tested on NYU-Depth V2 dataset and com-
pared with several state-of-the-art methods for depth estima-
tion and image deblurring.

Index Terms— Depth from Defocus, Image Deblurring,
Deep learning

1. INTRODUCTION

Over the last few years, there has been a lot of interest in depth
estimation and all-in-focus image restoration from a single
image. The depth estimation is critical for scene understand-
ing and for 3D reconstruction in robotics, augmented reality
or autonomous driving and flight [1]. No less important, de-
focus deblurring is an essential part of applications like face
and object recognition or image segmentation and classifica-
tion, to name a few [2].

Defocus blur occurs in images taken with a shallow Depth
of Field (DoF) caused by large aperture sizes. Although ex-
tensively studied in the past and rigorously modelled, the de-
focus blur remains difficult to estimate in applications be-
cause it varies not only with the distance to the object but
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also spatially. Image deblurring techniques aim to reduce the
blur and to restore a sharp image from its defocused version.

In depth estimation, the defocus blur is one of the cues
used by the existing methods. Over the years, numerous ef-
forts have been made to estimate depth from single defo-
cused images [1, 3] but despite its valuable content, the de-
focus blur cannot be used solely for depth estimation. There
are needed supplementary constraints like coded apertures[4],
dual images[5], multi focus stack[6] etc. The advent of deep
Convolution Neural Networks (CNN) has taken the perfor-
mance of Single Image Depth Estimation (SIDE) and image
deblurring to the next level. Most of the CNN-based solutions
consider these two problems separately, being dedicated to ei-
ther depth estimation or image deblurring. The few networks
that treat them jointly use a pipeline processing to derive first
a depth or defocus map that serves next as support for image
deblurring [2, 7]. It is known from the literature that con-
catenating two networks generally increases the complexity
and may deteriorate the model for certain tasks [8]. To ad-
dress this issue, we formulate a two-fold task that combines
depth estimation and image deblurring by attaching them the
same importance. To fulfill the task in a balanced way, we
propose a new deep CNN, the two-Headed Depth Estimation,
and defocus Deblurring NETwork (2HDED:NET). The net-
work consists of an encoder and a decoder splitted in two
branches that work in parallel for Depth from Defocus (DFD)
and image deblurring. The branches interact with each other
during the training, enabling the encoder to learn semanti-
cally rich features that are well suited for both tasks. Unlike
the pipelined solutions, the architecture of 2HDED:NET is
straightforward, simple, and easy to train. A distinctive fea-
ture of 2HDED:NET is that once fully trained, the depth es-
timation branch is no longer necessary to recover all-in-focus
image and vice versa.

The main contributions of our work are:

• A novel architecture 2HDED:NET that recovers the all-
in-focus images and generates the depth map from a
single defocused image.

• The architecture is the first of its kind to generate the
depth map and all in-focus images in a balanced way
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Fig. 1. 2HDED:NET architecture consists of one encoder and two decoders that work in parallel. The upper branch estimates
the depth map and the lower one the all-in-focus image. The network is fed in with defocused RGB images.

and attach the same importance to both tasks.

• A new loss function that combines constraints from
both depth estimation and deblurring and enforces the
encoder to learn much richer semantic features.

• Experimental results on NYU-depth V2 dataset en-
riched with synthetic defocused images, which confirm
the effectiveness of our approach.

2. RELATED WORK

This section briefly reviews several CNN based solutions for
DFD and deblurring.

In depth estimation, the main feature that drives the learn-
ing is the scene geometry. The depth maps can be estimated
from single images by using solely this kind of feature either
in a supervised or self-supervised frame [9]. Cues like motion
in videos or different perspectives in stereo vision leverage
the geometry but in such cases, the network has to work with
a sequence of frames or stereo pairs. Defocus is another cue
that can be used to improve depth estimation. The amount
of defocus in an image depends on how far an object is from
the camera. Moreover, the defocus is generated by the cam-
era, exists in any image, and consequently, is appropriate for
SIDE. So far, the tasks of depth estimation from defocused
images have been solved from dual images [5], focal stack
[6], multi-view or stereo pairs [10]. Undoubtedly, to tackle
the aforementioned task with a single image adds up another
level of difficulty in achieving high accuracy. In this line of
research, some deep architectures that significantly improve
the performance of depth estimation have been recently pro-

posed. Carvalho et al. [1] designed a supervised CNN to es-
timate depth in the wild using defocus blur. Anwar et al. [2]
cascaded a CNN and a fully connected NN to estimate depth
and next, an all-in-focus images from a single defocused im-
age. The authors in [11] jointly explore Conditional Random
Field (CRF) and deep CNN for DFD from a single image.
The category of self-supervised learning is illustrated by the
method outlined in [12], which introduces a framework for
depth estimation using the DFD and depth-from-focus algo-
rithms on defocus stacks, or by [3] that uses a Point Spread
Function (PSF) convolutional layer to improve depth estima-
tion using the defocus cue.

When the PSF of the camera is not known as it is the case
in many applications, the deblurring is an ill-posed problem
since it is required to retrieve from the defocused image both
the blur kernel and the latent sharp image. In NN-based ap-
proaches, the common strategy is to first estimate a defocus
map that subsequently guides the image deblurring. An ex-
ample of such pipeline processing is [7], where an encoder-
decoder is trained to estimate the defocus map that is fed to-
gether with the defocused RGB image into a fully convolu-
tional encoder-decoder with skip connections that estimates a
sharp image. The scheme is completed by a domain adapta-
tion module, which is the discriminator of a Generative Ad-
versarial Network (GAN). It minimizes the domain difference
between the feature distributions in the training set, which is
synthetic, and the natural defocused Light Field (LF) dataset.
The method achieves good results in removing blur on the LF
dataset but is complex as GANs are hard to train. Anwar et
al. [2] use a similar approach and train an encoder-decoder
network to estimate this time a depth map that is used next to
compute kernels for reconstructing the all in-focus image.



3. 2HDED:NET

Figure 1 depicts the architecture of 2HDED:NET. The net-
work consists of one encoder and two decoders designed
to output depth and all in-focus images in parallel. By
sharing the information learned by the same encoder, both
branches can benefit from each other. In terms of complex-
ity, 2HDED:NET is simpler than [7] that concatenates two
encoder-decoder networks. 2HDED:NET is a supervised
method, which means it needs for training ground truth depth
as well as all in-focus images.

We build on DenseNet-121 [13] as the encoder. The rea-
son is that this network reuses features by concatenating the
features of each layer with those from the next layers instead
of summing them. The goal of concatenation is to use the fea-
tures obtained in the previous layers in the deeper layers as
well. This is known as ”feature reusability”. DenseNets can
learn mappings with fewer parameters than a typical CNN
because there is no need to learn redundant maps. Similar
to [1], we replace the max-pooling layer with a 4×4 convo-
lution layer to reduce resolution while increasing the num-
ber of feature channel maps. We use skip connections be-
tween encoder and decoder parts to make the learning easier.
The skip connections prevent the gradient vanishing problem
while making the learning process easier, as subsequent layers
focus on solving residuals rather than entirely new represen-
tations. The encoder helps in obtaining multi-resolution fea-
tures from the input image, which are useful for the two tasks
that 2HDED:NET performs. The Depth Estimation Decoder
(DED) is inspired by [1]. It consists of 5 decoding blocks,
each with a 4×4 transposed convolution that increases the
resolution of the feature map, which is then followed by a
3×3 convolution that helps reducing the aliasing effect of the
upsampling. Batch normalization and ReLU functions are in-
cluded after each convolutional layer to make learning more
stable and allow the representation of non-linearities.

As loss function for depth estimation, we resort to L1
norm that calculates the average of absolute difference be-
tween the estimated depth Îdepth and the ground truth Idepth:

Ldepth = 1/n

n∑
t=1

|Îdeptht − Ideptht | (1)

This norm is appropriate for estimating sparse solutions as is
the case of depth maps [14].

We refer to the deblurring decoder as the All-in-focus De-
coder (AifD). Unlike the DED, the output of AifD is a three
channel RGB image. We use an input-join layer to aggre-
gate the blurred input image with the output of AifD like in
[7, 8] for final prediction. The content of the defocused im-
age and the corresponding prediction of AifD are embedded
in the input-join layer, providing this branch with more de-
tailed guidance to learn the deblurring. Unlike the methods
that use a pipeline processing [2, 7], where the depth or defo-
cus map is predicted first and the all-in-focus image is recov-

Fig. 2. 2HDED:NET results for depth estimation: (a) RGB
image (b) Depth ground truth (c) Estimated Depth.

ered subsequently, our deblurring branch is not built on such
estimates, avoiding the dependence on unsatisfactory depth
maps in some cases.

We include the Charbonnier loss function [15] to achieve
robust regression and high-quality deblurring. This loss is cal-
culated as a squared error between the estimated all-in-focus
image Îaif and the sharp image Iaif :

Ldeblur =
1

W ·H

W∑
i=1

H∑
j=1

√
(Îaifi,j − Iaifi,j )2 + ϵ2 (2)

where W ×H is the image size and ϵ is a hyper-parameter set
to 1e − 3. This hyper-parameter acts as a pseudo-Huber loss
and smooths the error if it is smaller than ϵ. The overall loss
function of 2HDED:Net is:

L = Ldepth + µLdeblur (3)

Table 1. Quantitative comparison of 2HDED:NET with state
of the art methods.

DEPTH ESTIMATION DEBLUR

Method RMS ↓ REL ↓ LOG 10 ↓ PSNR ↑
Song[5] 0.154 0.028 0.012 –

Carvalho[1] 0.144 0.036 0.016 –
Gur[3] 0.766 0.25 0.092 –

Anwar[2] 0.347 0.094 0.039 34.21
2HDED:Net 0.285 0.035 0.024 32.11



Fig. 3. 2HDED:NET results for deblurring. From left to right: (a) defocused image, (b) ground truth all-in-focus image and (c)
deblurred image. Similarly, (d), (e) and (f) for a different scene. Zoomed-in patches are shown below each.

with µ = 0.1.
A noticeable feature of 2HDED:NET is that once the

model is fully trained, we are still able to accomplish one
task if the other branch is removed, e.g. we can perform DFD
without AifD branch and vice versa.

4. EXPERIMENTAL RESULTS

We have run experiments on NYU-Depth V2 dataset [16],
which contains approximately 230,000 pairs of aligned all-
in-focus images and corresponding depth maps from a Kinect
camera. We use the same split as [1, 2], i.e., 249 scenes are
employed for training and 215 for testing. The images from
Kinect camera serve as ground truth for depth branch and the
all-in-focus images are ground truth for the deblurring branch.
To feed in the network, we generate synthetic out-of-focus
images by using the thin lens model as in [17].

We compare 2HDED:NET with several state-of-the-art
methods in Table 1. For depth we selected [2], which uses a
pipeline architecture to output depth and all-in-focus images.
We considered also [1, 3, 5] that are exclusively dedicated to
depth estimation. All of them are trained and tested on NYU-
Depth V2 dataset. From the four selected methods only [2]
outputs all-in-focus images. We use it as reference also for
the deblurring. To quantitatively evaluate the depth maps
accuracy, we calculate the Root Mean Square error (RMS),
Relative Error (Rel) and Log10. For deblurring performance,
we use Peak Signal to Noise Ratio (PSNR).

Table 1 collects the results for depth estimation in the left-
most columns. Our 2HDED:NET outperforms for all evalu-
ation metrics the pipeline solution [2]. Especialy in terms of
RMSE, 2HDED:NET leads by a margin of 0.062. Our results
are below those of [1, 5], but these are methods dedicated to
depth estimation, without recovering all-in-focus images. The
performance of [3] is the poorest but this is a self-supervised
approach while all the others are supervised. Figure 2 shows

three depth maps estimated by 2HDED:NET. The RGB im-
age and the ground truth are displayed for comparison. It can
be seen how the depth is well captured for both close and far
away objects in the scene.

Table 1 also includes the deblurring performances of
2HDED:NET. The obtained all-in-focus images have an av-
erage PSNR over 32dB, which is a good score given the fact
that they are recovered from defocused images with about
27dB. This result is inferior by 2dB to that of [2]. Figure 3
depicts results for the deblurring branch. On the first row,
there are the whole scenes and beneath, crops with details.
The blurred images and the ground truth are also displayed
for comparison. 2HDED:NET clearly restores edges and
textures. Details of the toys near the teddy bear missing in
Figure 3 (a), reoccur in (c). Likewise, 2HDED:Net recovers
in (f) the door frame that is missing in (d).

In terms of network complexity, 2HDED:Net is signifi-
cantly lighter than the pipeline architecture of Anwar et al.
[2]. The total number of parameters of our network is 41M,
which is three times less than that of [2], with 138M.

5. CONCLUSION

In this paper, we propose a novel CNN architecture with two
parallel decoders that estimate depth and recover all-in-focus
images from a single out-of-focus image. The two headed ar-
chitecture distinguishes our network from existing met–hods
that use pipeline processing. The tasks parallelization reduces
the network complexity, all while maintaining performances
in depth estimation and deblurring comparable with state-of-
art approaches. Experimental results on the NYU-depth V2
dataset show that 2HDED:NET outperforms the pipeline ap-
proach in estimating the depth. Our future work will focus on
further ablation studies and improvement of loss function to
obtain better deblurring and more accurate depth estimation.
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Peloux, Andrés Almansa, and Frédéric Champagnat,
“Deep depth from defocus: how can defocus blur im-
prove 3d estimation using dense neural networks?,” in
Proceedings of the European Conference on Computer
Vision (ECCV) Workshops, 2018, pp. 0–0.

[2] Saeed Anwar, Zeeshan Hayder, and Fatih Porikli, “De-
blur and deep depth from single defocus image,” Ma-
chine vision and applications, vol. 32, no. 1, pp. 1–13,
2021.

[3] Shir Gur and Lior Wolf, “Single image depth estimation
trained via depth from defocus cues,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 7683–7692.

[4] Harel Haim, Shay Elmalem, Raja Giryes, Alex M Bron-
stein, and Emanuel Marom, “Depth estimation from
a single image using deep learned phase coded mask,”
IEEE Transactions on Computational Imaging, vol. 4,
no. 3, pp. 298–310, 2018.

[5] Gwangmo Song and Kyoung Mu Lee, “Depth estima-
tion network for dual defocused images with different
depth-of-field,” in 2018 25th IEEE International Con-
ference on Image Processing (ICIP). IEEE, 2018, pp.
1563–1567.

[6] Maxim Maximov, Kevin Galim, and Laura Leal-Taixé,
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