
Processing times estimation in a manufacturing industry through
genetic programming

Manuel Mucientes, Juan C. Vidal, Alberto Bugarı́n and Manuel Lama

Abstract—Accuracy in processing time estimation of manu-
facturing operations is fundamental to achieve more competitive
prices and higher profits in an industry. The manufacturing
times of a machine depend on several input variables and,
for each class or type of product, a regression function for
that machine can be defined. Time estimations are used for
implementing production plans. These plans are usually su-
pervised and modified by an expert, so information about the
dependencies of processing time with the input variables is also
very important. Taking into account both premises (accuracy
and simplicity in information extraction), a model based on TSK
(Takagi–Sugeno–Kang) fuzzy rules has been used. TSK rules
fulfill both requisites: the system has a high accuracy, and the
knowledge structure makes explicit the dependencies between
time estimations and the input variables. We propose a TSK
fuzzy rule model in which the rules have a variable structure in
the consequent, as the regression functions can be completely
distinct for different machines or, even, for different classes
of inputs to the same machine. The methodology to learn the
TSK knowledge base is based on genetic programming together
with a context-free grammar to restrict the valid structures of
the regression functions. The system has been tested with real
data coming from five different machines of a wood furniture
industry.

I. INTRODUCTION

The estimation of the processing times of each one of
the operations involved in the manufacturing of a product
is an important task in any manufacturing industry [7]. An
accurate estimation of the manufacturing time of the product
allows competitive prices, higher profits, and also increase
the client portfolio. Nevertheless, the scope of this task is
even broader. On one hand, it constraints future material
and storage capacity requirements. On the other hand, it
constitutes the basis for the production scheduling process
and thus will influence the manufacturing or production plan,
and the logistic requirements to fulfill client orders in time.
The processing time of a machine can depend on several

input variables, such as the dimensions of the product,
the material, the speed of the machine for that kind of
product, etc. Thus, a machine can have several regression
functions (one for each type of product) for the estimation
of the processing times. Therefore, a good estimation of the
manufacturing time of a product requires not only an accurate
regression function, but also the selection of the appropriate
function among all the regression functions of the machine.

This work is been carried out in the framework of a R+D contract with
Martı́nez Otero Contract, S.L., supported by the Dirección Xeral de I+D of
the Xunta de Galicia through grant PGIDIT04DPI096E.
Manuel Mucientes, Juan C. Vidal, Alberto Bugarı́n and Manuel Lama

are with the Department of Electronics and Computer Science, University
of Santiago de Compostela, E-15782 Spain (e-mail: manuel@dec.usc.es).

The estimated processing times are generally used for
implementing production plans: schedule a finite set of client
orders in the manufacturing workload, given a finite set
of resources that can perform the different manufacturing
operations of a production plant. Production plans are im-
plemented or modified with the supervision of an expert.
Thus, it is fundamental that the expert can easily extract
information about how the different processing times have
been estimated. The simplicity to extract information from
a regression function depends on the way the knowledge
contained in that function is represented. In our case, the
expert demands regression functions in which it is easy to
evaluate the weight or contribution of each variable to the
processing time. Moreover, the expert finds also very useful
to discover relations among the input variables that affect
time estimations. Also, it must be taken into account that
the expert structures his knowledge for time estimations with
polynomials of the input variables.
In summary, our proposal accomplishes two premises:

high accuracy, but providing the expert with valuable and
easy to extract information. Takagi–Sugeno–Kang (TSK)
fuzzy rules [12], [11] seem to fit well for the requirements
of processing times estimation in this case. Flexibility in the
structure of the consequents of the TSK rules is fundamental
for processing time estimations, but some restrictions in
the structures have to be imposed, as not all of them are
valid. A compact representation of the valid structures of the
consequents can be defined through a context-free grammar.
Thus our proposal is a methodology for learning TSK
rules of variable structure in its consequent using genetic
programming together with a context-free grammar to define
the valid structures. The obtained knowledge base is a set of
regression functions for processing time estimations in the
wood furniture industry.
The paper is structured as follows: Sect. II introduces

the problem of processing time estimation in the wood
furniture industry, Sect. III presents the TSK rule model
with variable structure in the consequent, while Sect. IV
describes the evolutionary approach used for learning: a
context-free grammar together with a genetic programming
algorithm. Sect. V shows the results of the experiments with
different examples sets, and compares the results with other
methodologies. Finally, Sect. VI points out the conclusions.

II. PROCESSING TIMES IN THE FURNITURE INDUSTRY
Throughput time (TT) is defined in industrial production

systems as the interval that elapses when the manufacturing
system performs all of the operations necessary to complete

3rd International Workshop on Genetic and Evolving Fuzzy Systems
Witten-Bommerholz, Germany, March 2008

978-1-4244-1613-4/08/$25.00 ©2008IEEE 95

a work order. An accurate estimation of TT is hard to obtain
in industries where custom-designed products are dominant,
such as the furniture industry. The lack of previous manu-
facturing experiences and the complexity in the production
makes time estimations difficult.
The reduction of TT has many benefits: lower inventory,

reduced costs, improved product quality (problems in the
process can be found more quickly), faster response to
customer orders, and increased flexibility. The estimation of
the processing time is one of the most important tasks in the
product design life cycle.
This work is framed in a R+D project developed for a a

wood furniture industry in which the experts make process-
ing time estimations based on a polynomial approach. The
values of polynomial variables are taken from the technical
designs. In this paper, we will focus on the primary and
secondary processing operations such as: sawing, drilling,
sanding or laminating. For these operations, the input vari-
ables will be the dimensions of that pieces. This selection
of the input variables is due to the way the manufacturing is
carried out in the company. For example, the same sawing
speed is always used for cutting solid wood independently
of its moisture. In the next section, the model that has
been followed for processing times estimation in this wood
furniture industry is detailed. The model is based on a TSK
fuzzy rule base in which the consequents follow a variable
structure provided by an expert.

III. TSK RULE MODEL FOR PROCESSING TIMES
ESTIMATION

The approach presented in this paper for processing times
estimation looks for a high accuracy regression model, but
maintaining the knowledge structure provided by an expert.
The objective of the last premise is to make easy for the
expert the extraction of information from the regression func-
tions. Processing time estimations provide the expert with
information to implement or modify a production plan. Thus,
the simplicity in information extraction of the regression
functions associated to a machine is as important as accuracy
in time estimations. Of course, the type of information that
an expert demands depends on the characteristics of the
industry the system is being developed for. Also, sometimes,
different experts ask for different types of information. Thus,
the representation of the regression functions must fulfill
the requirements of the expert from the point of view of
information extraction. The expert demands the following
characteristics for the representation of the functions:
• The weight or contribution of each input variable to the
processing time estimation must be explicit.

• A regression function could depend on a new gener-
ated variable. This variable represents relations among
input variables. For example, the product of the three
dimensions of a piece of furniture generates the variable
volume.

Also, in this particular case, the expert structures his
knowledge for processing time estimations with polynomials
of the input variables like:

Processing time= 100 · length+200 · volume (1)

With this type of knowledge the expert can estimate
the times, but also extract that the processing time for a
machine with such a regression function is sensible to all
the dimensions of the piece of furniture. Nevertheless, if
the processing time depends on the surface instead of the
volume, the expert could modify a production plan taking
into account that the thickness of the piece does not affect
the time for that machine. For example, the thickest pieces
could be assigned to the last machine, and the thinner ones
to the other machine. So, from the expert’s point of view, it
is very important to maintain this knowledge representation
to preserve simplicity for information extraction from the
regression functions.
Following these prerequisites, processing times of a ma-

chine can be described as polynomials of several input
variables. These variables can be combined in many different
ways:

∑
i

αi ·
na

∏
j=1
xδi, j
j (2)

where αi are the coefficients, x j, j = 1, . . . , na, are the input
variables, and δi, j is an indicator variable defined by:

δi, j =

{
1 if x j ∈ i-th term of the polynomial
0 otherwise

(3)

Moreover, a number of different polynomials, each one of
them representing the estimation of the processing time of a
class of the input variables, are needed to model a given ma-
chine. For example, in an specific machine, processing times
of pieces with a thickness over a threshold are estimated
with a polynomial, and under that threshold with another
polynomial. Therefore, the learning process has to obtain a
regression function for each class of the input variables to a
machine.
Summarizing, given an input, first the system has to select

a regression function for the machine, and then estimate the
processing time. The regression function must follow the
structure of Eq. 2, as one of the premises of the approach
is to maintain the simplicity for information extraction. The
model that best suites for processing time estimations under
these conditions is a TSK fuzzy rule-based system [12], [11].
In a TSK rule, the output is obtained as a function of the
input variables. This is exactly what is necessary to estimate
processing times, maintaining the structure of the knowledge
provided by the expert. The proposed rule model is:

Rk : IF X1 isA1lk1
and . . . and Xna isAnalkna

THEN Y is ∑
i

αi · fi (x1, . . . , xna) (4)

where Xj is a linguistic variable, Ajlkj
is a linguistic label of

that variable, lkj = 1, . . . , nl j, Y is the output variable, and
fi (x1, . . . , xna) are functions of the inputs variables (x j).

96

These functions, fi, can be defined in two different ways:

fi (x1, . . . , xna) =

⎧
⎪⎪⎨

⎪⎪⎩

na
∑
j=1
x j ·δi, j

na
∏
j=1
xδi, j
j

(5)

allowing all the possible combinations that are needed for
processing time estimations.
The generation of a knowledge base with TSK rules of

this type (Eq. 4) requires the definition of several linguistic
labels, coefficients (αi), and also functions (fi) with different
structures. The use of expert knowledge can help to reduce
the search space, for example limiting the valid structures
for the functions. Anyway, the generation of a knowledge
base of this kind by an expert is really very complex
and, accordingly, rules should be obtained with a learning
algorithm. Evolutionary algorithms have flexibility in the
representation of the solutions, and also we can manage
the tradeoff between accuracy and simplicity for information
extraction. In the next section, we describe in detail the
evolutionary algorithm we have used to learn TSK rules
following the model of Eq. 4 for processing time estimation
in the wood furniture industry.

IV. EVOLUTIONARY ALGORITHM

The structure of the consequent of the rules for processing
time estimation can be very different from one rule to
another. Also, this structure has restrictions: for example, a
function (fi) cannot be a combination of sums and products
of variables (only sums or products). For these reasons, the
most appropriate evolutionary algorithm is genetic program-
ming [8]. In genetic programming, an individual is a tree of
variable length. Each individual in the population can have
a different structure, and the introduction of restrictions in
that structure of the chromosome can be solved using, for
example, a context-free grammar.
The proposed algorithm is based on the cooperative-

competitive approach [6]: rules evolve together (cooperative)
but competing among them to obtain the higher fitness. We
have chosen token competition [9] as the mechanism for
maintaining diversity of the population.
The learning process is based on a set of training ex-

amples. These examples are represented by tuples: (length,
width, thickness, processing time), where the first three
variables are the dimensions of a piece of furniture, and the
output variable is the processing time for that piece in the
machine. In token competition, each example of the training
set has a token. All the individuals that cover an example
have to compete to seize its token, but only one of them (the
stronger one) can get it. During the evolutionary process, the
individual with the highest strength in the niche will exploit
it, trying to obtain the maximum number of tokens of the
niche to increase its strength (and its fitness). On the other
hand, the weaker individuals reduce their strength as they
can not compete with the best individual in the niche.

A. Description of the context-free grammar
As has been pointed out, in genetic programming each

individual is a tree of variable size. Thus, the structure
of the individuals can be very different among them. In
order to generate valid individuals of the population, and to
produce right structures for the individuals after crossover
and mutation, some restrictions have to be applied. With
a context-free grammar all the valid structures of a tree
(chromosome) in the population can be defined in a compact
form. A context-free grammar is a quadruple (V,Σ,P,S),
where V is a finite set of variables, Σ is a finite set of terminal
symbols, P is a finite set of rules or productions, and S is an
element of V called the start variable.
The grammar that defines the structure of the learned rules

for processing time estimations, has been designed using
expert knowledge. The information provided by the expert
is:
• Input and output variables.
• Number of linguistic labels of the input variables.
• Valid structures for the consequent of the rules.
The grammar is described in Fig. 1. The first item enu-

merates the variables, then the terminal symbols, in third
place the start variable is defined, and finally the rules for
each variable are enumerated. When a variable has more
than one rule, rules are separated by symbol |. Variable rule
is the start variable of the grammar and generates two new
nodes in the tree: antecedent and consequent. antecedent
codifies the antecedent part of the rule with three propositions
(ant j), one for each of the input variables: length, width
and thickness. Each proposition is defined by a linguistic
label, Ajl j , or by symbol λ , which represents that no linguistic
label is selected. The linguistic labels of each variable of the
antecedent part have been obtained with a uniform partition
of the universe of discourse of each input variable.
Variable consequent represents the consequent part of the

rule as the sum of three (the number of input variables)
mathematical expressions (expression). Each variable expres-
sion represents one of the elements of the summatory of
the consequent part of a rule in Eq. 4: terminal symbol α
codifies each of the αi, and fi (Eq. 5) is represented by vari-
ables sumExp and multExp, by symbol α (the mathematical
expression is only a coefficient), or by λ (this function is
not taken into account). Finally, a mathematical expression
can contain each of the input variables (x j), or skip some of
them with symbol λ (δi, j = 0, Eqs. 3, 5). This is represented
with the rules of cvar j.
Fig. 2 shows an example of the rules learned with the

proposed evolutionary algorithm and the described grammar.
The rule has three propositions in the antecedent part (all the
linguistic variables are used to classify the input), and two
terms in the polynomial of the consequent: one considers
the surface of the piece, and the other one adds all the
dimensions of the piece.

B. Genetic programming algorithm
The genetic programming algorithm for processing time

estimation is described in Fig. 3. First, the population has to

97

• V = { rule, antecedent, antlength, antwidth, antthickness, con-
sequent, expression, sumExp, multExp, cvarlength, cvarwidth,
cvarthickness }

• Σ = { α, Alength1 , Alength2 , Awidth1 , Awidth2 , Athickness1 , Athickness2 , xlength,
xwidth, xthickness, (,), +, ·, λ }

• S = rule
• Productions:

– rule −→ antecedent consequent
– antecedent −→ antlength antwidth antthickness
– antlength −→ Alength1 | Alength2 | λ
– antwidth −→ Awidth1 | Awidth2 | λ
– antthickness −→ Athickness1 | Athickness2 | λ
– consequent −→ expression + expression + expression
– expression −→ α · (sumExp) | α · (multExp) | α | λ
– sumExp −→ cvarlength + cvarwidth + cvarthickness
– multExp −→ cvarlength · cvarwidth · cvarthickness
– cvarlength −→ xlength | λ
– cvarwidth −→ xwidth | λ
– cvarthickness −→ xthickness | λ

Fig. 1. Context-free grammar

IF Xlength isA
length
1 and Xwidth isAwidth2 and Xthickness isAthickness1

THEN time is 120 · (xlength · xwidth
)
+240 · (xlength+ xwidth+ xthickness

)

Fig. 2. A typical rule for processing time estimation. In this case rule
means that processing time depends on the area (with weight 120) and the
sum of the dimensions (with weight 240) of the piece

be initialized.
1) Initial rule generation: For each example in the train-

ing set, an individual (rule) is generated as follows: the
antecedent part of the rule is created selecting the labels that
best cover the input values of the example. On the other hand,
the consequent part is obtained starting with variable conse-
quent and applying randomly selected productions (rules of
the context-free grammar) recursively until all the leaves of
the tree are terminal symbols.

1) Initialize population
a) Generate rules
b) Evaluate population
c) Resize population (i)

2) for iteration = 1 to maxIterations
a) Crossover and mutation
b) Evaluate population
c) Resize population (ii)

3) Select rules for the final knowledge base

Fig. 3. Evolutionary algorithm

2) Individual evaluation: For each individual and each
example in the training set, the degree of fulfillment of the
antecedent part of the rule is obtained. If the example is
covered by the rule, the error in time estimation is calculated
as:

errorc, e = (ptc, eest −pte)2 (6)

where pte is the processing time for example e.
Finally, it is necessary to calculate the raw fitness of each

individual as:

fitnesscraw =

nec
∑
e=1
errorc,e

nec
(7)

where nec is the number of examples covered by individual
c. Raw fitness measures the strength of the individual for the
examples it covers. To calculate the fitness of each individual,
first it is necessary to implement the token competition: for
each example e, the individual with lower errorc, e will seize
the example. Fitness is defined as:

fitnessc = fitnesscraw ·
seizedc
coveredc

(8)

where seizedc is the number of examples seized by individual
c and coveredc the number of examples covered.
3) Population resize (i): The last step in the initializa-

tion consists of eliminating the individuals in the examples
population that do not cover any example. Finally, popsize
individuals are picked out from the examples population
to build the initial population, and the iterative part of the
algorithm starts.
This iterative part is repeated maxIterations times, and

starts with the crossover and mutation of the individuals of
the population. There is no selection. A couple of individuals
is randomly picked up (all the individuals of the previous
population have to be chosen once), individuals are crossed
with probability pc, then mutated with probability pm, and
finally added to the population. At the end of the process the
population doubles the size of the previous population, as it
contains the original individuals plus their offspring (due to
crossover and mutation).
4) Crossover: Crossover of two individuals is imple-

mented with a one-point crossover operator. The cross point
of the first individual (cp1) is selected randomly among all
the genes of the chromosome (i.e., nodes of the tree) that are
variables of the context-free grammar. Then, the algorithm
looks for a node of the same variable in the second of the
individuals. If there is not such a node, then the parent node
of cp1 is chosen as cp1. This process is repeated until there is
at least one node in the second individual equal to node cp1.
If there are several candidates to select cp2 (cross-point of the
second individual), one of them will be randomly selected.
Once cp1 and cp2 have been determined, the subtree with root
node cp1 is grafted at node cp2 of the second chromosome
and vice versa.
5) Mutation: Mutation operation starts selecting ran-

domly a gene. If the gene is a variable, then a rule for
this variable is randomly applied and the resulting subtree
replaces the original one. On the other hand, if the gene
is a terminal symbol that can take different values (α in
our grammar), its value can be mutated in two different
ways: random mutation and step mutation. Random mutation
is selected with probability prm, and chooses a new value
randomly. On the other hand, step mutation increases or
decreases (with the same probability) the value of the gene in
a quantity, called precg (where g is the gene), that represents
a meaningful change in the gene.

98

6) Population resize (ii): After crossover and mutation,
individuals are evaluated in the same way as for the evalua-
tion stage in the initialization step. Finally, population must
be resized to popsize: first, individuals with null fitness are
eliminated. Whenever the size of the population is under
popsize, new individuals are added. These individuals are
chosen from the examples population, selecting those rules
that cover examples that have not been seized yet by the
individuals of the population.
7) Final knowledge base construction: Once the algo-

rithm has finished, the knowledge base has to be defined
selecting some of the rules of the final population. First,
the individuals are sorted in a decreasing fitness order.
Starting with the best individual, an individual is added to the
knowledge base if it covers at least one example not covered
yet by the rules of the knowledge base.

V. RESULTS

Our algorithm was validated with a subset of the machines
that are currently being used in the production plans of a
wood furniture industry. These machines are: rip saw for
edging and ripping I (RS-I), abrasive calibrating machine
(ACM), veneer slicers (VS), rip saw for edging and ripping II
(RS-II), and commissioning system for large boards (CSLB).
Data of 1,500 different custom pieces of furniture, that have
been build in the factory along several years, have been used
to generate the examples sets. The dimensions of each of the
pieces was obtained and then, for each of the machines, the
processing time was measured.
The algorithm has to learn the knowledge base (rule

model of Eq. 4) that minimizes the error of processing time
estimation for the machine, but keeping the rule structure
provided by the expert and summarized in the context-free
grammar. Experiments have been performed with a five-fold
cross-validation for each of the examples sets. Each set was
divided in five subsets of the same size, and the learning
process was run five times, using as training set four of the
subsets, and as test set the remaining one. The test set was
different in each of the runs.
We have compared our approach with other regression

techniques proposed by other authors. Tables I-V show, for
each of the machines (or data sets), the mean and standard
deviation of the number of rules (#R), the mean square
error of training (MSEtra), and the mean square error of
test (MSEtst) of the five-fold cross-validation experiments
for each technique1. In each table, the lower average values
for #R, MSEtra, and MSEtst are marked in boldface. The
methodologies compared in the tables are:
• GP-TSK: the approach described in this paper. The
algorithm has the following parameters: maxIterations
= 100, popsize = 500, pc = 0.8, pm = 0.5 (per chromo-
some), prm = 0.25.

• WM [13]: the well-known Wang and Mendel ad hoc
data driven method.

1Results of methods WM, MOGUL-TSK, and NN-MPCG have been
obtained using the software KEEL [2].

• COR [5], [4]: an ad hoc data driven method that learns
Mamdani type fuzzy rules with global semantics.

• COR+TUN [3]: consists in the previously described
COR algorithm plus a final tuning stage.

• MOGUL-TSK [1]: a two-stage evolutionary algorithm
based on MOGUL (a methodology to obtain Genetic
Fuzzy Rule-Based Systems under the Iterative Rule
Learning approach).

• NN-MPCG [10]: a multilayer Perceptron network.

TABLE I
RESULTS OF THE FIVE-FOLD CROSS-VALIDATION FOR MACHINE RS-I

#R MSEtra MSEtst
Method x σ x σ x σ
GP-TSK 5 1 5,313 468 5,592 1,113
WM 125 1 17,827 1,907 19,155 2,360
COR 96 3 12,547 339 14,113 362

COR+TUN 96 3 7,029 889 8,277 1,122
MOGUL-TSK 24 2 5,891 448 6,662 879
NN-MPCG — — 4,266 219 4,297 387

TABLE II
RESULTS OF THE FIVE-FOLD CROSS-VALIDATION FOR MACHINE ACM

#R MSEtra MSEtst
Method x σ x σ x σ
GP-TSK 3 2 618 106 609 121
WM 125 1 4,665 564 4,654 521
COR 95 3 2,853 112 3,295 221

COR+TUN 95 3 1,223 88 1,541 297
MOGUL-TSK 21 3 1,445 418 1,691 761
NN-MPCG — — 831 122 846 169

TABLE III
RESULTS OF THE FIVE-FOLD CROSS-VALIDATION FOR MACHINE VS

#R MSEtra MSEtst
Method x σ x σ x σ
GP-TSK 6 1 1,287 191 1,274 168
WM 125 1 2,971 88 3,169 401
COR 102 3 2,172 33 2,479 234

COR+TUN 102 3 1,376 79 1,691 201
MOGUL-TSK 23 2 1,303 153 1,440 135
NN-MPCG — — 990 35 1,003 93

TABLE IV
RESULTS OF THE FIVE-FOLD CROSS-VALIDATION FOR MACHINE RS-II

#R MSEtra MSEtst
Method x σ x σ x σ
GP-TSK 5 1 1,088 113 1,096 189
WM 125 1 4,811 398 4,980 718
COR 94 4 3,066 77 3,601 374

COR+TUN 94 5 1,511 97 1,953 264
MOGUL-TSK 20 3 2,363 861 2,729 1,001
NN-MPCG — — 1,096 81 1,139 153

The analysis of the average values of MSEtst shows that
GP-TSK is the best method in two of the machines and the
second best method in the other three. Going into the details,
GP-TSK clearly outperforms WM, COR and COR+TUN.

99

TABLE V
RESULTS OF THE FIVE-FOLD CROSS-VALIDATION FOR MACHINE CSLB

#R MSEtra MSEtst
Method x σ x σ x σ
GP-TSK 3 1 4,192 363 4,545 1,301
WM 125 1 18,860 2,006 19,731 2,217
COR 105 3 11,755 360 14,852 1,276

COR+TUN 105 3 5,167 761 7,112 980
MOGUL-TSK 21 2 8,407 2,189 9,612 2,034
NN-MPCG — — 2,723 135 2,816 624

The comparison between MOGUL-TSK and GP-TSK is
more informative, as both methods learn TSK rules, although
with different structures in the consequent. GP-TSK obtains
again better values of MSEtst in all the machines. The
differences take the lower value, a 13% higher, for machine
ACM (table III), while for machine VS (table II) MSEtst is
more than two times higher.
Finally, the neural network approach (NN-MPCG) obtains

the best MSEtst results in machines RS-I (table I), with an
reduction of 23% under GP-TSK MSEtst, VS (table III) with
a 21% improvement, and CSLB (table V) with a 38% lower
error. On the other hand, in machine ACM (table II), the
neural network error is a 39% higher than GP-TSK, and in
machine RS-II (table IV) the improvement of GP-TSK is
around 4%.
We can distinguish four different levels of similarity

between the information that can be extracted from the
regression functions of each of the methodologies and the
knowledge structure provided by the expert. The lower
similarity corresponds to the neural network (NN-MPCG):
the expert has no information about how an estimated time
was generated. WM, COR, and COR+TUN methods provide
the expert with more information: “if length is low and
width is low then time is low”. With this rule, the expert
can extract that variable thickness does not influence the
time estimations of this machine, and also that pieces with
low lengths and widths will generate low processing times.
Nevertheless, the expert can not deduce the contribution of
each of the variables to time estimations.
This is partially solved with MOGUL-TSK, as the expert

knows the contribution of each of the input variables to time
estimation: “if length is low and width is low then time is 50
+ 100 · length + 300 · width”. MOGUL-TSK consequents
are first-order polynomials, so it is not possible to extract
from rules relations among variables (for example surface,
lateral surface or volume). Also, MOGUL-TSK generates
knowledge bases with local semantics, while GP-TSK has
global semantics. Moreover, GP-TSK rules also provide the
expert with information about the relations among variables,
as higher order polynomials can be generated by the gram-
mar: “if length is low and width is low then time is 60 ·
(length · width)”.
Both this rule and the rule generated by MOGUL-TSK

estimate processing times using variables length and width.
But the GP-TSK rule provides the expert with information
about the relation between both variables, generating a new

variable very intuitive for the expert: the surface of the piece.
Also, the GP-TSK approach avoids the existence of rules
considered as difficult to interpret by the expert. For example,
a rule with the square of variable length in the consequent
part could be generated by a MOGUL-TSK approach with
higher order polynomials, but not by GP-TSK as the context-
free grammar does not generate that rule structure.

VI. CONCLUSIONS
A methodology for the estimation of processing times

in the wood furniture industry has been presented. The
algorithm is based on a genetic programming approach
together with token competition to maintain the diversity of
the population. The system is composed of a set of TSK rules
with different structures in the consequent. Expert knowledge
has been incorporated through the use of a context-free
grammar that imposes restrictions to the structure of these
rules. The system was tested with real data of five different
machines of the production plant. Our approach generates a
set of rules with an structure that makes easy for the expert
to extract valuable information, while obtaining also a very
high accuracy in time estimations. Moreover, a comparison
with other methods has been done, showing the best tradeoff
between accuracy and simplicity in information extraction.

REFERENCES
[1] R. Alcalá, J. Alcalá-Fdez, J. Casillas, O. Cordón, and F. Herrera.

Local identification of prototypes for genetic learning of accurate tsk
fuzzy rule-based systems. International Journal of Intelligent Systems,
22:909–941, 2007.

[2] J. Alcalá-Fdez, L. Sánchez, S. Garcı́a, M.J. del Jesus, S. Ventura, J.M.
Garrell, J. Otero, C. Romero, J. Bacardit, V.M. Rivas, J.C. Fernández,
and F. Herrera. Keel: A software tool to assess evolutionary algorithms
to data mining problems. Soft Computing, In press.

[3] J. Casillas, O. Cordón, , M.J. del Jesus, and F. Herrera. Genetic
tuning of fuzzy rule deep structures preserving interpretability and
its interaction with fuzzy rule set reduction. IEEE Transactions on
Fuzzy Systems, 13(1):13–29, 2005.

[4] J. Casillas, O. Cordón, I. Fernández de Viana, and F. Herrera. Learning
cooperative linguistic fuzzy rules using the best-worst ant system
algorithm. International Journal of Intelligent Systems, 20:433–452,
2005.

[5] J. Casillas, O. Cordón, and F. Herrera. Cor: A methodology to improve
ad hoc data-driven linguistic rule learning methods by inducing
cooperation among rules. IEEE Transactions on Systems, Man, and
Cybernetics-Part B: Cybernetics, 32(4):526–537, 2002.

[6] A. Giornada and F. Neri. Search-intensive concept induction. Evolu-
tionary Computation, 3(4):375–416, 1995.

[7] J.W. Herrmann and M.M. Chincholkar. Reducing Throughput Time
during Product Design. Journal of Manufacturing Systems, 20(6):416–
428, 2001.

[8] J.R. Koza. Genetic programming: on the programming of computers
by means of natural selection. The MIT Press, 1992.

[9] K.S. Leung, Y. Leung, L. So, and K.F. Yam. Rule learning in expert
systems using genetic algorithm: 1, concepts. In Proceedings of the
2nd International Conference on Fuzzy Logic and Neural Networks,
pages 201–204, Iizuka (Japan), 1992.

[10] F. Moller. A scaled conjugate gradient algorithm for fast supervised
learning. Neural Networks, 6:525–533, 1990.

[11] M. Sugeno and G.T. Kang. Structure identification of fuzzy model.
Fuzzy Sets and Systems, 28:15–33, 1988.

[12] T. Takagi and M. Sugeno. Fuzzy identification of systems and its
application to modeling and control. IEEE Transactions on Systems,
Man, and Cybernetics, SMC-15:116–132, 1985.

[13] L.-X. Wang and J.M. Mendel. Generating fuzzy rules by learning
from examples. IEEE Transactions on Systems, Man, and Cybernetics,
22(6):1414–1427, 1992.

100

