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a b s t r a c t

The knowledge about the position and movement of people is of great importance in mobile robotics

for implementing tasks such as navigation, mapping, localization, or human–robot interaction. This

knowledge enhances the robustness, reliability and performance of the robot control architecture. In

this paper, a pattern classifier system for the detection of people using laser range finders data is

presented. The approach is based on the quantified fuzzy temporal rules (QFTRs) knowledge

representation and reasoning paradigm, that is able to analyze the spatio-temporal patterns that are

associated to people. The pattern classifier system is a knowledge base made up of QFTRs that were

learned with an evolutionary algorithm based on the cooperative-competitive approach together with

token competition. A deep experimental study with a Pioneer II robot involving a five-fold cross-

validation and several runs of the genetic algorithm has been done, showing a classification rate over

80%. Moreover, the characteristics of the tests represent complex and realistic conditions (people

moving in groups, the robot moving in part of the experiments, and the existence of static and moving

people).

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The operation of mobile robots in real environments, like
supermarkets, railway stations, hospitals, etc., is generally
characterized by the existence of people and moving objects in
the surrounding. This fact needs to be considered when
implementing tasks such as mapping or path planning, since
discarding moving objects usually leads to errors and poor
performance. The detection of people is particularly important
for service robots and, fundamentally, for human–robot interac-
tion, where both moving people and also static people have to be
detected.

The detection of people is highly influenced by the type of
sensor being used. The two types of sensors most widely
employed for this purpose are cameras [1–4] and range finders
(generally, laser range finders) [5–7]. The advantages of laser
range finders are that they can directly measure objects geometry,
distances information is accurate, the field of view is large, and
information of the probability of occupancy of each area of the
environment can be easily obtained. On the contrary, the quantity
of information that can be extracted is lower than with a camera
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and, therefore, distinguishing among objects with similar geo-
metric properties becomes much more difficult.

Several proposals have been done for the detection of people
with laser range finders. They can be grouped into three
categories: those that are based on the difference of occupancy
between consecutive range scans [7–16] (motion-based), those
that rely on geometric characteristics of people [5,6,17] (feature-
based) and, finally, the approaches based on heuristic conditions,
generally the width of the legs and the distance between them
[18–22] (heuristic-based). On one hand, motion-based methods
have two main drawbacks: they cannot usually detect people
standing still, neither are able to distinguish between people and
other moving objects (e.g., a trolley or a suitcase). On the other
hand, heuristic and feature-based methods are not capable to
differentiate between static and moving people.

One of the main difficulties for the detection of people for all
the approaches is the presence of groups (clusters) of people, i.e.,
people that is walking or standing still together. This situation is
very frequent in real environments. However, the higher the
density of people, the tougher the detection. For motion-based
approaches, whenever people is moving very close to each other,
it is very probable that the position occupied by a person in a
previous instant is now the current position of another person.
Therefore, the difference of occupancy in that position would be
the same as for a static object. Also, for feature and heuristic-
based approaches, the high number of partial occlusions in the
group of people changes the expected values of some of the
features, decreasing the performance of the detection algorithm.
Finally, another source of error in the classification of the detected
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patterns for both approaches is the robot motion that produces an
increase of the errors in the range data. This fact also enhances the
difficulties for scan matching in the motion-based approaches.

In this paper, we present a pattern classifier system for the
detection of people using laser range finders data. The idea
underlying our proposal is a mixture of both the motion and
feature-based approaches. The feature-based approach is able to
detect spatial patterns, but if we want to independently classify
static and moving people, the system should also analyze the
difference of occupancy in consecutive scans. Moreover, our
approach makes use of the fact that the analysis of a spatial
pattern along time can improve the performance of the classifier.
For these reasons, the proposed classifier system considers spatio-
temporal patterns, i.e., patterns defined by the values of a set of
features in specific time instants (spatial) together with their
evolution along time (temporal). The classifier is based on a set of
quantified fuzzy temporal rules (QFTRs), that are an extension of
the fuzzy temporal rules (FTRs) model [23,24]. FTRs are able to
represent and perform reasoning on values of variables evolving
with time. Moreover, QFTRs are able to quantify the fulfillment of
a linguistic label by a set of data, and analyze the persistence of
this fulfillment in a temporal reference.

The combination of fuzzy logic with the learning capabilities of
evolutionary algorithms is well known as evolutionary fuzzy
systems. Evolutionary algorithms have some characteristics that
make them specially adequate for learning fuzzy knowledge
bases. The flexibility in the representation of the solutions is very
high and, therefore, evolutionary algorithms can easily handle any
type of fuzzy system. Also, depending on the characteristics of the
problem and the demands of the final user, the designer has the
possibility to determine the most appropriate trade-off between
accuracy and interpretability by selecting different kinds of
learning algorithms. In our proposal, a genetic algorithm has
been used to learn the pattern classifier made up of QFTRs. It is
based on the cooperative-competitive approach [25] together
with token competition in order to maintain diversity in the
population. After the learning stage, a selection process to find the
best combination of rules from the obtained rule set has been
applied using the Iterated Local Search (ILS) algorithm [26].

The most relevant novelties of our approach are:
�
 The learned rules follow the QFTRs paradigm, that is able to
classify spatio-temporal patterns, i.e., patterns that require the
analysis of the values of the features in specific time instants,
but also the analysis of the evolution of these values along
time intervals.

�
 The system is able to detect people that is moving in groups. In

this situation, the density of moving objects is high and there
are occlusions and partial occlusions between them, so the
detection and tracking difficulties are higher [27] than for
individual objects.

�
 The system is able to distinguish between static and moving

people and, also, people can be detected even if the robot is
moving and the errors in scan matching are high. The
distinction between static and moving people provides
the robot with more valuable information and improves the
performance for tasks as tracking, path planning and human–
robot interaction.
The paper is organized as follows: in the next section,
we discuss related work. Section 3 shows the fundamentals
of the detection of moving objects with laser range scanners.
Section 4 presents the QFTRs model, while Section 5 describes
the evolutionary algorithm for learning QFTRs. Then, Section 6
shows the experimental results and, finally, Section 7 points out
the conclusions.
2. Related work

The algorithms described in the literature for the detection of
people using laser range finders can be grouped into three
categories: heuristic, motion and feature-based. Nearly all of them
aim to detect the legs of people, although in [28] the algorithm
detects the torso and the arms. Detection of people in heuristic-
based approaches is done with a set of heuristic rules that try to
detect meaningful characteristics of people patterns in the laser
scan points. Many of the approaches that belong to this category
rely on the detection of both legs of a person, and use the distance
between them to filter false positives. However, when the
environment is highly populated and, mainly when people walk
in groups, detecting two legs of the same person is, unfortunately,
not usual.

An example of an heuristic-based approach is presented in
[18]. Legs are detected in three steps: remove noise, find the
maximums and minimums of the distance function, and use some
basic rules (basically, taking into account the inner distance
between human legs) to discard false positives. The system was
combined with a face detector to improve the performance. In
[20], a leg is modeled as a semicircle with radius in a certain
range, separated from its background by a threshold distance
determined experimentally. A human is defined as a pair of legs
within a certain distance of each other. Similarly, in [29] detection
is based on grouping neighboring points into segments, classify-
ing the segments as leg or non-leg according to a set of thresholds
and, finally, grouping the detected legs into pairs depending on
the distance among them. In [30], the detection system searches
for objects of width similar to legs of people, and also considers
the gap between a pair of legs. If only one leg is detected, the
system requires further confirmation from a face detector. A
similar idea is developed in [14]. The detection system accepts the
following patterns: a single leg, two legs appropriately separated,
and a person-wide blob. The last two patterns are always
accepted as new person hypothesis, while the first one is only
accepted when it is close to an already detected and tracked
target.

Some of the heuristic-based proposals also use conditions
closer to feature-based approaches. For example, in [31], the
algorithm looks for leg-pairs. First, measurements are segmented
into local groups. Then, each segment is checked for different
conditions (width, deviation, etc.) and the distance between
segments classified as legs is pairwise computed. In [19], objects
are extracted from each laser scan following a two steps
approach: scan segmentation and split of the segments into
subsequences describing almost convex objects. To identify
moving people, information about objects of successive scans is
done computing the maximum flow with the minimal cost in a
graph. Finally, in [28] the algorithm is able to detect human torsos
and arms using raw sensor data. First, the range readings are
thresholded using the background model (motion-based condi-
tion), and a set of candidate locations are created by identifying
segments of contiguous foreground data points. The rules for this
segmentation model approximate humans as ellipses, taking into
consideration the possibility of partial occlusions and using
heuristic rules for outliers rejection.

Motion-based approaches rely on the difference between
consecutive scans, or between a scan and the background map
of the environment. Their main lack is that these approaches
cannot detect people standing still. A typical algorithm in this
group is presented in [7,9]: it is based on the fact that people
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walking result in local minima in the laser distance histograms.
For each local minima, the system considers the changes in
consecutive scans. In [10], they first construct the occupancy grid
map of the environment, then calculate the difference of two
consecutive maps and, finally, apply a blob segmentation
algorithm to those cells occupied in the current map and free in
the previous one. A similar approach is used in [32]; the moving
object detection algorithm consists of two parts: to detect the
moving points and to combine the results of segmentation and
moving points detection for deciding which groups are potential
moving objects. This decision is taken whenever the ratio of
moving points in the group is greater than 0.5. In [11] moving
targets were detected by frame differencing followed by erosion
and connected components analysis. The system combined laser
and panoramic vision. Also, in [33] two cues were used: body
shape and motion. First they look for a single convex pattern of a
certain size, representing the body of a person. After that, the
system subtracts two consecutive scans.

In [13], detection is based on the construction of a closed
polygon. The polygon is the free space detected by the scanner.
Any point inside the polygon is considered as a moving object. In
order to avoid false positives, the algorithm shrinks the polygons
and applies a local minimization operator on the range readings
across angles. In [8] moving objects are detected using a
segmentation algorithm with three stages: identification of static
obstacles (element by element comparison of closest points of
consecutive scans), separation of moving and occluded obstacles
and, finally, segmentation of the identified sets. In [12] the leg
extraction algorithm, first, subtracts the background image, and
then the moving points are temporally and spatially integrated.
This stage is done accumulating the count of laser points at the
same pixel in successive frames. After that, a Parzen window
density estimation is applied and, finally, after a simple local
search, the legs that remain static for a while in a small region are
obtained. Finally, in [16] the detection system subtracts the
background of each new scan, and those points that do not belong
to the background are extracted and segmented into clusters.
Next, the system looks for clusters that seem to be feet candidates
(radius less than 30 cm). These clusters can be matched with the
registered feet positions, or they can be paired if the distance is
Table 1
Summary of related work.

Reference H.-b. M.-b. F.-b.

Amarasinghe et al. [8] �

Arras et al. [5] �

Bellotto and Hu [18] �

Bennewitz et al. [9] �

Bobruk and Austin [10] �

Brooks and Williams [20] �

Chakravarty and Jarvis [11] �

Cui et al. [12] �

Glas et al. [28] � �

Kleinehagenbrock et al. [29] �

Kluge et al. [19] �

Lindström and Eklundh [13] �

Martin et al. [31] �

Scheutz et al. [30] �

Schulz et al. [7] �

Topp et al. [33] �

Topp and Christensen [14] �

Wang et al. [32] �

Xavier et al. [17] �

Zhao et al. [16] �

Zivkovic and Kröse [6] �

QFTR-based proposal � �

H.-b., M.-b. and F.-b., respectively, represent heuristic-based, motion-based and feature
within a normal step size. Recognition of pedestrian is conducted
by detecting the braided style of feet data: the algorithm
calculates the distance between two clusters in the same group,
and examines the sequence of distances to find if it appears as a
periodic wave.

Feature-based approaches use geometric characteristics of the
objects to be detected (legs of people in this case). For example, in
[17] the leg detection system is based on circle detection, using a
technique called inscribed angle variance, based on trigonometric
properties of arcs. The detection of a leg uses the same
prerequisites with the extra constraint of the distance between
end-points falling within the range of expected leg diameters
(0.1–0.25 m). A more elaborated approach was developed in [5]: a
classifier to detect people was built using a supervised learning
technique (AdaBoost). The algorithm used a set of geometric
features from segments (number of points, width, linearity,
radius, curvature, etc.) of groups of neighboring beams corre-
sponding to legs of people. Based on the previous solution, in [6]
the laser-based detection system consisted of two stages. The first
stage corresponds to a classifier trained with AdaBoost algorithm
(as described in [5]). The second stage uses the previous
information of the position of legs to learn a probabilistic model
that takes into account the possible distance between the persons
legs and is more robust to occlusions and clutter.

Table 1 summarizes all these related papers. In most of the
references, detection of people is not the main purpose of the
paper, but a necessary stage prior to tracking or human–robot
interaction. Moreover, in nearly all the papers, the values of the
different parameters involved in the detection have been
manually tuned. Only in Refs. [5,6] the classifier system was
automatically learned (see ‘‘Learn’’ column of Table 1) and had
detection of people as the primary objective.

Columns ‘‘Sensor mov.’’, ‘‘Clutt.’’, and ‘‘Populated’’ in Table 1
are related to the kind of tests performed to validate each
proposal. In half of the papers, the laser sensors were moving
(generally mounted on a robot) at least in one of the tests (‘‘Sensor
mov.’’ in Table 1). This situation enhances the difficulties in the
detection, as the robot motion increases the noise in sensor data.
Another condition that makes classification harder is the
existence of cluttered environments (‘‘Clutt.’’ in Table 1), as the
Learn Sensor mov. Clutt. Populated

� �

�

�

�

�

� �

� �

�

�

�

� �

�

�

� � �

� � �

-based approaches.
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legs of people can be confused with table legs, wastepaper
baskets, etc. Finally, another difficulty is the presence of many
people in the environment (‘‘Populated’’ in Table 1), as the
number of partial occlusions (modifying the characteristic leg
patterns) is high. Also, for the motion-based approaches, the
differences of consecutive scans do not always reflect the
presence of a moving object, as a person can occupy the same
position in which another person was previously placed.

The last row of Table 1 shows the characteristics of our
proposal. The differences, from an experimental point of view,
between our approach and the related work are:
�
 Only papers [5,6] presented a specific experimental study
about the performance of the detection system. In the other
papers, the quality of the classifier was only analyzed from a
qualitative point of view, but no numerical results were
shown.

�
 Our proposal works in populated environments and with the

motion of the sensors. This combination is quite more complex
to deal with than all the situations presented in previous
approaches (in particular [5,6]), where the detection of people
when the robot is moving in crowded environments is not
considered.

�
 Our classifier distinguishes among three classes (static people,

moving people, and static objects), while regarding [5,6] deal
with two classes (people and objects).

3. Detection of people with laser range finders

Laser range finders emit at the same time beams in different
directions. When a beam hits an obstacle, it is reflected and
registered by the scanner’s receiver. The time between the
transmission and the reception of the pulse is known as
the flight time. With this information, the distance measured in
the direction of each beam can be calculated. Fig. 1 shows a
typical laser scan. The laser range finder provides the distances to
the closest obstacle in each direction with a given angular
resolution (number of degrees between two consecutive beams).
Also, in this figure, some moving persons ðmpqÞ and static objects
ðsoqÞ with similar patterns to the persons have been labeled.

Our approach is a mixture of motion and feature-based
approaches. A pure motion approach cannot be used, as we also
want to detect static people. Also, the system must be able to
distinguish between static and moving people and, therefore,
motion-based conditions must be included. The first step in the
detection process involves the segmentation of the current scan
using the difference in the distance measured by consecutive
beams. If that distance is over a threshold, a new segment is
16m

Robot

mp1

laserbeam mp3
mp4

so1 so2 so3 so4

mp2

Fig. 1. A typical laser scan.
initialized. All these segments, XðtÞ ¼ fSt
1; . . . ; S

t
Mt
g, will be the

input to the classifier system at time t. Each segment is a set of
points in Cartesian coordinates: St

m ¼ fs
t;m
1 ; . . . ; st;m

nPointst
m

g. The
following features are used to classify people:
�

seg
The number of points of the segment, nPointst
m ¼ jS

t
mj.
�
 The width of the segment, defined as the Euclidean distance
between the first and last points of the segment:

widtht
m ¼ Jst;m

1 -st;m

nPointst
m

J.
�
 The gap, which is the maximum of the differences of the
norms2 of the last point of St

m-1 and the first point of St
m, and

the last point of St
m and the first point of St

mþ1:

gapt
m ¼maxfjJst;m

1 J-Jst;m-1

nPointst
m-1

Jj; jJst;m

nPointst
m

J-Jst;mþ1
1 Jjg.
�
 The probability that the segment is new in its current position
at time t, Pt;m

new. The estimation of this probability will be
described in the remainder of this section.

From the human–robot interaction point of view, but also for
mapping and path planning, it is interesting to distinguish
between static and moving people. Therefore, a feature based on
motion (Pt;m

new) was included as an input to the classifier. In order to
discriminate between static and dynamic objects, it is necessary
to compare the occupancy maps of the environment at the
present and past time instants. Occupancy grid maps [34]
represent the surrounding environment arranging it in cells of
equal size (a grid). Each cell stores its probability of occupancy: 1
indicates that the cell is occupied, 0 represents a free cell (without
objects), while intermediate values describe different degrees in
the probability of occupancy. For example, 0.5 indicates an
unknown occupancy (e.g., a cell that has never been detected by
the sensors, or that has been seen several times, sometimes
occupied and others free). With each new laser scan the map is
updated taking into account the current information provided by
the sensors, but also the previous occupancy grid map.

Fig. 2(a) shows the occupancy grid map using the information
of a single laser scan (rotated area inside the dashed rectangle of
Fig. 1). The map is represented in a 256 gray scale. The darker the
gray, the higher the probability of occupancy of that cell. As this
map represents only one laser scan, there are three possibilities:
the cell is free (white), the cell is occupied (black), or the
probability of occupancy is unknown (gray). Fig. 2(b) represents
the grid map in the same time point, but this map contains now
both the current laser scan and also the scans of previous time
instants. The positions of the moving persons, mpq, have now a
low probability of occupancy (light gray) as they have been
detected as free in previous instants, and occupied only in the
current scan. As we need to obtain the probability of new objects
in the grid map, we used the current map and the map at t0 in
order to calculate the probability of new objects for each cell:

Pi;j
newðt; t

0Þ ¼ Pi;j
occðtÞ � ð1-Pi;j

occðt
0ÞÞ ð1Þ

where Pi;j
occðtÞ is the probability of occupancy of cell with

coordinates ði; jÞ using the sensorial information until the
current instant (t) and 1-Pi;j

occðt
0Þ is the probability that cell ði; jÞ is

free in the map at t0. Time instant t0 is defined as t0 ¼ t-l � D, where
lAN*, and D is the elapsed time between two consecutive laser
scans. Fig. 2(c) shows the map obtained after applying Eq. (1) to
the current (Fig. 2(b)) and previous grid maps ðl¼ 1Þ.

Due to small errors in the laser measurements and the size of
the grid map cells, the same object can be detected in a cell in one
laser scan and in an adjacent cell in another scan. These small
2 Each vector is defined from the origin of coordinates to each point of the

ment.
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Fig. 2. Detection of four legs of people moving for the laser scan of Fig. 1. (a) Grid map of one scan. (b) Grid map. (c) Probability of new objects. (d) Probability of new

objects (sizew ¼ 3). (e) Detected people’s legs.
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errors highly increase when the robot is moving, because of the
odometric errors: the control commands are not implemented
with full precision, the wheels of the robot can slip, etc. The scan
matching technique we have applied to eliminate some of these
errors (iterative point correspondence algorithm [35]) was not
fully able to remove all of them.

Therefore, the probability that an object detected in a cell is
new needs to be calculated in a more reliable way. Errors can be
filtered using a spatial window around each cell. Thus, Eq. (1) can
be reformulated as

Pi;j
newðt; t

0; sizewÞ ¼minsizew

k;l ¼ -sizew
Pi;j

occðtÞ � ð1-Piþk;jþ l
occ ðt0ÞÞ ð2Þ

where sizew is half the size of the window, and the probability that
the object is new is calculated as the minimum over all cells of the
window in the occupancy map at t0. The resulting grid map after
applying Eq. (2) to the current (Fig. 2(d)) and previous grid maps
is shown in Fig. 2(d) ðsizew ¼ 3Þ. As can be seen, the spatial
window removes most of the points that belong to static objects.
Combining the probability of new objects (Fig. 2(d)) with the
values of the features gap, nPoints and width, these segments can
be classified as legs of moving people (Fig. 2(e)). Finally, the
probability that a point of a segment is new can be obtained with

Pt;m;sizew
new ðh; t0Þ ¼ Pi;j

newðt; t
0; sizewÞ : st;m

h Aci;j ð3Þ

where ci;j is the cell with coordinates ði; jÞ, and st;m
h is the h-th point

of segment St
m.
The rules for the detection of moving objects must take into
account information about the size of the gap between the
analyzed segment and the adjacent ones, the number of points of
the segment, the width of the segment, and the probability of a
new object for each of the points of the segment. This last feature
distinguishes between static and moving objects. The analysis of
Pt;m;sizew

new ðh; t0Þ can also generate false positives. These errors can be
reduced if, instead of taking into account Pt;m;sizew

new ðh; t0Þ for a
specific value of t0, the system analyzes this probability in
different time instants. Moreover, some cells of the local
minimum can have a high probability of containing a new object,
but others not. Thus, the system should quantify how many points
must have a Pt;m;sizew

new ðh; t0Þ over a threshold. The use of quantifica-
tion introduces flexibility in the classification of the patterns. For
example, a segment that has a few points with a low probability
of being new could be classified as a moving object if the other
points have a high probability of being new. In summary, a
quantifier defines the percentage of points that must have a
probability of being new over a threshold.

Therefore, the motion condition for the pattern classifier
system, includes the probabilities of being new for the combina-
tions of each point of the segment (h index) and each value for the
time stamp of the previous grid (t0). Thus, a mechanism for
performing the spatial filtering of the values of Pt;m;sizew

new ðh; t0Þ for all
the points is needed to produce a reliable detection of the moving
objects. Moreover, the pattern classifier system also has to
analyze the evolution of these values over time, in order to
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implement a temporal filtering that can improve the performance
and accuracy of the classifier. An example of a proposition that
fulfills this objective is

Pt;m;sizew
new ðh; t0Þ is high in most of the points of the segment

in part of the last instants ð4Þ

We will implement such a proposition using the QFTRs model
described in the following section.
4. Quantified fuzzy temporal rules model

The general structure of a QFTR for the people’s legs pattern
recognition task is described in Fig. 3.

Propositions (5)–(7) are non-temporal fuzzy propositions,
while (8) is a quantified fuzzy temporal proposition (QFTP). This
QFTP can be modeled according to the syntactic and semantic
expressions described in [23,36,37]. In particular, proposition (8)
is of the form

FSðtpÞ in Qt;new of Ft;new ð9Þ

where:
�
 FSðtpÞ is a filtered signal, i.e., a signal with a fuzzy value
constraint. It is defined on the time axis and takes values in
½0;1�.

�
 Qt;new is a fuzzy (temporal) quantifier (‘‘part of’’ in expression

(4)) defined in [0, 1].

�
 Ft;new is a direct fuzzy temporal reference (‘‘last instants’’ in

expression (4)). It is defined on a discrete time axis
T ¼ ft0; . . . ; tnowg, where each tp represents a precise temporal
point, t0 represents the origin, and tnow the current time point.
We assume that the values of this set are evenly spaced, where
D¼ tp-tp-1 is the unit of time, whose size or granularity
depends on the temporal dynamics of the application.
Filtered signals are described in the model as signals whose
values are constrained by a (spatial) reference or proposition. In
this case, two constraints are involved:

FSðtpÞ : Pt;m;sizew
new ðh; tpÞ is Fs;new in Qs;new of Ft;m

segment ð10Þ

where:
�
 Pt;m;sizew
new ðh; tpÞ is the signal. In this particular case, it represents

the probability that point h of segment St
m is new at time tp.
�
 Fs;new is an absolute fuzzy value constraint (‘‘high’’ in expres-
sion (4)) defined in [0, 1].

�
 Qs;new of Ft;m

segment is a quantified value constraint where:
3 Qs;new is a fuzzy (spatial) quantifier (‘‘most’’ in expression

(4)) defined in [0, 1].
3 Ft;m

segment is a direct spatial reference (‘‘points of the segment’’
in expression (4)).
Fig. 3. QFTR for the classification of a pattern as a moving person.
Evaluation of this proposition produces a fuzzy filtered signal
defined by

FSðtpÞ ¼ mQs;new

PnPointst
m

h ¼ 1 mFs;new
ðPt;m;sizew

new ðh; tpÞÞ4mFt;m
segment
ðhÞPnPointst

m

h ¼ 1 mFt;m
segment
ðhÞ

0
B@

1
CA ð11Þ

using Zadeh’s quantification model for proportional quantifiers
ðQs;newÞ. This model evaluates the compatibility between the
proportion of points that fulfill a given fuzzy property (in our case
Pt;m;sizew

new ðh; tpÞ being high and point h belonging to segment St
m)

and the quantifier in the proposition (Qs;new). 4 is the minimum
t-norm.

The degree of fulfillment of the QFTP (expression (9)) is
calculated as

DOF ¼ mQt;new

P
tp A SUPPFt;new

FSðtpÞ4mFt;new
ðtpÞP

tp ASUPPFt;new
mFt;new

ðtpÞ

 !
ð12Þ

using again Zadeh’s quantification model for proportional quanti-
fiers ðQt;newÞ. Finally, expressions:

DOF ¼
_

tp A SUPPFt;new

FSðtpÞ4mFt;new
ðtpÞ ð13Þ

DOF ¼
^

tp A SUPPFt;new

FSðtpÞ3ð1-mFt;new
ðtpÞÞ ð14Þ

are used, respectively, for modeling existential (‘‘in’’) and
universal (‘‘for all’’) quantifiers. These quantifiers correspond to
the non-persistence and persistence situations for event FSðtpÞ in
the interval Ft;new. This is a relevant characteristic of this temporal
rule model, since it allows to consider partial, single or total
fulfillment of an event within a temporal reference. 4 and 3 are,
respectively, the minimum t-norm and the maximum t-conorm.

4.1. An example of QFTP matching

In order to illustrate how a spatio-temporal pattern matches a
QFTP, we will present an example. The definitions of the different
membership functions and quantifiers are shown in Fig. 4.
Moreover, mFt;m

segment
ðhÞ ¼ 1, h¼ 1; . . . ;nPointst

m. This means that all
the points are considered as parts of the segment, i.e., all the
elements in the set have the same weight in the spatial pattern.

Fig. 5(a) shows the evolution along time of Pt;m;sizew
new ðh; tpÞ for the

five points that belong to the segment (h¼ 1; . . . ;5). The values of
the elements of the set, together with their evolution along time,
conform a spatio-temporal pattern in the following way: for a
given tp, the set of values fPt;m;sizew

new ð1; tpÞ; . . . ;P
t;m;sizew
new ð5; tpÞg

conform a spatial pattern. The evolution of this pattern along
time produces the spatio-temporal pattern.

The first step for the classification of the pattern is the
calculation of the degree of fulfillment of the fuzzy set Fs;new for
each value of Pt;m;sizew

new ðh; tpÞ (Fig. 5(b)). Next, the filtered signal
(Eq. (11)) has to be obtained. FSðtpÞ (Fig. 5(c)) represents the
degree of fulfillment of the spatial pattern at each time instant.
Finally, the degree of fulfillment ðDOFÞ of the spatio-temporal
pattern (Fig. 5(c)) is calculated following Eq. (12).

The design of a QFTR for this application (Fig. 3) involves the
definition and tuning of four fuzzy linguistic labels, one temporal
reference, and two fuzzy quantifiers, i.e., seven parameters per
rule. Moreover, changes in the characteristics of the environment
or the moving objects could affect the accuracy of the pattern
classifier system, making useless the tuned parameters. Therefore
learning of quantified fuzzy temporal knowledge bases (QFTKB) is
of interest, in order to support the design/implementation of new
classifiers for different applications (corridor of a hospital, railway
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Fig. 4. Definition of membership functions and quantifiers for the QFTP example. (a) Fs;new (e.g. ‘‘high’’). (b) Ft;new (e.g. ‘‘last instants’’). (c) Qs;new (e.g. ‘‘most of ’’) and Qt;new

(e.g. ‘‘part of ’’).

Fig. 5. An example of the evaluation of a QFTP for a spatio-temporal pattern. (a)

Evolution along time of Pt;m;sizew
new ðh; tpÞ. (b) mFs;new

ðPt;m;sizew
new ðh; tpÞÞ. (c) Filtered signal

FSðtpÞ and DOF of the spatio-temporal pattern.
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station, etc.). In the next section, a genetic algorithm to learn
pattern classifier systems based on QFTRs for detecting people is
described.
5. Evolutionary learning of QFTRs

According to [25,38], evolutionary learning of knowledge bases
has different approaches to represent the solution to the problem:
Pittsburgh [39], Michigan [40], iterative rule learning (IRL) [41],
and genetic cooperative-competitive learning (GCCL) [42,43]. The
proposed evolutionary algorithm follows the GCCL methodology.
In this approach rules evolve together but competing among them
to obtain the higher fitness. For this type of algorithms it is
fundamental to include a mechanism to maintain the diversity of
the population (niche induction). The mechanism must warrant
that there is competition among individuals of the same niche,
but also has to avoid the deletion of those weak individuals that
occupy a niche not covered by other individuals of the population.
We have chosen token competition [44,45] as the mechanism for
maintaining the diversity. Its advantage over other approaches,
like crowding or fitness sharing, is that it is not necessary to
estimate the similarities between pairs of individuals.

The coding scheme of the chromosomes of the population
(Fig. 6) consists of four different parts, each of them
corresponding to one of the propositions of a rule (Fig. 3). Genes
labeled as Fi are codified as trapezoids, sizew is an integer, and the
fuzzy quantifiers (Qs;new, Qt;new), although they are trapezoids, are
also defined with one value, since the slope was kept fixed
(Fig. 4(c)).

The raw training and test data that have been used consist of a
number of consecutive laser range scans (Fig. 1). From these data,
training and test examples sets are generated. The structure of an
example el is

el ¼ fgapl; sizel
w; averagel

pnew; Ql
s;new; tl

pnew; nPointsl; widthl; Clg

ð15Þ

where averagel
pnew and tl

pnew are defined as

averagel
pnew ¼

maxt0
P

hP
t;m;sizel

w
new ðh; t0Þ

nPointsl
ð16Þ

tl
pnew ¼ argmaxt0

X
h

P
t;m;sizel

w
new ðh; t0Þ

! 
ð17Þ

and represent the maximum (over t0) of the average probability of
being new for the segment St

m, and its corresponding t0 value. The
generated examples sets have two different classes of examples:
Cl ¼mp, which represents a moving person, and Cl ¼ sp which
belongs to a static person. Finally, Ql

s;new (spatial quantifier) can be
defined as

Ql
s;new ¼

jfh : P
t;m;sizel

w
new ðh; tl

pnewÞZaveragel
pnewgj

nPointsl
if Cl ¼mp

jfh : P
t;m;sizel

w
new ðh; tl

pnewÞraveragel
pnewgj

nPointsl
if Cl ¼ sp

8>>>>><
>>>>>:

ð18Þ
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Fig. 6. Coding scheme of a chromosome.

Fig. 7. Genetic algorithm.
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representing the percentage of points of a segment, St
m, that have a

probability of being new ðP
t;m;sizel

w
new ðh; tl

pnewÞÞ over ðCl ¼mpÞ or under

ðCl ¼ spÞ the mean value ðaveragel
pnewÞ.

It is relatively simple to label the static and moving people
from the laser scans to construct these examples sets, but this is
not true for the static objects: for example, a wall can be a single
static object, or due to its discontinuities could also be several
objects. Due to this difficulty, our training and test (example) sets
will only contain static and moving people. This does not
represent a disadvantage, as the rules that are learned (Fig. 3)
identify the class sp or mp, while any other pattern will be
considered in the default class (static object).

A description of the genetic algorithm is shown in Fig. 7. It is
based on the GCCL approach with a population of variable size. The
following sections describe each of the stages of the algorithm.

5.1. Initialization

The first step of the algorithm is the initialization of the
population: a chromosome (Fig. 6) is generated for each example
in the training set. Each trapezoid in the chromosome (Fig. 6) is
initialized with a triangular membership function centered in the
corresponding example value, and with the extremes of the
triangle at a distance equal to preci from the center of the triangle.
preci represents the lowest meaningful change in the value of
variable i. On the other hand, the values for sizew and Qs;new are
directly copied from the example’s values, and Qt;new is initially
set to non-persistence (Eq. (13)). This population is called examples

population. From this examples population, popmaxSize individuals
are randomly picked up to build the initial population.

5.2. Selection

The first stage of the iterative part of the algorithm is the
selection of the individuals of the population. We have tested the
algorithm with two different selection mechanisms: binary
tournament selection and uniform selection. On the one hand,
in a k-tournament selection, k individuals are randomly picked
from the population with replacement, and the best of them is
selected. In this case, k¼ 2 (binary tournament selection). On the
other hand, uniform selection means that each individual of the
population is selected exactly once each time the selection
process is performed.

5.3. Crossover and mutation

Once popsize individuals have been selected, each couple of
them is crossed with probability pc . The crossover operator is the
parent-centric BLX (PCBLX) [46,47]. Given two real-coded chro-
mosomes, X ¼ ðx1 . . . xgÞ and Y ¼ ðy1 . . . ygÞ (xi; yiA ½ai; bi�,
i¼ 1; . . . ; g), that are going to be crossed, the following offspring
are generated:
�
 Z ¼ ðz1 . . . zgÞ, where zi is randomly selected from the interval
½lzi ; r

z
i �, with lzi ¼maxfai; xi-Iig, rz

i ¼minfbi; xiþ Iig, and
Ii ¼ jxi-yij � a, aA ½0;1�.

�
 V ¼ ðv1 . . . vgÞ, where vi is randomly selected from the interval
½lvi ; r

v
i �, with lvi ¼maxfai; yi-Iig and rv

i ¼minfbi; yiþ Iig.
This crossover operator is valid for genes representing real
numbers. However, in the defined chromosomes (Fig. 6), there
are also genes representing trapezoids. Given two trapezoids
represented by tuples, ðk1 � � �k4Þ and ðr1 � � �r4Þ (kj;rjA ½aj; bj�,
j¼ 1; . . . ;4), that are going to be crossed, the following offspring
are generated:
�
 ðk1
0 . . .k4

0 Þ, where kj
0 is randomly selected from the interval

½lkj ; r
k
j �, with lkj ¼maxfaj

0 ;kj-Ijg, rkj ¼minfbj
0 ;kjþ Ijg, Ij ¼ jkj-rjj�

a, aA ½0;1�, aj
0 ¼ aj if jAf1;2g or aj

0 ¼ k2 if jAf3;4g, and bj
0 ¼ k3

if jAf1;2g or bj
0 ¼ bj if jAf3;4g.
�
 ðr1
0 . . .r4

0 Þ, where rj
0 is randomly selected from the interval

½lrj ; r
r
j �, with lrj ¼maxfaj

0 ;rj-Ijg and rrj ¼minfbj
0 ;rjþ Ijg. Finally,

aj
0 ¼ aj if jAf1;2g or aj

0 ¼ r2 if jAf3;4g, and bj
0 ¼ r3 if jAf1;2g

or bj
0 ¼ bj if jAf3;4g.

When crossover is not performed, both individuals are mutated
with the non-uniform mutation operator [48]. If X ¼ ðx1 . . . xgÞ

(xiA ½ai; bi�, i¼ 1; . . . ; g) is a chromosome, and gene xm is selected
for mutation, then the resulting chromosome is
X0 ¼ ðx1 . . . xm

0 . . . xgÞ where

xm
0 ¼

xmþGðiteration; bm-xmÞ if side¼ 0

xm-Gðiteration; xm-amÞ if side¼ 1

(
ð19Þ

where sideA ½0;1� is a random integer number, and function
Gðiteration;valÞ is defined as

Gðiteration;valÞ ¼ val � ð1-rð1-iteration=maxIterationsÞu Þ ð20Þ

where rA ½0;1� is a random number, and u is a parameter that
determines the degree of dependency with the number of
iterations. Gðiteration;valÞ generates a random value which has a
higher probability of being close to 0 as the number of iterations
increases. In this way, in the first iterations of the evolutionary
algorithm the mutation operator explores the whole search space,
while in the last stages it exploits the vicinity of the current value.

5.4. Evaluation

Before the evaluation of the population, the individuals of the
former population are inserted in the current one. In this way,
they will participate in the token competition. For each individual
(rule) of the population, the following quantities are calculated:
�
 True positives:
3 #tp¼ jfel : Cl ¼ Cj4DOF iðe

lÞ40gj, where Cl is the class of
example el, Cj is the class in the consequent of the i-th rule,
and DOF iðe

lÞ is the DOF of the i-th rule for the example el.
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#tp represents the number of examples that have been
correctly classified by the rule.

3 tpd¼
P

lDOF iðe
lÞ : Cl ¼ Cj, i.e., the sum of the DOFs of the

examples contributing to #tp.
3 tp¼ #tpþtpd=#tp.
�
 False positives:
3 #fp¼ jfel : ClaCj4DOF iðe

lÞ40gj: number of patterns that
have been classified by the rule but belong to a different
class.

3 fpd¼
P

lDOFiðe
lÞ : ClaCj, i.e., the sum of the DOFs of the

patterns that contribute to #fp.
3 fp¼#fpþ fpd=#fp.
�
 False negatives:
3 #fn¼ n

Cj
ex-#tp, where n

Cj
ex ¼ jfe

l : Cl ¼ Cjgj. #fn is the number
of examples that have not been classified by the rule but
belong to the class associated to the consequent of the rule.
True negatives are not defined as there are not examples of the
default class (static object) in the examples sets. False positives
can be defined as there are static objects in the training and test
data (laser scans), as well as elements of other classes. The values
of tp and fp take into account not only the number of examples
correctly/incorrectly classified, but also the degree of fulfillment
of the rule for each of the examples. In case that tpd� 0, then
tp�#tp, while if it is high (tpd�#tp) then tp�#tpþ1. Taking
into account these definitions, the accuracy of an individual of the
population can be described as

confidence¼
1

10fp
ð21Þ

while the ability of generalization of a rule is calculated as

support¼
tp

tpþ fn
ð22Þ

Finally, we can define fitnessraw as the combination of both values:

fitnessraw ¼ confidence � support ð23Þ

which represents the strength of an individual without taking into
account the others.

In the GCCL approach, a mechanism for niche induction must
be included. The mechanism must promote the competition
among individuals in the same niche (individuals that cover the
same examples) while it must also preserve those individuals that
have a low fitnessraw if they are covering examples that are not
covered yet by other individuals. Our algorithm uses the token
competition [44,45] for this task: each example of the training set
has a token and, of all the individuals that cover this example, the
token will be seized by the individual with the highest fitnessraw.
In this way, the individual with the highest strength in the niche
will exploit it, while individuals that are weaker will reduce its
strength as they cannot compete with the best individual in the
niche. Thus, the fitness of an individual is defined as

fitness¼ fitnessraw �
seizedex

coveredex
ð24Þ

where seizedex is the number of examples seized by the
individual, while coveredex is the number of examples that have
been covered by it ðDOFiðe

lÞ40Þ.

5.5. Resize population

Those individuals with null fitness are removed from the
population, and the best popmaxSize individuals are selected for the
final population. If popsizeopopmaxSize, and there are still uncov-
ered examples, then new individuals are added. These individuals
are chosen from the examples population, randomly selecting
those rules that cover examples that have not been seized yet by
the individuals of the population.

5.6. Check best population

The output of the algorithm should be the best knowledge base
throughout all the iterations. This could not be the population of
the last iteration, as the algorithm is looking for the best single
rules, but without taking into account the interaction among
them. According to [49], a general model of fuzzy reasoning,
which combines information provided by different rules, has the
following steps:
(1)
 DOF or matching degree: represents the degree of activation
of the antecedent part of the rule. For the i-th rule and pattern
el, it is represented by DOF iðe

lÞ.

(2)
 Association degree:

fj
i ¼DOF iðe

lÞdi ð25Þ

where di is the weight or certainty degree of the classification
of pattern el as class Cj (the one in the consequent of i-th rule).
(3)
 Pattern classification soundness degree for all classes. It is
obtained with an aggregation function that combines, for each
class, the association degree calculated for all the rules:

cj ¼ f ðfj
i; i¼ 1; . . . ;#RÞ ð26Þ

where #R is the number of rules.

(4)
 Classification: the pattern is classified as class Cp, where

Cp ¼maxjcj.
We have considered two different definitions for the weights
(di, Eq. (25)):
�
 No weight, which is represented as di ¼ 1;8i.

�
 di ¼ confidencei, where confidencei is the confidence (Eq. (21))

of the i-th individual (rule).

Moreover, a couple of aggregation functions (Eq. (26)) have also
been analyzed:
�
 Maximum: cj ¼maxif
j
i. P
�
 Addition (also known as maximum vote): cj ¼ if
j
i.
The performance of the knowledge base obtained after each
iteration has been measured as

fitnesspop ¼ 1-
#fpþ#fn

nex
ð27Þ

where nex is the total number of examples, and #fp and #fn are the
number of false positives and false negatives obtained by the
complete rule base, i.e., combining the information of all the rules
that have been fired by the patterns that have to be classified.
When the genetic algorithm ends, the population with the best
fitnesspop is selected to build the pattern classifier system.

5.7. Rule subset selection

After the end of the iterative part of the algorithm, the
performance of the obtained pattern classifier system can be
improved selecting a subset of rules with better cooperation
among them. This means that removing some of the rules of the
final rule base, fitnesspop can be increased. The rule selection



ARTICLE IN PRESS

Fig. 8. ILS algorithm [26].

Table 2
Characteristics of the datasets.

Dataset nex Time (s) timemoving (s) maxt#mp maxt#sp

uscCoie 1,115 13.67 – 6 14

uFrei 1,348 61.38 21.82 20 –
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process has the following steps:
1.
 Generate #Rga rule bases, where #Rga is the number of rules of
the best population (RBga) obtained in the previous stage by
the genetic algorithm. Each rule base is coded as:
RBi ¼ ri

1 . . . r
i
#Rga

, with:

ri
j ¼

0 if j4 i

1 if jr i

(
ð28Þ

where ri
j indicates if the j-th rule of RBga is included ðri

j ¼ 1Þ or
not ðri

j ¼ 0Þ in RBi. With this codification, RBi will contain the
best i rules of RBga, as these rules have been ranked in
decreasing order of their individual fitness (Eq. (24)). Notice
that RB#Rga

is RBga.

2.
 Evaluate all the rule bases, and select the best one, RBsel.

3.
 Execute a local search on RBsel to obtain the best rule set, RBbest .

The last step has been implemented with the iterated local search
(ILS) algorithm [26]. ILS is based on the repetition of a local search
using an initial solution that was obtained by mutation of a local
optima previously found (Fig. 8). In this case, O0 ¼ RBsel, and
localSearchðÞ implements the local search of the best solution, i.e.,
it looks for the best neighbor and, if it is better than the current
solution, it replaces the current solution and the local search is
repeated again until no neighbors are better than the current
solution. Also, for this implementation, the neighborhood of a
solution, O, consists of all the solutions that have a Hamming
distance to O under radiusnbhood (a parameter). Function
mutateðOÞ creates a new solution that is a mutation of O, by
randomly flipping the values at some positions. Finally, if the
solution found in the current iteration ðO00Þ is not better than the
current solution ðOÞ, a new iteration is executed if the number of
restarts (failures of the search) is under a threshold ðmaxRestartsÞ.
6. Results

Two datasets have been used in order to validate both the
pattern classifier system model (based on QFTRs) for the detection
of people, together with the evolutionary algorithm to learn
QFTRs for classification. The main characteristics of the datasets
are shown in Table 2, where timemoving is the time that the robot
was moving in the environment, and maxt#mp and maxt#sp are
the maximum number of legs of moving and static people in the
environment at a time instant.

Dataset uscCoie was recorded in a university students
information office (Fig. 9(b)), and contains both moving and
static people. Two lasers were mounted on a platform at a height
of approximately 40 cm, with a resolution of 0.51 and covering the
whole surrounding. Due to the disposition of the lasers, the legs of
people have been detected. The difficulty of the dataset is the
distinction between patterns of both classes, also in an
environment with a high number of people and where persons
are close to each other.

uFrei dataset was obtained with a Pioneer II robot equipped with
two laser range scanners. The lasers were mounted at a height of
40 cm (front laser) and 60 cm (rear laser), and with a resolution of
0.51. Thus, one laser scan provides information of the whole
surrounding of the robot. The experiment took place in the hall of a
building (Fig. 9(a)). The moving objects were in all the cases people
moving in the hall, in groups of up to six people. Again, as the lasers
were placed fairly low, the legs of people were detected. The fact
that people move in groups increases the difficulties in the
classification, changing the typical detection pattern of a single
person. This is due to two main reasons: partial occlusions and
lower values of Pt;m;sizew

new ðh; t0Þ (Eq. (3)). Fig. 10 shows a typical
example of partial occlusions with 10 legs of people (mpq). The
patterns corresponding to mp5 and mp6 are the typical patterns of
one leg. However, the pattern corresponding to mp1; . . . ;mp4 shows
a partial occlusion of mp3, a total occlusion of mp4, and two
patterns (mp1 and mp2) that are very close. Thus, the characteristics
of the patterns are different from the typical ones. A similar
situation occurs with mp72mp8 and mp92mp10, that cannot be
distinguished due to their proximity. In relation to Pt;m;sizew

new h; t0ð Þ,
the presence of groups of people reduces that values because cells
(in the grid map) that were originally free, are occupied in
successive time instants by different moving objects (legs).

Tables 3 and 4 show the results for datasets uscCoie and uFrei.
Each row in the tables represents the results of the evolutionary
algorithm for a five-fold cross-validation and 10 runs per
partition. A k-fold cross-validation consists in dividing the
examples set into k subsets of approximately equal size. Then
the learning process is run k times, using as training examples set
k-1 of the subsets, and testing with the remaining subset (this
subset is different for each of the k runs). In this way, a high
classification rate due to a lucky selection of the test data is
prevented. Moreover, as evolutionary algorithms are non-
deterministic, one run is not meaningful. Thus, for each
partition of the five-fold cross-validation, 10 runs were executed.

In each table, the first column indicates the used method. The
coding is the following:
�
 The selection method: tournament (T) or uniform (U) selection
(Section 5.2).

�
 The aggregation function (Eq. (26)): maximum (M) or addition (A).

�
 The rule weights (di, Eq. (25)): no weights (N) or

di ¼ confidencei (W).

�
 The execution of the rule subset selection (Section 5.7) with

the ILS algorithm (+S).

The other columns represent the number of rules (#R), the
number of false positives (#fp) and negatives (#fn), and the
percentage of examples that have been correctly classified
(%correct), for both training and test sets. For each of these
columns, three values are represented: w, scv, and srun [50]. w is
the arithmetic mean over 50 executions (five-fold cross-validation
with 10 runs). scv is the standard deviation over the arithmetic
means of each data partition, and represents the robustness of the
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Fig. 9. Environments of the two datasets. (a) Ten people moving in groups in environment uFrei. (b) Several people standing still or moving at environment uscCoie.

mp1
mp2
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mp4

mp5mp6

mp7mp8
mp10

mp9

Fig. 10. Pattern modification.
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algorithm to obtain similar results regardless the data partition.
Finally, srun is the arithmetic mean of the standard deviations
over the 10 runs for all the data partitions, which reflects the
robustness of the probabilistic algorithm to obtain similar results
regardless the followed pseudo-random sequence.

The values that have been used for the parameters of the
evolutionary algorithm are: maxIterations¼ 100, popmaxSize ¼ 200,
pc ¼ 0:9, a¼ 1 (PCBLX crossover), u¼ 5 (Eq. (20)), maxRestarts¼ 2
(Fig. 8), and radiusnbhood ¼ 1 (ILS algorithm). The best test result
(%correct) with and without the rule subset selection for each
dataset has been marked in bold in Tables 3 and 4. %correct has
been calculated with Eq. (27).

For dataset uscCoie (Table 3), all the methods without rule
selection obtain a good performance, and the best result on the
test set corresponds to TAW. As expected, the methods using
tournament selection overcome their counterparts with uniform
selection, and the same occurs with the aggregation function
(addition over maximum) and the use of weights. Rule subset
selection slightly increments %correct in most of the methods and,
again, TAWþS is the best one on the test set. However, the two
best methods without rule selection obtain slightly worse results
when rule selection is implemented. Of course, %correct increases
on the training set but, due to overfitting, the performance on the
test set is below the performance of the complete rule set. The
algorithm shows a high robustness with the data partition (low
value of scv) and the different runs (low value of srun).

Table 4 shows the results for dataset uFrei. As there is only one
class (mp), the aggregation function does not influence the results
and, therefore, only one aggregation function (addition) was
analyzed. The inclusion of weights modifies the results, as if
di � 0, then the association degree (Eq. (25)) is very small and the
rule does not contribute to the classification. For the methods
without selection, those using weights (W) are better, as the rules
with a low di, which means low confidence, are discarded. Again,
the best method is TAW. When rule selection is included, %correct
increases both for training and test. After rule selection, the
performance of all the methods becomes very similar, as the
selection algorithm eliminates the bad rules. TAWþS and TANþS

obtain the best result, as they exactly keep the same rules. srun

has again a low value, however scv is high. The reason is that most
of the examples involving movement of the robot are contained in
two of the data partitions and, moreover, in one of those
partitions there is a high concentration of people, very close and
in several groups that merge or split. Therefore, %correct
decreases when these partitions are not included in the training
set. This is a consequence of the difficulties for the detection when
the robot is moving with a high concentration of people, and
highlights the importance of this kind of situations in the training
set in order to get robust and general classifiers.

Results show that the performance of the classifiers over the
test sets in nearly all the methods is similarly good. Only in one
case the performance was around a 10% lower than the average.
This reflects that the system is reliable and robust independently
of the combination of choices for the evolutionary algorithm and
the fuzzy reasoning mechanism. Moreover, the values of other
typical parameters of evolutionary algorithms, as crossover or
mutation probabilities, have been selected using standard
common values that work well in most cases instead of looking
for very specific values for the proposed approach.

In comparison with the performance criteria used in [5,6], our
criterion is much more demanding, as we do not consider
negative examples for nex, i.e., a segment that is not a person
does not contribute to nex, but if it is classified as a person it
increments #fp and, consequently, reduces %correct. Using our
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Table 3
Results of the five-fold cross-validation for dataset uscCoie.

Method #R Training Test

#fp #fn %correct #fp #fn %correct

w scv s run w scv s run w scv s run w scv s run w scv srun w scv srun w scv srun

TMN 83.7 7.7 5.7 34.5 12.5 9.9 1.2 0.4 1.6 95.99 1.43 1.17 25.8 7.0 4.1 13.3 4.7 3.7 82.41 4.71 2.42

TMW 84.0 7.7 6.8 10.9 4.2 4.3 2.2 0.8 1.2 98.52 0.54 0.50 19.5 4.8 3.9 13.8 4.6 3.7 85.04 4.19 2.25

TAN 83.6 7.6 5.8 33.6 12.4 9.2 1.2 0.3 1.5 96.09 1.42 1.09 25.1 6.8 4.1 13.3 4.4 3.8 82.69 4.44 2.56

TAW 84.0 7.7 6.8 10.9 4.2 4.3 2.2 0.8 1.2 98.52 0.54 0.50 19.2 4.7 3.9 13.7 4.6 3.7 85.20 4.14 2.26

UMN 82.7 7.7 6.2 24.7 11.5 8.3 1.0 0.8 1.5 97.11 1.36 0.92 25.2 6.7 4.0 14.9 4.7 4.1 81.94 4.82 2.64

UMW 83.1 7.5 5.8 7.3 4.3 5.7 2.1 1.1 1.5 98.95 0.60 0.63 19.5 4.3 4.1 15.1 4.7 4.2 84.43 4.11 2.81

UAN 82.6 7.7 6.2 24.9 12.0 9.4 1.0 0.8 1.5 97.09 1.43 1.04 24.8 6.5 3.9 14.6 5.0 3.7 82.27 4.86 2.35

UAW 83.1 7.5 5.8 7.3 4.3 5.7 2.1 1.1 1.5 98.95 0.60 0.63 19.1 4.5 3.9 14.9 4.9 3.8 84.72 4.27 2.54

TMN þ S 77.3 6.1 6.1 3.6 1.3 1.7 6.4 1.9 2.4 98.88 0.34 0.23 19.3 4.7 4.2 15.0 5.1 4.1 84.57 4.34 2.50

TMW þ S 78.5 6.1 7.7 3.8 1.3 1.7 5.3 1.5 1.8 98.99 0.31 0.21 18.8 4.6 3.8 14.7 4.8 4.0 84.92 4.18 2.36

TAN þ S 77.2 5.7 6.7 3.8 1.5 2.0 6.1 1.5 2.6 98.89 0.34 0.25 19.0 4.6 4.2 14.9 4.9 4.2 84.75 4.15 2.64

TAW þ S 78.5 6.1 7.7 3.8 1.3 1.7 5.3 1.5 1.8 98.99 0.31 0.21 18.5 4.5 3.9 14.6 4.8 4.0 85.07 4.14 2.40

UMN þ S 78.9 6.3 7.0 2.8 1.1 1.7 4.1 1.9 2.0 99.23 0.30 0.24 19.2 4.9 3.8 15.6 4.8 4.1 84.32 4.48 2.65

UMW þ S 80.3 6.6 6.6 3.2 1.3 1.7 3.6 1.6 1.9 99.24 0.30 0.24 19.0 4.7 4.2 15.4 4.9 4.3 84.52 4.38 2.87

UAN þ S 82.6 7.7 6.2 24.9 12.0 9.4 1.0 0.8 1.5 97.09 1.43 1.04 24.8 6.5 3.9 14.6 5.0 3.7 82.27 4.86 2.35

UAW þ S 80.3 6.6 6.6 3.2 1.3 1.7 3.6 1.6 1.9 99.24 0.30 0.24 18.6 4.9 3.9 15.2 5.1 4.0 84.79 4.56 2.61

Table 4
Results of the five-fold cross-validation for dataset uFrei.

Method #R Training Test

#fp #fn %correct #fp #fn %correct

w scv srun w scv srun w scv srun w scv srun w scv srun w scv srun w scv srun

TAN 88.4 11.5 6.9 137.8 29.3 23.5 0.5 0.4 0.6 87.18 2.66 2.18 67.4 71.3 8.5 9.0 4.6 2.2 71.82 25.04 3.13

TAW 88.4 11.5 6.9 28.9 3.6 5.0 17.9 4.5 3.3 95.66 0.64 0.45 39.1 46.7 6.1 13.0 6.5 2.1 80.72 15.70 2.61
UAN 89.4 12.2 5.4 91.5 16.2 19.7 0.3 0.2 0.4 91.50 1.49 1.84 57.4 62.8 6.2 8.2 4.4 2.2 75.75 21.93 2.54

UAW 89.4 12.2 5.4 26.5 2.7 4.7 12.9 4.0 3.2 96.35 0.57 0.43 41.7 49.5 5.2 11.7 5.7 1.9 80.25 16.74 2.09

TAN þ S 69.4 11.3 8.1 7.7 2.4 3.3 28.8 5.2 3.9 96.62 0.49 0.30 33.2 39.1 6.6 14.9 6.0 1.8 82.22 12.95 2.71
TAW þ S 69.4 11.3 8.1 7.7 2.4 3.3 28.8 5.2 3.9 96.62 0.49 0.30 33.2 39.1 6.6 14.9 6.0 1.8 82.22 12.95 2.71
UAN þ S 73.1 10.5 6.9 7.1 1.8 4.1 23.5 4.0 4.5 97.16 0.44 0.29 35.2 43.7 5.1 13.6 6.3 1.8 81.94 14.58 2.17

UAW þ S 73.1 10.5 6.9 7.0 1.6 4.0 23.6 4.1 4.4 97.16 0.44 0.29 35.1 43.8 5.1 13.6 6.3 1.8 81.95 14.58 2.18
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performance measure (Eq. (27)), the results presented in [5] over
two datasets get a value of %correct¼ 66% which is inferior to our
performance. Moreover the datasets in [5] did not contain data
with the robot moving or in populated environments (but in
cluttered environments). In [6] the performances are provided as
percentages, but the number of true positives, false positives, etc.
are not indicated. Thus, a numerical comparison is not possible.
However, authors indicate that their results with the leg detector
are worse than those presented in [5], probably due to the
complexity of their office dataset. In summary, our proposal
obtains a much better performance than other existing
approaches in spite of the complexity of the used datasets:
people moving in groups combined with the movement of the
robot, and also the distinction between static and moving people.
7. Conclusions

We described in this paper a pattern classifier system for the
detection of people using laser range finders data. The two real
environments in which the system was tested have several
characteristics that make them specially difficult: people moving
in groups, the robot was moving in part of the experiments, and
the classifier had to distinguish between static and moving
people. The spatio-temporal pattern analysis of the datasets of
this problem was accomplished using the quantified fuzzy
temporal rules (QFTRs) model. Moreover, the classifiers were
learned through a genetic algorithm, and a deep experimental
setup was done, including five-fold cross-validation and 10 runs
per data partition. Some statistical measures of the results were
calculated, reflecting a very high classification rate in quite
complex and realistic conditions. These results reflect the ability
of QFTRs for spatio-temporal pattern recognition, and that their
combination with evolutionary algorithms is a powerful tool for
pattern classification.
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[6] Z. Zivkovic, B. Kröse, Part based people detection using 2D range data and
images, in: Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), San Diego, USA, 2007, pp. 214–219.

[7] D. Schulz, W. Burgard, D. Fox, A. Cremers, People tracking with mobile robots
using sample-based joint probabilistic data association filters, International
Journal of Robotics Research 22 (2) (2003) 99–116.

[8] D. Amarasinghe, G. Mann, R. Gosine, Moving object detection in indoor
environments using laser range data, in: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Beijing,
China, 2006, pp. 802–807.

[9] M. Bennewitz, W. Burgard, G. Cielniak, S. Thrun, Learning motion patterns of
people for compliant robot motion, International Journal of Robotics Research
24 (1) (2005) 31–48.

[10] J. Bobruk, D. Austin, Laser motion detection and hypothesis tracking from a
mobile platform, in: Proceedings of Australasian Conference on Robotics and
Automation (ACRA), Canberra, Australia, 2004.

[11] P. Chakravarty, R. Jarvis, Panoramic vision and laser range finder fusion for
multiple person tracking, in: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Beijing, China, 2006,
pp. 2949–2954.

[12] J. Cui, H. Zha, H. Zhao, R. Shibasaki, Robust tracking of multiple people in crowds
using laser range scanners, in: Proceedings of the 18th International Conference
on Pattern Recognition (ICPR), Hong Kong, China, 2006, pp. 857–860.

[13] M. Lindström, J.-O. Eklundh, Detecting and tracking moving objects from a
mobile platform using a laser range scanner, in: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Maui,
USA, 2001, pp. 1364–1369.

[14] E. Topp, H. Christensen, Tracking for following and passing persons, in:
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Edmonton, Canada, 2005, pp. 2321–2327.

[15] C.-C. Wang, C. Thorpe, Simultaneous localization and mapping with detection
and tracking of moving objects, in: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), Washington, DC, USA, 2002,
pp. 2918–2924.

[16] H. Zhao, Y. Chen, X. Shao, K. Katabira, R. Shibasaki, Monitoring a populated
environment using single-row laser range scanners from a mobile platform,
in: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), Roma, Italy, 2007, pp. 4739–4745.

[17] J. Xavier, M. Pacheco, D. Castro, A. Ruano, U. Nunes, Fast line, arc/circle and
leg detection from laser scan data in a player driver, in: Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), Barcelona,
Spain, 2005, pp. 3930–3935.

[18] N. Bellotto, H. Hu, Multisensor integration for human-robot interaction,
Intelligent Cybernetic Systems Journal 1(2005).
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