
FOCUS

Processing time estimations by variable structure TSK rules
learned through genetic programming

Manuel Mucientes Æ Juan C. Vidal Æ
Alberto Bugarı́n Æ Manuel Lama

Published online: 2 September 2008

� Springer-Verlag 2008

Abstract Accuracy in processing time estimation of

different manufacturing operations is fundamental to get

more competitive prices and higher profits in an industry.

The manufacturing times of a machine depend on several

input variables and, for each class or type of product, a

regression function for that machine can be defined. Time

estimations are used for implementing production plans.

These plans are usually supervised and modified by an

expert, so information about the dependencies of process-

ing time with the input variables is also very important.

Taking into account both premises (accuracy and simplic-

ity in information extraction), a model based on TSK

(Takagi–Sugeno–Kang) fuzzy rules has been used. TSK

rules fulfill both requisites: the system has a high accuracy,

and the knowledge structure makes explicit the depen-

dencies between time estimations and the input variables.

We propose a TSK fuzzy rule model in which the rules

have a variable structure in the consequent, as the regres-

sion functions can be completely distinct for different

machines or, even, for different classes of inputs to the

same machine. The methodology to learn the TSK

knowledge base is based on genetic programming together

with a context-free grammar to restrict the valid structures

of the regression functions. The system has been tested

with real data coming from five different machines of a

wood furniture industry.

Keywords Genetic programming �
Context-free grammar � TSK fuzzy rules �

Production planning � Processing time estimation �
Manufacturing industry

1 Introduction

The estimation of the processing times of each one of the

operations involved in the manufacturing of a product is an

important task in any manufacturing industry (Herrmann

and Chincholkar 2001). An accurate estimation of the

manufacturing time of the product will allow competitive

prices, higher profits, and increment the client portfolio too.

Nevertheless, task scope is even broader. On the one hand,

it fixes future material and storage capacity requirements.

On the other hand, it constitutes the basis for any sched-

uling process and thus will influence the manufacturing or

production plan, and the logistic requirements to fulfill

client orders in time.

The processing time of a machine can depend on several

input variables, like the dimensions of the product, the

material, the speed of the machine for that kind of product,

etc. Thus, a machine can have several regression functions

(one for each type of product) for the estimation of the

processing times. Therefore, a good estimation of the

manufacturing time of a product requires not only an

accurate regression function, but also the selection of the

appropriate function among all the regression functions of

the machine.

The estimated processing times are generally used for

implementing production plans: schedule a finite set of

client orders in the manufacturing workload, given a finite

set of resources that can perform the different manufactur-

ing operations of a production plant. Production plans are

implemented or modified with the supervision of an expert.

Thus, it is fundamental that the expert can easily extract

M. Mucientes (&) � J. C. Vidal � A. Bugarı́n � M. Lama

Department of Electronics and Computer Science,

University of Santiago de Compostela,

15782 Santiago de Compostela, Spain

e-mail: manuel.mucientes@usc.es

123

Soft Comput (2009) 13:497–509

DOI 10.1007/s00500-008-0364-2

information about how the different processing times have

been estimated. The simplicity to extract information from a

regression function depends on the way the knowledge

contained in that function is represented. In our case, the

expert demands regression functions in which it is easy to

evaluate the weight or contribution of each variable to the

processing time. Moreover, the expert finds also very useful

to discover relations among the input variables that affect

time estimations. Also, it must be taken into account that the

expert structures his knowledge for time estimations with

polynomials of the input variables.

In summary, our proposal must take into account two

premises: high accuracy, but providing the expert with

valuable and easy to extract information. Takagi–Sugeno–

Kang (TSK) fuzzy rules (Takagi and Sugeno 1985; Sugeno

and Kang 1988) seem to fit perfectly for the requirements

of processing times estimation in this case. In a TSK rule,

the output is obtained as a polynomial of the input vari-

ables. So, if the input variables verify the antecedent part of

the rule, the product belongs to that class with a certain

degree, and the processing time can be estimated with the

polynomial in the consequent of the rule.

Learning of fuzzy knowledge bases through the use of

evolutionary algorithms has shown to be a powerful tech-

nique (Cordón et al. 2001). Evolutionary algorithms have

several advantages over other learning methods in this

field: first, the rules of the knowledge base can be repre-

sented in many different ways, due to the flexibility in the

representation of the solutions. On the other hand, another

important advantage is that we can manage the tradeoff

between simplicity to extract information and accuracy of

the learned rules through the use of different algorithms.

Several authors have learned TSK knowledge bases with

evolutionary algorithms: in (Cordón and Herrera 1999),

authors present a two-stage evolutionary process for

designing TSK fuzzy rule-based systems from examples.

They combine a generation stage based on a (l; k)-evo-

lution strategy, and a refinement stage, in which both the

antecedent and consequent parts of the fuzzy rules in the

previous knowledge base are adapted by a hybrid evolu-

tionary process. In (Hoffmann and Nelles 2001), a genetic

programming approach is used for structure identification

of local lineal neuro-fuzzy models through TSK rules. The

objective is to identify an optimal partition of the input

space into gaussian, axis-orthogonal fuzzy sets. In

(Papadakis and Theocharis 2006) a genetic-based algo-

rithm for generating simple and well-defined TSK models

is described. The model building process comprises three

stages: structure learning, rule base simplification, and fine-

tuning. Another approach is proposed in (Yen et al. 1998),

with a learning algorithm that integrates global and local

learning. The algorithm uses the idea of local weighted

regression and local approximation in nonparametric

statistics. The method is capable of adjusting its parameters

based on the users preference, generating models with good

tradeoff in terms of global fitting and local interpretation.

Finally, in (Lin and Xu 2006) TSK-type fuzzy controllers

are learned with a hybrid approach that consists of a self-

clustering algorithm and a dynamic-form symbiotic evo-

lution. First, the internal structure is identified, and then a

sequential-search-based dynamic evolution method is

applied.

Our approach for processing time estimation is based on

the use of TSK rules. However, TSK rule consequents are

usually first-order polynomials, and we need more flexi-

bility in the structure of the consequent of the rules, as the

terms of the polynomials can be sums of variables or

products of variables to keep the knowledge structure

demanded by the expert. Accordingly, we have to define a

TSK rule model able to estimate processing times of a

machine.

The design of a TSK rule of variable structure is a hard

task, as we have to define the labels of the antecedent part,

the coefficients of the polynomial, but also the functions of

the input variables for each term of the polynomial. To

learn such a knowledge base, the algorithm must have the

ability to represent rules with different structures, and this

facility is provided by genetic programming. Genetic pro-

gramming is an evolutionary algorithm that represents each

chromosome of the population as a tree of variable length.

Flexibility in the structure of the consequents of the TSK

rules is fundamental for processing time estimations, but

some restrictions in the structures have to be imposed, as

not all of them are valid. A compact representation of the

valid structures of the consequents can be defined through a

context-free grammar. Thus our proposal is a methodology

for learning TSK rules of variable structure in its conse-

quent using genetic programming together with a context-

free grammar to define the valid structures. The obtained

knowledge base is a set of regression functions for pro-

cessing time estimations in the wood furniture industry.

The paper is structured as follows: Sect. 2 introduces the

problem of processing time estimation in the wood furni-

ture industry, Sect. 3 presents the TSK rule model with

variable structure in the consequent, while Sect. 4 describes

the evolutionary approach used for learning: a context-free

grammar together with a genetic programming algorithm.

Section 5 shows the results of the experiments with dif-

ferent examples sets, and compares the results with other

methodologies. Finally, Sect. 6 points out the conclusions.

2 Processing times in the furniture industry

Throughput time is the interval that elapses when the

manufacturing system performs all of the operations

498 M. Mucientes et al.

123

necessary to complete a work order. Its accurate estimation

is hard in industries where custom-designed products are

dominant, such as the furniture industry. The lack of pre-

vious manufacturing experiences and the complexity in the

production makes time estimations difficult.

The reduction of throughput time has many benefits:

lower inventory, reduced costs, improved product quality

(problems in the process can be found more quickly), faster

response to customer orders, and increased flexibility.

Much effort is therefore spent to reduce throughput time by

improving manufacturing planning, control systems, and

developing more sophisticated scheduling procedures

(Herrmann and Chincholkar 2001; Kusiak and He 1999).

The objective is to define work plans that minimize the

resources queuing and maximize resources capacity, con-

strained to the material availability and product

requirements. In this context, the feasibility, time, and cost

of most promising plans is analyzed (Gupta and Nau 1995;

Minis et al. 1999).

Methodologies like design for manufacturing and

assembly (DFMA) are used to reduce the cost and improve

the quality of products (Boothroyd 1991; Boothroyd et al.

1994), since the product design has a huge impact on the

throughput time in custom-designed products. Note that the

throughput time has many components, including move,

queue, setup, and processing times (Allahverdi et al. 2008;

Shabtay and Steiner 2007; Cheng et al. 2004). In this work

we will focus on the estimation of the processing times,

which is a critical piece in each manufacturing step.

The estimation of the processing time is one of the most

important tasks in the product design life cycle. For

example, time estimations are taken into account for

redesigning the product if the predicted time is longer than

expected. DFMA approaches include many models and

techniques for estimating the processing times of a manu-

facturing step based on the product design. For a detailed

design, highly detailed process planning, manufacturing

process simulation, or time estimation models can be

employed (Minis et al. 1999; Boothroyd 1991; Boothroyd

et al. 1994). For a conceptual design, however, less

detailed models must depend on a more limited set of

critical design information (Boothroyd 1991; Boothroyd

et al. 1994). Both approaches are applied in the furniture

industry since the definition of a detailed design is cost and

time expensive.

The process structure is depicted in Fig. 1: the material,

manufacture and assembly requirements and costs are

inferred from the technical or conceptual design of the

furniture. Length, width, thickness and other inputs that

define a workpiece are some of the variables that influence

the processing time of an operation. These variables

extracted from the product design can also be combined to

get new variables such as the surface or the volume. For

example, the processing time to varnish a piece of furniture

depends on its surface. If the varnishing process is by hand

then the manipulation time is also influenced by the volume

of the piece.

As an example, we will describe the way in which the

processing time is calculated for a table with the concep-

tual design shown in Fig. 2. Time estimation is computed

in the compute manufacturing costs task depicted in Fig. 1.

This task, as also happens with the product design, is based

on the route selected to manufacture the product and on the

order of the operations that this route defines. Although the

way in which we select the manufacturing route is out of

the scope of this paper, we have to mention that this

selection is based on a set of rules based on woodworking

knowledge. These rules take into account the constructive

decisions, joints used to assemble the furniture, and fin-

ishing or quality standards. Once the operations and their

ordering are defined, the compute manufacturing costs task

estimates the times of each of the manufacturing steps. For

the table example, it must compute the time to:

– Cut the workpieces from large wood boards.

– Plan and calibrate their surface and thickness.

– Cut each corner at a 45-degree angle.

– Cut a groove in each end of the pieces to be mitered.

– Finishing.

Propose
designs

Revise
designs

Update
designs

Revise
manufacturing

and assembling

Revise
material

assignment
Compute

manufacturing
costs

Compute
material

costs

Fig. 1 Diagram of the product design task

12
00

40
0

1200

1200

Fig. 2 Conceptual design from which furniture parts and manufac-

turing steps can be extracted

Processing time estimations 499

123

– Hold the spline in the mitered joint with top-grade

adhesive.

– Assemble and pack the furniture.

The processing time of each step is influenced by the

operation and, also, by the resource that will perform the

operation. For example, the wood pieces of the table

example must be calibrated to get the required thickness

and precision. Figure 3 depicts the calibrating and sanding

machine that will perform the operation. Calibrating

machinery specifies the feed speed, the abrasive belt speed,

the abrasive belt size, the working thickness, and the

maximum and minimum workpiece dimensions. Never-

theless, only the feed speed has influence on the processing

time since the other parameters only constraint which

resource can perform the operation. In perfect conditions,

processing time could be computed by multiplying the

speed by the length of the pieces that will be processed.

However, the manipulation of the pieces reduce the speed

ratio. In our example, although machine feed speed is 5 m/

min, time measurements showed that the real speed was

significantly lower.

We are currently working with a wood furniture industry

in which the experts make processing time estimations

based on a polynomial approach. The values of polynomial

variables are taken from the technical designs. Basically,

they use pieces dimensions and material features. How-

ever, this approach has several drawbacks: first, it is

difficult to identify which variables may influence the

processing time when a machine is performing an opera-

tion. Secondly, the weight of these variables is obtained

from the experience and from manual timekeeping and is

therefore uncertain (Cao et al. 1999). Finally, the previ-

ously mentioned characteristics of the pieces of furniture,

such as their dimensions and variety of materials, makes

difficult the definition of a unique function for the range of

possible values. In fact, it is usual to identify different

classes of pieces based on the values that the variables can

take. For each class, a different polynomial may be defined.

In this paper, we will focus on the primary and sec-

ondary processing operations such as: sawing, drilling,

sanding or laminating. For these operations, the input

variables will be the dimensions of that pieces. This

selection of the input variables is due to the way the

manufacturing is carried out in the company. For example,

the same sawing speed is always used for cutting solid

wood independently of its moisture. In the next section, the

model that has been followed for processing times esti-

mation in this wood furniture industry is detailed. The

model is based on a TSK fuzzy rule base in which the

consequents follow a variable structure provided by an

expert.

3 TSK rule model for processing times estimation

The approach presented in this paper for processing times

estimation looks for a high accuracy regression model, but

maintaining the knowledge structure provided by an expert.

The objective of the last premise is to make easy for the

expert the extraction of information from the regression

functions. Processing time estimations provide the expert

with information to implement or modify a production

plan. Thus, the simplicity in information extraction of the

regression functions associated to a machine is as impor-

tant as accuracy in time estimations. Of course, the type of

information that an expert demands depends on the char-

acteristics of the industry the system is being developed

for. Also, sometimes, different experts ask for different

types of information. Thus, the representation of the

regression functions must fulfill the requirements of the

expert from the point of view of information extraction.

The expert demands the following characteristics for the

representation of the functions:

– The weight or contribution of each input variable to the

processing time estimation must be explicit.

– A regression function could depend on a new generated

variable. This variable represents relations among input

variables. For example, the product of the three

dimensions of a piece of furniture generates the

variable volume.

Also, in this particular case, the expert structures his

knowledge for processing time estimations with polyno-

mials of the input variables like:

Processing time ¼ 100 � lengthþ 200 � volume ð1Þ

With this type of knowledge the expert can estimate the

times, but also extract that the processing time for a

Abrasive belt Transportation belt

Sanding engine

Fig. 3 Calibrating and sanding machine

500 M. Mucientes et al.

123

machine with such a regression function is sensible to all

the dimensions of the piece of furniture. Nevertheless, if

the processing time depends on the surface instead of the

volume, the expert could modify a production plan taking

into account that the thickness of the piece does not affect

the time for that machine. For example, the thickest pieces

could be assigned to the last machine, and the thinner ones

to the other machine. So, from the expert’s point of view, it

is very important to maintain this knowledge representation

to preserve simplicity for information extraction from the

regression functions.

Following these prerequisites, processing times of a

machine can be described as polynomials of several input

variables. These variables can be combined in many dif-

ferent ways:

X

i

ai �
Yna

j¼1

x
di; j

j ð2Þ

where ai are the coefficients, xj, j = 1,...,na, are the input

variables, and di, j is an indicator variable defined by:

di; j ¼
1 if xj 2 ith term of the polynomial

0 otherwise

�
ð3Þ

Moreover, for a given machine, there can coexist

different polynomials, each one representing the

estimation of the processing time of a class of the input

variables. For example, in an specific machine, processing

times of pieces with a thickness over a threshold could be

estimated with a polynomial, and under that threshold with

another polynomial. Thus, the learning process has to

obtain a regression function for each class of the input

variables to a machine.

Summarizing, given an input, first the system has to

select a regression function for the machine, and then

estimate the processing time. The regression function must

follow the structure of Eq. 2, as one of the premises of the

approach is to maintain the simplicity for information

extraction. The model that best suites for processing time

estimations under these conditions is a TSK fuzzy rule-

based system (Takagi and Sugeno 1985; Sugeno and Kang

1988). In a TSK rule, the output is obtained as a function of

the input variables. This is exactly what is necessary to

estimate processing times, maintaining the structure of the

knowledge provided by the expert. The proposed rule

model is:

Rk : IF X1 is A1
l k
1

and . . . and Xna is Ana
l k
na

THEN Y is
X

i

ai � fi x1; . . .; xnað Þ ð4Þ

where Xj is a linguistic variable, Aj

lkj
is a linguistic label of

that variable, lj
k = 1,...,nlj, Y is the output variable, and

fi (x1,...,xna) are functions of the inputs variables (xj).

These functions, fi, can be defined in two different ways:

fi x1; . . .; xnað Þ ¼

Pna

j¼1

xj � di; j

Qna

j¼1

x
di; j

j

8
>><

>>:
ð5Þ

allowing all the possible combinations that are needed for

processing time estimations.

The generation of a knowledge base with TSK rules of

this type (Eq. 4) requires the definition of several linguistic

labels, coefficients (ai), and also functions (fi) with very

different structures. The use of expert knowledge can help

to reduce the search space, for example limiting the valid

structures for the functions. Anyway, the generation of a

knowledge base of this kind by an expert is really very

complex and, accordingly, rules should be obtained with a

learning algorithm. Evolutionary algorithms have flexibil-

ity in the representation of the solutions, and also we can

manage the tradeoff between accuracy and simplicity for

information extraction. In the next section, we describe in

detail the evolutionary algorithm that has been used to

learn TSK rules following the model of Eq. 4 for pro-

cessing time estimation in the wood furniture industry.

4 Evolutionary algorithm

The structure of the consequent of the rules for processing

time estimation can be very different from one rule to

another. Also, this structure has restrictions: for example, a

function (fi) cannot be a combination of sums and products

of variables (only sums or products). For these reasons, the

most appropriate evolutionary algorithm is genetic pro-

gramming (Koza 1992). In genetic programming, an

individual is a tree of variable length. Each individual in

the population can have a different structure, and the

introduction of restrictions in that structure of the chro-

mosome can be solved using, for example, a context-free

grammar.

According to (Cordón et al. 2001), evolutionary learn-

ing of knowledge bases has different approaches to

represent the solution to the problem: Pittsburgh,

Michigan, iterative rule learning (IRL), and cooperative-

competitive approaches. In the Pittsburgh approach (Carse

et al. 1996), each chromosome codifies a complete

knowledge base. The length of the chromosomes can be

variable to represent rule bases with a variable number of

rules. This methodology has a high computational cost, as

in each iteration many knowledge bases have to be eval-

uated. It would be more adequate for our purpose to codify

a single rule in each individual of the population. The other

three approaches follow this codification.

Processing time estimations 501

123

In the Michigan approach (Kovacs 2004) rules evolve

along time due to their interaction with the environment

using the evolutionary algorithm and reinforcement learn-

ing. The distribution of the payoff is usually complex. On

the other hand, in the IRL approach (Cordón and Herrera

2001), there is not payoff distribution because a single rule

is learned by the evolutionary algorithm and not the whole

rule base. After each sequence of iterations, the best rule is

selected and added to the final rule base. The selected rule

must be penalized in order to induce niche formation in the

search space.

Finally, in the cooperative-competitive approach

(Giornada and Neri 1995) rules evolve together (coopera-

tive, which is not the case of the IRL approach) but

competing among them to obtain the higher fitness. In this

approach it is fundamental to include a mechanism to

maintain the diversity of the population (niche induction).

The mechanism must warrant that there is competition

among individuals of the same niche, but also has to avoid

the deletion of those weak individuals that occupy a niche

not covered by other individuals of the population. The

proposed evolutionary algorithm is based on the coopera-

tive-competitive approach.

We have chosen token competition (Wong et al. 2000;

Leung et al. 1992) as the mechanism for maintaining the

diversity. According to (Berlanga et al. 2005), this mech-

anism is adequate for genetic programming, as in this kind

of evolutionary algorithms the structure of the individuals

can be completely different and, thus, the evaluation of the

similarities is hard. Mechanisms to maintain diversity, like

crowding or fitness sharing, have to estimate the similari-

ties between pairs of individuals, but not token

competition.

The learning process is based on a set of training

examples. These examples are represented by tuples:

(length, width, thickness, processing time), where the first

three variables are the dimensions of a piece of furniture,

and the output variable is the processing time for that piece

in the machine. In token competition, each example of the

training set has a token. All the individuals that cover an

example have to compete to seize its token, but only one of

them (the stronger one) can get it. During the evolutionary

process, the individual with the highest strength in the

niche will exploit it, trying to obtain the maximum number

of tokens of the niche to increase its strength (and its fit-

ness). On the other hand, the weaker individuals will

reduce their strength as they can not compete with the best

individual in the niche.

4.1 Description of the context-free grammar

As has been pointed out, in genetic programming each

individual is a tree of variable size. Thus, the structure of

the individuals can be very different among them. In order

to generate valid individuals of the population, and to

produce right structures for the individuals after crossover

and mutation, some restrictions have to be applied. With a

context-free grammar all the valid structures of a tree

(chromosome) in the population can be defined in a

compact form. A context-free grammar is a quadruple

(V, R, P, S), where V is a finite set of variables, R is a finite

set of terminal symbols, P is a finite set of rules or pro-

ductions, and S is an element of V called the start variable.

The grammar that defines the structure of the learned

rules for processing time estimations, has been designed

using expert knowledge. The information provided by the

expert is:

– Input and output variables.

– Number of linguistic labels of the input variables.

– Valid structures for the consequent of the rules.

The grammar is described in Fig. 4. The first item

enumerates the variables, then the terminal symbols, in

third place the start variable is defined, and finally the rules

for each variable are enumerated. When a variable has

more than one rule, rules are separated by symbol |.

Variable rule is the start variable of the grammar and

generates two new nodes in the tree: antecedent and con-

sequent. antecedent codifies the antecedent part of the rule

with three propositions (antj), one for each of the input

variables: length, width and thickness. Each proposition is

defined by a linguistic label, Aj
lj
; or by symbol k, which

represents that no linguistic label is selected. The linguistic

labels of each variable of the antecedent part have been

– V = { rule, antecedent, antlength, antwidth, antthickness,
consequent, expression, sumExp, multExp, cvarlength,
cvarwidth, cvarthickness }

– Σ = { α, Alength
1 , Alength

2 , Awidth
1 , Awidth

2 , Athickness
1 ,

Athickness
2 , xlength, xwidth, xthickness, (,), +, ·, λ }

– S = rule
– Productions:

– rule −→ antecedent consequent
– antecedent −→ antlength antwidth antthickness

– antlength −→ Alength
1 | Alength

2 | λ
– antwidth −→ Awidth

1 | Awidth
2 | λ

– antthickness −→ Athickness
1 | Αthickness

2 | λ
– consequent −→ expression + expression + expression
– expression −→ α · (sumExp) | α · (multExp) | α

| λ
– sumExp −→ cvarlength + cvarwidth + cvarthickness

– multExp −→ cvarlength · cvarwidth · cvarthickness

– cvarlength −→ xlength | λ
– cvarwidth −→ xwidth | λ
– cvarthickness −→ xthickness | λ

Fig. 4 Context-free grammar

502 M. Mucientes et al.

123

obtained with a uniform partition of the universe of dis-

course of each input variable.

Variableconsequent represents the consequent part of

the rule as the sum of three (the number of input variables)

mathematical expressions (expression). Each variable

expression represents one of the elements of the sum-

matory of the consequent part of a rule in Eq. 4: terminal

symbol a codifies each of the ai, and fi (Eq. 5) is represented

by variables sumExp and multExp, by symbol a (the

mathematical expression is only a coefficient), or by k (this

function is not taken into account). Finally, a mathematical

expression can contain each of the input variables (xj), or skip

some of them with symbol k (di,j = 0, Eqs. 3, 5). This is

represented with the rules of cvarj:

Figure 5 shows an example of the rules learned with the

proposed evolutionary algorithm and the described gram-

mar. The rule has three propositions in the antecedent part

(all the linguistic variables are used to classify the input),

and two terms in the polynomial of the consequent: one

considers the surface of the piece, and the other one adds

all the dimensions of the piece.

4.2 Genetic programming algorithm

The genetic programming algorithm for processing time

estimation is described in Fig. 6. First, the population has

to be initialized.

4.2.1 Initial rule generation

For each example in the training set, an individual (rule) is

generated as follows: the antecedent part of the rule is

created selecting the labels that best cover the input values

of the example. On the other hand, the consequent part is

obtained starting with variable consequent and applying

randomly selected productions (rules of the context-free

grammar) recursively until all the leafs of the tree are

terminal symbols.

Figure 7 shows a typical chromosome corresponding to

the rule shown in Fig. 5. Terminal symbols (leafs of the

tree) are represented by circles, and variables are shown as

flatted circles. Starting at node consequent, there is a

unique rule to apply. This rule generates five children

nodes, and three of them are variables (expression). In each

one of them, four rules can be selected. Randomly, rule 2 is

applied to the first variable, rule 1 to the second, and rule 4

to the third. The process is repeated again, until all the

leaves of the tree are terminal symbols. Terminal symbol a
can take different values in each of the nodes it appears.

Initially, each value of a is picked out randomly. After the

generation of this preliminary population, called examples

population, individuals must be evaluated.

4.2.2 Individual evaluation

For each individual and each example in the training set,

the following steps are repeated:

1. Obtain the degree of fulfillment of the antecedent part

of the rule (individual) for this example.

2. If the example is covered by the rule:

(a) Parse the string of the consequent part of the rule

and obtain the processing time estimation, ptest
c,e,

where c is the individual and e the example.

(b) Calculate the error in the time estimation as:

errorc;e ¼ ðpt
c;e
est � pteÞ2 ð6Þ

where pte is the processing time for example e.

Finally, it is necessary to calculate the raw fitness of

each individual as:

fitnessc
raw ¼

necPnec

e¼1 errorc;e
ð7Þ

where nec is the number of examples covered by individual

c. Raw fitness measures the strength of the individual for

the examples it covers. To calculate the fitness of each

individual, first it is necessary to implement the token

competition. The algorithm to decide which individual

seizes each example is the following:

– For each example e, choose the individual with lower

errorc,e

– If there are several individuals with equal errorc,e

– Choose the individual with higher fitnessraw
c

Fig. 5 A typical rule for processing time estimation

1. Initialize population
(a) Generate rules
(b) Evaluate population
(c) Resize population (i)

2. for iteration = 1 to maxIterations
(a) Crossover and mutation
(b) Evaluate population
(c) Resize population (ii)

3. Select rules for the final knowledge base

Fig. 6 Evolutionary algorithm

Processing time estimations 503

123

– If there are several individuals with equal fitnessraw
c

• Choose the individual with higher nec

Thus, the individual that generates a lower error for the

example will seize it. If there are several individuals with

the same error, then the stronger individual of the niche

will seize the example. And, finally, if there are also sev-

eral individuals in this situation, the one that covers more

examples will be selected. Fitness is defined as:

fitnessc ¼ fitnessc
raw �

seizedc

coveredc
ð8Þ

where seizedc is the number of examples seized by indi-

vidual c and coveredc the number of examples covered.

4.2.3 Population resize (i)

The last step in the initialization consists in eliminating

those individuals of the examples population that do not

cover any example. Finally, popsize individuals are picked

out from the examples population to build the initial

population, and the iterative part of the algorithm starts.

This iterative part is repeated maxIterations times, and

starts with the crossover and mutation of the individuals of

the population. There is no selection. A couple of indi-

viduals is randomly picked up (all the individuals of the

previous population have to be chosen once), individuals

are crossed with probability pc, then mutated with proba-

bility pm, and finally added to the population. At the end of

the process the population will double the size of the pre-

vious population, as it will contain the original individuals

plus their offspring (due to crossover and mutation).

4.2.4 Crossover

Crossover of two individuals is implemented with a one-

point crossover operator. The cross point of the first indi-

vidual (cp1) is selected randomly among all the genes of

the chromosome (i.e., nodes of the tree) that are variables

of the context-free grammar. Then, the algorithm looks for

a node of the same variable in the second of the individ-

uals. If there is not such a node, then the parent node of cp1

is chosen as cp1. This process is repeated until there is at

least one node in the second individual equal to node cp1. If

there are several candidates to select cp2 (cross-point of the

second individual), one of them will be randomly selected.

Once cp1 and cp2 have been determined, the subtree with

root node cp1 is grafted at node cp2 of the second chro-

mosome and vice versa. Figure 8 shows an example of

crossover between two individuals. First, cp1 is selected at

node sumExp. As this node does not exist in the second of

the individuals, the new cp1 is the parent node of the pre-

vious cp1: node expression. There are three possible

cp2, as there are three nodes of the same type as cp1 in the

second of the individuals. Randomly, the node with white

background is selected, and the subtrees that have as root

nodes cp1 and cp2 are interchanged.

4.2.5 Mutation

Mutation operation starts selecting randomly a gene. If the

gene is a variable, then a rule for this variable is randomly

applied and the resulting subtree replaces the original one.

On the other hand, if the gene is a terminal symbol that can

take different values (a in our grammar), its value can be

rule

antecedent consequent

antwidthantlength antthickness expression expression expression+ +

α . ()multExp α . ()sumExp λ

cvarlength cvarwidth
cvarlength cvarwidth cvarthickness+ +. cvarthickness.

A1
thicknessA2

widthA1
length

xthicknessxwidthxlengthxwidthxlength λ

Fig. 7 A typical chromosome

504 M. Mucientes et al.

123

mutated in two different ways: random mutation and step

mutation. Random mutation is selected with probability

prm, and chooses a new value randomly. On the other hand,

step mutation increases or decreases (with equal probabil-

ity) the value of the gene in a quantity, called precg (where

g is the gene), that represents a meaningful change in the

gene.

4.2.6 Population resize (ii)

After crossover and mutation, individuals are evaluated in

the same way as for the evaluation stage in the initializa-

tion step. Finally, population must be resized to popsize:

first, individuals with null fitness are eliminated. Whenever

the size of the population is under popsize, new individuals

are added. These individuals are chosen from the examples

population, selecting those rules that cover examples that

have not been seized yet by the individuals of the popu-

lation. If the population is still under popsize (this may

occur in the last iterations of the algorithm), then copies

and mutated copies of the best individuals are inserted.

4.2.7 Final knowledge base construction

Once the algorithm has finished, the knowledge base has to

be defined selecting some of the rules of the final popula-

tion. First, the individuals are sorted in a decreasing fitness

order. Starting with the best individual, an individual is

added to the knowledge base if it covers at least one

example not covered yet by the rules of the knowledge

base.

5 Results

The proposed algorithm has been validated with a subset of

the machines that are currently being used in the produc-

tion plans of a wood furniture industry. These machines

are: rip saw for edging and ripping I (RS-I), abrasive

calibrating machine (ACM), veneer slicers (VS), rip saw

for edging and ripping II (RS-II), and commissioning

system for large boards (CSLB). Data of 1,500 different

custom pieces of furniture, that have been build in the

consequent

expression expression expression+ +

α . ()multExp α . ()sumExp λ

cvarlength cvarwidth cvarlength cvarwidth cvarthickness+ +. cvarthickness.

xthicknessxwidthxlengthxwidthxlength λ

consequent

expression expression+ +

λλ

cp1

cp1

cp2

cp2

cp2

Chromosome 1

.

consequent

expression expression+ +

α . ()multExp λ

cvarlength cvarwidth. cvarthickness.

xwidthxlength λ

consequent

expression expression+ +

λλ

cp1
cp2

Chromosome 1 Chromosome 2rule rule

.

Crossover Crossover

expression

α . ()multExp

cvarlength cvarwidth. cvarthickness.

xwidth xthicknessλ

expression

. ()sumExp

cvarlength cvarwidth cvarthickness+ +

xthicknessxwidthxlength

α

expression

α . ()multExp

cvarlength cvarwidth. cvarthickness.

xwidth xthicknessλ

rule rule
Chromosome 2

Fig. 8 Crossover of two chromosomes

Processing time estimations 505

123

factory along several years, have been used to generate the

examples sets. The dimensions of each of the pieces were

obtained and then, for each of the machines, the processing

time was measured. These times are very noisy because

many of the operations require some kind of manipulation

by an operator and, also, because this operator has to

measure the times manually.

Each example has values of length, width and thickness

of the piece of furniture, as well as the measured processing

time for that piece in the machine. Table 1 shows the mean

ðxÞ and standard deviation (r) for each variable in each of

the data sets. The algorithm has to learn the knowledge base

(rule model of Eq. 4) that minimizes the error of processing

time estimation for the machine, but keeping the rule

structure provided by the expert and summarized in the

context-free grammar. Experiments have been performed

with a five-fold cross-validation for each of the examples

sets. Each set was divided in five subsets of equal size, and

the learning process was run five times, using as training set

four of the subsets, and as test set the remaining one. The

test set was different in each of the runs.

We have compared our approach with other regression

techniques proposed by other authors. Tables 2–6 show,

for each of the machines (or data sets), the mean and

standard deviation of the number of rules (#R), the mean

square error of training (MSEtra), and the mean square error

of test (MSEtst) of the five-fold cross-validation experi-

ments for each technique1. In each table, the lower average

values for #R, MSEtra, and MSEtst are marked in boldface.

The methodologies compared in the tables are:

– GP-TSK: the approach described in this paper. Learns

TSK rules with global semantics using genetic pro-

gramming with a context-free grammar. Token

competition is used to maintain diversity in the

population. The algorithm has the following parame-

ters: maxIterations = 100, popsize = 500, pc = 0.8,

pm = 0.5 (per chromosome), prm = 0.25.

– WM (Wang and Mendel 1992): the well-known Wang

and Mendel ad hoc data driven method that generates
Mamdani type fuzzy rules with global semantics. We

have used five labels to partition each linguistic variable.

– COR (Casillas et al. 2002, 2005b): an ad hoc data driven

method that learns Mamdani type fuzzy rules with

Table 1 Characteristics of the data sets

Machine Length (m) Width (m) Thickness (m) Time (s)

x r x r x r x r

RS-I 1.971 1.132 1.239 0.737 0.251 0.144 1,125 580

ACM 1.971 1.132 1.239 0.737 0.251 0.144 385 265

VS 1.971 1.132 1.239 0.737 0.251 0.144 579 230

RS-II 1.971 1.132 1.239 0.737 0.251 0.144 526 272

CSLB 1.971 1.132 1.239 0.737 0.251 0.144 736 658

Table 2 Results of the five-fold cross-validation for machine RS-I

Method #R MSEtra MSEtst

x r x r x r

GP-TSK 5 1 5,313 468 5,592 1,113

WM 125 1 17,827 1,907 19,155 2,360

COR 96 3 12,547 339 14,113 362

COR?TUN 96 3 7,029 889 8,277 1,122

MOGUL-TSK 24 2 5,891 448 6,662 879

NN-MPCG – – 4,266 219 4,297 387

Table 3 Results of the five-fold cross-validation for machine ACM

Method #R MSEtra MSEtst

x r x r x r

GP-TSK 3 2 618 106 609 121

WM 125 1 4,665 564 4,654 521

COR 95 3 2,853 112 3,295 221

COR?TUN 95 3 1,223 88 1,541 297

MOGUL-TSK 21 3 1,445 418 1,691 761

NN-MPCG – – 831 122 846 169

Table 4 Results of the five-fold cross-validation for machine VS

Method #R MSEtra MSEtst

x r x r x r

GP-TSK 6 1 1,287 191 1,274 168

WM 125 1 2,971 88 3,169 401

COR 102 3 2,172 33 2,479 234

COR?TUN 102 3 1,376 79 1,691 201

MOGUL-TSK 23 2 1,303 153 1,440 135

NN-MPCG – – 990 35 1,003 93

Table 5 Results of the five-fold cross-validation for machine RS-II

Method #R MSEtra MSEtst

x r x r x r

GP-TSK 5 1 1,088 113 1,096 189

WM 125 1 4,811 398 4,980 718

COR 94 4 3,066 77 3,601 374

COR?TUN 94 5 1,511 97 1,953 264

MOGUL-TSK 20 3 2,363 861 2,729 1,001

NN-MPCG – – 1,096 81 1,139 153

1 Results of methods WM, MOGUL-TSK, and NN-MPCG have been

obtained using the software KEEL (Alcalá-Fdez et al. 2008).

506 M. Mucientes et al.

123

global semantics. COR consists of two stages: search

space construction, and selection of the most coopera-

tive fuzzy rule set. The combinatorial search for the

selection stage was implemented with the best-worst ant

system (BWAS), an ant colony optimization algorithm.

The algorithm was run with the standard parameter

values and five labels for each linguistic variable.

– COR?TUN (Casillas et al. 2005a): consists in the

previously described COR algorithm plus a final tuning

stage. This final stage is a constrained tuning of the

membership function parameters using a genetic algo-

rithm. It is performed by using variation intervals to

preserve meaningful fuzzy sets.

– MOGUL-TSK (Alcalá et al. 2007): a two-stage evolu-

tionary algorithm based on MOGUL (a methodology to

obtain Genetic fuzzy rule-based systems under the IRL

approach). The first stage performs a local identification

of prototypes to obtain a set of initial local semantics-

based TSK rules, following the IRL approach and based

on an evolutionary generation process within MOGUL.

Then, a postprocessing stage is applied. It consists in a

genetic niching-based selection process to remove

redundant rules and a genetic tuning process to refine

the fuzzy model parameters. The method was run with

the standard parameter values, and the initial partition of

each variable was of three labels.

– NN-MPCG (Moller 1990): a multilayer Perceptron

network that uses the conjugate gradient, a non-linear

optimization method, to adjust weights. In our exper-

iments, the network has one hidden layer with ten

neurons.

5.1 Analysis of accuracy

The methods can be ranked in increasing order of accuracy:

WM, COR, COR?TUN, MOGUL-TSK2, GP-TSK, and

NN-MPCG. If we compare the average values of MSEtst of

our method (GP-TSK) with the other ones, GP-TSK is the

best method in two of the machines and the second best

method in the other three. Going into the details, the dif-

ferences in MSEtst between GP-TSK and WM range from

more than two times higher (machine VS, Table 4) to more

than seven times higher (machine ACM, Table 3). For

COR, MSEtst is more than two times higher in machine VS

(Table 3) and more than five times higher for machine

ACM (Table 4). In the same way, COR?TUN test error

ranges from a 33% higher in machine VS (Table 3) to a

153% higher than GP-TSK for machine ACM (Table 4).

The comparison between MOGUL-TSK and GP-TSK is

more informative, as both methods learn TSK rules,

although with different structures in the consequent. GP-

TSK obtains again better values of MSEtst in all the

machines. The differences take the lower value, a 13%

higher, for machine ACM (Table 4), while for machine VS

(Table 3) MSEtst is more than two times higher.

Finally, the neural network approach (NN-MPCG)

obtains the best MSEtst results in machines RS-I (Table 2),

with an reduction of 23% under GP-TSK MSEtst, VS

(Table 4) with a 21% improvement, and CSLB (Table 6)

with a 38% lower error. On the other hand, in machine

ACM (Table 3), the neural network error is a 39% higher

than GP-TSK, and in machine RS-II (Table 5) the

improvement of GP-TSK is around 4%.

5.2 Discussion about knowledge structure

As has already been mentioned, in this system it is of high

importance to keep the knowledge structure provided by

the expert. The reason is that an expert must be able to

analyze the regression functions that generated a process-

ing time estimation. With that information, the expert

could, for example, modify a production plan, discard a

proposed production plan, etc. We can distinguish four

different levels of similarity between the information that

can be extracted from the regression functions of each of

the methodologies and the knowledge structure provided

by the expert. The lower similarity corresponds to the

neural network (NN-MPCG): the expert has no information

about how an estimated time was generated. WM, COR,

and COR?TUN methods provide the expert with more

information: ‘‘if length is low and width is low then time is

low’’. With this rule, the expert can extract that variable

thickness does not influence the time estimations of this

machine, and also that pieces with low lengths and widths

will generate low processing times. Nevertheless, the

expert can not deduce the contribution of each of the

variables to time estimations.

This is partially solved with MOGUL-TSK, as the

expert knows the contribution of each of the input variables

Table 6 Results of the five-fold cross-validation for machine CSLB

Method #R MSEtru MSEtst

x r x r x r

GP-TSK 3 1 4,192 363 4,545 1,301

WM 125 1 18,860 2,006 19,731 2,217

COR 105 3 11,755 360 14,852 1,276

COR?TUN 105 3 5,167 761 7,112 980

MOGUL-TSK 21 2 8,407 2,189 9,612 2,034

NN-MPCG – – 2,723 135 2,816 624

2 Really, COR?TUN outperforms the MSEtst values of MOGUL-

TSK in three of the data sets, but with a much higher number of rules.

With a similar number of rules, MOGUL-TSK has better accuracy

than COR?TUN.

Processing time estimations 507

123

to time estimation: ‘‘if length is low and width is low then

time is 50 ? 100 � length ? 300 � width’’. MOGUL-TSK

consequents are first-order polynomials, so it is not possi-

ble to extract from rules relations among variables (for

example surface, lateral surface or volume). Also,

MOGUL-TSK generates knowledge bases with local

semantics, while GP-TSK has global semantics. Moreover,

GP-TSK rules also provide the expert with information

about the relations among variables, as higher order poly-

nomials can be generated by the grammar: ‘‘if length is low

and width is low then time is 60 � (length � width)’’.

Both this rule and the rule generated by MOGUL-TSK

estimate processing times using variables length and width.

But the GP-TSK rule provides the expert with information

about the relation between both variables, generating a new

variable very intuitive for the expert: the surface of the

piece. Also, the GP-TSK approach avoids the existence of

rules considered as difficult to interpret by the expert. For

example, a rule with the square of variable length in the

consequent part could be generated by a MOGUL-TSK

approach with higher order polynomials, but not by GP-

TSK as the context-free grammar does not generate that

rule structure.

Finally, GP-TSK obtains always a very low number of

rules (between 3 and 6), while MOGUL-TSK gets between

20 and 24 rules in the different machines. A knowledge base

with a reduced number of rules is more interpretable. Also, a

low number of rules helps the expert to extract information

from the regression functions as, for a piece of furniture, a

lower number of rules will generally be fired. For all these

reasons, in the context-free grammar (Fig. 4) that picks up

the expert’s knowledge, only two linguistic labels per input

variable have been defined. Of course, with a higher number

of rules, accuracy could be augmented. However, in this

case the expert has preferred to loose accuracy in exchange

for an improvement in interpretability.

Figure 9 shows a typical rule base learned with GP-TSK.

This rule base fulfills the two premises we were looking for:

– Simplicity for information extraction: the structure of

the rules follow the requirements of the expert. This is

not fulfilled by any of the other tested methods (only

MOGUL-TSK fulfills it partially). The characteristics

that make easy to extract information from the

knowledge bases are:

– The contributions of each of the input variables are

explicit.

– Rules represent associations of variables (like the

volume) that are meaningful for processing time

estimations, while avoiding the generation of new

variables with no meaning for the expert.

– The number of rules is very reduced.

– Accuracy of the processing time estimators obtained by

GP-TSK has proved to be very high, and has only been

outperformed by a neural network approach in three of

the five data sets. Nevertheless, from the expert’s point

of view, a neural network approach is not acceptable,

due to the impossibility to extract valuable information.

6 Conclusions

A methodology for the estimation of processing times in

the wood furniture industry has been presented. The algo-

rithm is based on a genetic programming approach together

with token competition to maintain the diversity of the

population. The system is composed of a set of TSK rules

with different structures in the consequent. Expert knowl-

edge has been incorporated through the use of a context-

free grammar that imposes restrictions to the structure of

these rules. The system has been tested with real data of

five different machines of the production plant. Our

approach generates a set of rules with an structure that

makes easy for the expert to extract valuable information,

while obtaining also a very high accuracy in time estima-

tions. Moreover, a comparison with other methods has been

done, showing the best tradeoff between accuracy and

simplicity in information extraction.

Acknowledgments Authors wish to acknowledge Xunta de Galicia

and Martı́nez Otero Contract, S.A. for their financial support under

grants PGIDIT06SIN20601PR and PGIDIT04DPI096E.

References

Alcalá R, Alcalá-Fdez J, Casillas J, Cordón O, Herrera F (2007) Local

identification of prototypes for genetic learning of accurate tsk

fuzzy rule-based systems. Int J Intell Syst 22:909–941

Alcalá-Fdez J, Sánchez L, Garcı́a S, del Jesus MJ, Ventura S, Garrell

JM, Otero J, Romero C, Bacardit J, Rivas VM, Fernández JC,

1. If length is high and width is low and thickness is high then time is 120 · length + 60 · width + 180 · (length · width ·
thickness)

2. If length is low then time is 120 · length + 240 · (length · width · thickness)
3. If width is low and thickness is low then time is 120 · length + 60 · thickness + 180 · (length · width · thickness)
4. If width is low then time is 120 · length + 240 · (length · width · thickness)

Fig. 9 A typical rule base for machine ACM

508 M. Mucientes et al.

123

Herrera F (2008) Keel: a software tool to assess evolutionary

algorithms to data mining problems. Soft Comput. doi:10.1007/

s00500-008-0323-y

Allahverdi A, Ng CT, Cheng TCE, Kovalyov MY (2008) A survey of

scheduling problems with setup times or costs. Eur J Oper Res

187(3):985–1032

Berlanga FJ, del Jesus MJ, Herrera F (2005) Learning compact fuzzy

rule-based classification systems with genetic programming. In:

Proceedings of the 4th conference of the European society for

fuzzy logic and technology (EUSFLAT), Barcelona (Spain),

pp 1027–1032

Boothroyd G (1991) Assembly automation and product design.

Marcel Dekker, August

Boothroyd G, Dewhurst P, Knight W (1994) Product design for

manufacture and assembly. Marcel Dekker, February

Cao Q, Patterson JW, Bai X (1999) Reexamination of processing time

uncertainty. Eur J Oper Res 164(1):185–194

Carse B, Fogarty TC, Munro A (1996) Genetic algorithms and soft

computing. Studies in fuzziness and soft computing. In: Evolv-

ing temporal fuzzy rule-bases for distributed routing control in

telecommunication networks, vol 8. Physica-Verlag, Heidelberg,

pp 467–488

Casillas J, Cordón O, Herrera F (2002) Cor: A methodology to

improve ad hoc data-driven linguistic rule learning methods by

inducing cooperation among rules. IEEE Trans Syst Man Cybern

B Cybern 32(4):526–537

Casillas J, Cordón O, del Jesus MJ, Herrera F (2005a) Genetic tuning

of fuzzy rule deep structures preserving interpretability and its

interaction with fuzzy rule set reduction. IEEE Trans Fuzzy Syst

13(1):13–29

Casillas J, Cordón O, Fernández de Viana I, Herrera F (2005b)

Learning cooperative linguistic fuzzy rules using the best-worst

ant system algorithm. Int J Intell Syst 20:433–452

Cheng TCE, Ding Q, Lin BMT (2004) A concise survey of scheduling

with time-dependent processing times. Eur J Oper Res 152:1–13

Cordón O, Herrera F (1999) A two-stage evolutionary process for

designing TSK fuzzy rule-based systems. IEEE Trans Syst Man

Cybern B 29(6):703–715

Cordón O, Herrera F (2001) Hybridizing genetic algorithms with

sharing scheme and evolution strategies for designing approx-

imate fuzzy rule-based systems. Fuzzy Sets Syst 118:235–255

Cordón O, Herrera F, Hoffmann F, Magdalena L (2001) Genetic

fuzzy systems: evolutionary tuning and learning of fuzzy

knowledge bases. In: Advances in fuzzy systems—applications

and theory, vol 19. World Scientific, Singapore

Giornada A, Neri F (1995) Search-intensive concept induction. Evol

Comput 3(4):375–416

Gupta SK, Nau DS (1995) A systematic approach for analyzing the

manufacturability of machined parts. Comput Aided Des

27(5):323–342

Herrmann JW, Chincholkar MM (2001) Reducing throughput time

during product design. J Manuf Syst 20(6):416–428

Hoffmann F, Nelles O (2001) Genetic programming for model

selection of TSK-fuzzy systems. Inf Sci 136(1-4):7–28

Kovacs T (2004) Strength or accuracy: credit assigment in learning

classifier systems. Springer, Berlin

Koza JR (1992) Genetic programming: on the programming of

computers by means of natural selection. MIT Press, Cambridge

Kusiak A, He W (1999) Design of components for schedulability. Eur

J Oper Res 164(1):185–194

Leung KS, Leung Y, So L, Yam KF (1992) Rule learning in expert

systems using genetic algorithm: 1, concepts. In: Proceedings of

the 2nd international conference on fuzzy logic and neural

networks, Iizuka (Japan), pp 201–204

Lin CJ, Xu YJ (2006) The design of TSK-type fuzzy controllers using

a new hybrid learning approach. Int J Adapt Contr Signal

Process 20(1):1

Minis I, Herrmann JW, Lam G, Lin E (1999) A generative approach

for concurrent manufacturability evaluation and subcontractor

selection. J Manuf Syst 18(6):383–395

Moller F (1990) A scaled conjugate gradient algorithm for fast

supervised learning. Neural Netw 6:525–533

Papadakis SE, Theocharis JB (2006) A genetic method for designing

TSK models based on objective weighting: application to

classification problems. Soft Comput 10(9):805–824

Shabtay D, Steiner G (2007) A survey of scheduling with controllable

processing times. Eur J Oper Res 155:1643–1666

Sugeno M, Kang GT (1988) Structure identification of fuzzy model.

Fuzzy Sets Syst 28:15–33

Takagi T, Sugeno M (1985) Fuzzy identification of systems and its

application to modeling and control. IEEE Trans Syst Man

Cybern SMC 15:116–132

Wang L-X, Mendel JM (1992) Generating fuzzy rules by learning

from examples. IEEE Trans Syst Man Cybern 22(6):1414–1427

Wong ML, Lam W, Leung KS, Ngan PS, Cheng JCY (2000)

Discovering knowledge from medical databases using evolu-

tionary algorithms. IEEE Eng Med Biol Mag 19(4):45–55

Yen J, Wang L, Gillespie CW (1998) Improving the interpretability of

TSK fuzzy models by combining global learning and local

learning. IEEE Trans Fuzzy Syst 6(4):530–537

Processing time estimations 509

123

http://dx.doi.org/10.1007/s00500-008-0323-y
http://dx.doi.org/10.1007/s00500-008-0323-y

	Processing time estimations by variable structure TSK rules learned through genetic programming
	Abstract
	Introduction
	Processing times in the furniture industry
	TSK rule model for processing times estimation
	Evolutionary algorithm
	Description of the context-free grammar
	Genetic programming algorithm
	Initial rule generation
	Individual evaluation
	Population resize (i)
	Crossover
	Mutation
	Population resize (ii)
	Final knowledge base construction

	Results
	Analysis of accuracy
	Discussion about knowledge structure

	Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

