
Soft Comput (2006) 10: 881–889
DOI 10.1007/s00500-005-0014-x

FOCUS

M. Mucientes · D. L. Moreno · A. Bugarı́n · S. Barro

Evolutionary learning of a fuzzy controller for wall-following
behavior in mobile robotics

Published online: 28 September 2005
© Springer-Verlag 2005

Abstract The design of fuzzy controllers for the implemen-
tation of behaviors in mobile robotics is a complex and highly
time-consuming task.The use of machine learning techniques
such as evolutionary algorithms or artificial neural networks
for the learning of these controllers allows to automate the
design process. In this paper, the automated design of a fuzzy
controller using genetic algorithms for the implementation of
the wall-following behavior in a mobile robot is described.
The algorithm is based on the iterative rule learning approach,
and is characterized by three main points. First, learning has
no restrictions neither in the number of membership func-
tions, nor in their values. In the second place, the training
set is composed of a set of examples uniformly distributed
along the universe of discourse of the variables. This warran-
tees that the quality of the learned behavior does not depend
on the environment, and also that the robot will be capable
to face different situations. Finally, the trade off between the
number of rules and the quality/accuracy of the controller
can be adjusted selecting the value of a parameter. Once the
knowledge base has been learned, a process for its reduction
and tuning is applied, increasing the cooperation between
rules and reducing its number.

Keywords Evolutionary algorithms · Fuzzy control ·
Mobile robotics · Wall-following behavior

1 Introduction

Fuzzy control has shown to be a very useful tool in the field of
autonomous mobile robotics, characterized by a high uncer-
tainty in the knowledge about the environment where a robot
evolves.

The design of a fuzzy controller is generally made us-
ing expert knowledge about the task to be controlled. Ex-

M. Mucientes (B)· D. L. Moreno · A. Bugarı́n · S. Barro
Dept. of Electronics and Computer Science,
University of Santiago de Compostela,
15782 Santiago de Compostela, Spain
E-mail: manuel@dec.usc.es; dave@dec.usc.es; alberto@dec.usc.es;
senen@dec.usc.es

pert knowledge is applied in order to decide the number of
linguistic labels for each variable, to tune the membership
functions, to select the most adequate linguistic values for
the consequents, and to define the rules in the fuzzy knowl-
edge base. This process is tedious and highly time-consum-
ing. For this reason, automated learning techniques, such as
evolutionary algorithms, have been employed for helping in
some, or in all, of the tasks involved in the design process [4,
12,19]. In some of the approaches evolutionary algorithms
are used just for tuning the membership functions. In oth-
ers, the complete rule base is learned, starting from a hand
designed data base (number and definition of the linguistic
values and universe of discourse of the variables). But only
in a few of them both the data base and the rule base are
learned.

In this paper, we describe the learning of a fuzzy con-
troller for the wall-following behavior in a mobile robot. The
learning methodology is characterized by three main points.
First, learning has no restrictions neither in the number of
membership functions, nor in their values. In the second
place, the training set is composed of a set of examples uni-
formly distributed along the universe of discourse of the vari-
ables. This warrantees that the quality of the learned behavior
does not depend on the environment, and also that the robot
will be capable to face different situations. Finally, the trade
off between the number of rules and the quality/accuracy of
the controller can be adjusted selecting the value of a param-
eter. The methodology is based on the iterative rule learning
(IRL) approach [6]. Once the knowledge base has been ob-
tained, a new stage is developed in order to reduce and tune
it.

The paper is organized as follows: in Sect. 2 some gen-
eral comments about the evolutionary learning of knowledge
bases are made. Section 3 describes the IRL methodology
employed, whilst in Sect. 4 the process for the reduction
and tuning of the knowledge base is explained. Section 5
describes the application of the proposed algorithm to the
wall-following behavior, and Sect. 6 presents the obtained
results. Finally, conclusions and future work are pointed out
in Sect. 7.

882 M. Mucientes et al.

2 Evolutionary learning of knowledge bases

Learning of knowledge bases using evolutionary algorithms
has three main approaches: Michigan, Pittsburgh and IRL
[7]. In the Michigan approach [13], each chromosome rep-
resents an individual rule, and the entire population is the
rule base. Rules evolve along time due to their interaction
with the environment. The major problem of this approach
is that of resolving the conflict between the performance of
individual rules and that of the rule base. The objective is
to obtain a good rule base which means not only to obtain
good individual rules, but also rules that cooperate between
each other to get adequate outputs. This could be sometimes
conflicting, for example when an individual rule that receives
a high payoff is not adequately cooperating with other rules.
This problem is addressed in [3].

This conflict was overcome by the Pittsburgh approach
[5], where each chromosome represents a full knowledge
base. Length of the chromosomes can be variable, which
permits dealing with knowledge bases with a variable num-
ber of rules. This approach has a higher computational cost,
because several knowledge bases have to be evaluated, while
for the Michigan approach a single rule base is evaluated.

In the third approach (IRL [6]), each chromosome repre-
sents an individual rule, but contrary to the Michigan
approach, a single rule is learned by the evolutionary algo-
rithm and not the whole rule base. After each sequence of
iterations, the best rule is selected and added to the final rule
base. The selected rule must be penalized in order to induce
niche formation in the search space. Niching is necessary
for solving multimodal problems, as occurs with knowledge
bases learning. In this case, each of the rules of the knowl-
edge base is a solution (highly multimodal problem), and all
the solutions must be taken into account to get the complete
knowledge base. A common way to penalize the rules that
have been obtained is to delete those training examples that
have been covered by the set of rules that integrate the final
rule base. The final step of the IRL approach is to check
whether the obtained set of rules is a solution to the problem.
In the case it is not, the process is repeated. A weak point
of this approach is that the cooperation between rules is not
taken into account when a rule is evaluated.

3 Learning of fuzzy-rule based controllers

Our proposal consists on a learning method based on the IRL
approach in which both the data and rule bases are simul-
taneously learned. The only predefined parameters are the
universe of discourse and the granularity of each variable.
Both the number and shape of the membership functions,
and the rules’ structure (a variable could not be considered
in a rule) will be learned. The algorithm has the following
steps:

1. Obtain a rule for the system.
(a) Initialize population.
(b) Evaluate population.

(c) Eliminate bad rules and fill up population.
(d) Scale the fitness values.
(e) While the maximum number of iterations is not ex-

ceeded.
i. Select the individuals of the population.

ii. Crossover and mutate the individuals.
iii. Evaluate population.
iv. Eliminate bad rules and fill up population.
v. Scale the fitness values.

2. Add the best rule to the final rule set.
3. Penalize the selected rule.
4. If the knowledge base does not solve the problem, return

to Step 1.

The rules that are going to be learned are conventional
fuzzy rules like:

Ri : If Xi
1 is Ai

1 AND · · · AND Xi
NA is Ai

NA

Then Y i
1 is Bi

1 AND · · · AND Y i
NC is Bi

NC

(1)

where Ri , i = 1, . . . , NR, is the i-th rule, Xi
j , j = 1, . . . ,

NA, and Y i
k , k = 1, . . . , NC, are linguistic variables of

the antecedent and consequent parts, respectively. NR is the
number of rules, NA the number of antecedents in a rule,
NC the number of consequents, and Ai

j and Bi
k are linguistic

values (labels) of these variables.
A set of examples has been chosen for learning the knowl-

edge base. These examples cover the universe of discourse
of all the variables in the antecedent part of the rule. The
universes of discourse have been discretised, in order to min-
imize the search space, with a step or granularity gn, n =
1, ..., NV , where NV = NA + NC is the number of vari-
ables. The function, SF , that scores the action of a rule over
an example (not the fitness function) is application depen-
dent.

An example, el , is covered by rule Ri if it complies with
the following two conditions:

Ai
1

(
el

1

) ∧ · · · ∧ Ai
NA

(
el
NA

)
> 0 (2)

whereAi
j

(
el
j

)
represents the membership degree of the value

of variable j in the example el to Ai
j . A new parameter, δ,

is defined with the aim of selecting the relation between the
number of rules and the quality and accuracy of the controller.
In that way, a second condition is imposed:

SF
(
Ri

(
el

))

max
(
SF

(
el

)) > δ (3)

where SF
(
Ri

(
el

))
is the score assigned to the state reached

by the system after applying rule Ri over example el , and
max

(
SF

(
el

))
is the maximum score that an action can ob-

tain for example el . These values are obtained before the
beginning of the algorithm, trying and scoring all the pos-
sible actions for each example. The value of parameter δ
can be adjusted in a range between 0 and 1. A low value of δ

Evolutionary learning of a fuzzy controller for wall-following behavior in mobile robotics 883

produces a lower number of rules in the final knowledge base,
but the quality and the accuracy of the controller decreases.
On the contrary, a high value of δ increases the quality of the
controller, but also the number of rules.

The use of δ can be clarified by means of the follow-
ing example. Let us suppose a robot must reach a point by
turning 30◦. Although this may be labeled as the best con-
trol action, also a rule proposing a turning of 20◦ should be
considered as a good rule, even though the goal point is not
fully reached. Parameter δ indicates the minimum quality a
rule must have in order to be a valid rule for being added to
the final knowledge base.

The shape of the membership functions that are going
to be learned is shown in Fig. 1. Parameters bi

n and ci
n are

learned, but points ai
n and di

n are calculated as:

ai
n = max

{
bi

n − gn, lowern

}
(4)

di
n = min

{
ci
n + gn, uppern

}
(5)

where lowern and uppern are the extreme points of the uni-
verse of discourse of variable n. In that way, it is not possible
to exceed the range of the universe of discourse of the vari-
ables during the learning process.

Chromosomes are real coded, and a rule as the one shown
in (1) is encoded into a chromosome Ci as:

Ci = (
ai

1, bi
1, ci

1, di
1, . . . , ai

NV , bi
NV , ci

NV , di
NV

)
(6)

3.1 Steps of the genetic algorithm

The first step of the genetic algorithm consists on initializing
the population. Rules in the initial population are created in
the following way. An example currently not covered by any
rule in the final knowledge base is randomly selected. The
created rule is going to cover that single example, named el ,
at this initial generation. The membership functions for this
rule are constructed as: bi

n = ci
n = el

n, whilst ai
n and di

n are
calculated using (4) and (5), respectively.

The evaluation of each individual of the population (each
rule) is done with a two level fitness function. The first level
(FF) consists on counting the number of examples that are
covered by this rule, i.e., that fulfill (2) and (3), and that are
not yet covered by a rule of the final knowledge base. If an
example is covered by a rule of the final knowledge base,
it will not contribute to the fitness value of any rule in the
population. A second level for the fitness function is added

1

ai
n bi

n ci
n di

n
gn gnlowern uppern

Ai
n

Fig. 1 Shape of the membership function, Ai
n

in order to distinguish between rules with the same anteced-
ent part but different consequents. It is the average value of
the scoring function (SF), for all the examples that verify
(2):

ASFi =

NE∑

l=1

SF
(
Ri

(
el

))

NECi
(7)

where NE is the number of examples, and NECi is the num-
ber of examples that verify (2) for rule i. The second level
of the fitness function is only used (in conjunction with the
first level) when the final generation has been reached and
the best rule of the population has to be added to the final
knowledge base.

If for example a rule verifies (2) but not (3), then this
rule is deleted from the population. After the deletion of all
the bad rules, the population must be filled up, until its size
reaches NR. The rules that will be added are the best rules
in the population. Finally the fitness values of the individuals
of the population must be linearly scaled in order to prevent
premature convergence of the population.

The selection procedure that has been employed is the sto-
chastic remainder without replacement. An individual i will

be selected int
(

FF i

AFF

)
times, where FF i is the value of the

fitness function (first level) for individual i, and AFF is the

average value of all FF i . Taking into account f rac
(

FF i

AFF

)

the population is randomly filled up. After selection, the indi-
viduals are crossed (one-point crossover), mutated, and fi-
nally added to the new population. Elitism has been applied
to avoid the loss of the best individuals due to crossover and
mutation.

Crossover is done taking into account that the combina-
tion of points ai

n and bi
n cannot be truncated, and the same

occurs to points ci
n and di

n. This means that the slope of the
sides of a membership function cannot be modified. After
crossover, each chromosome is reordered for repairing bad
definitions of the membership functions (e.g., bi

n > ci
n).

The mutation operator has three equally probable options
to operate on a gene. It will only modify genes of type bi

n

or ci
n: increasing or decreasing the value of the gene in an

amount of gn, or leaving the gene unchanged. This will pro-
voke the extension or contraction of the membership func-
tion in a quantity equal to the granularity of each variable,
implementing a local search in that way. After mutation, each
chromosome will be reordered, and values of ai

n and di
n will

be calculated using (4) and (5), respectively.
Once the maximum number of iterations has been reached,

the best rule of the population is added to the final knowledge
base, and all the examples covered by this rule are marked.
In that way these examples will not contribute to the fit-
ness value of the individuals in the next sequences of itera-
tions. If all the examples are covered by the rules of the final
knowledge base, then this is a solution to the problem and
the algorithm ends.

884 M. Mucientes et al.

4 Reduction and tuning of the learned knowledge base

In this stage, starting from the knowledge base previously
obtained, a genetic algorithm for the reduction and tuning of
that knowledge base is applied. The aim is to decrease the
number of rules (this will enhance the interpretability), try-
ing to maintain the accuracy and quality of the controller. We
have opted for applying tuning and reduction simultaneously.
Thus, the chromosomes have two parts: C = CT CR . The
first part of the chromosome, CT , codifies the membership
functions of all the rules of this knowledge base, in order to
implement the tuning:

CT = C1
T , . . . , CNR

T (8)

where NR is the number of rules in this knowledge base, and
Ci

T , i = 1, . . . , NR, codifies the membership functions of
each rule i:

Ci
T = (

ai
1, bi

1, ci
1, di

1, ..., ai
NV , bi

NV , ci
NV , di

NV

)
(9)

where NV is the number of variables. The interval of perfor-
mance of each of the parameters that define a membership
function [10] is given by the following equations (Fig. 2):

ai
n ∈ [

alin, ari
n

] =
[
ai

n − di
n − ai

n

2
, ai

n + bi
n − ai

n

2

]
(10)

bi
n ∈ [

blin, bri
n

] =
[
bi

n − bi
n − ai

n

2
, bi

n + ci
n − bi

n

2

]
(11)

ci
n ∈ [

clin, cri
n

] =
[
ci
n − ci

n − bi
n

2
, ci

n + di
n − ci

n

2

]
(12)

di
n ∈ [

dlin, dri
n

] =
[
di

n − di
n − ci

n

2
, di

n + di
n − ai

n

2

]
(13)

The reduction process is based on the selection of some
of the rules from the rule set. In that way, the second part of
the chromosome, CR , codifies if a rule belongs to the rule
base (the allele is set to 1) or not (allele set to 0). The genetic
algorithm tries to minimize a fitness function based on the
mean square error (MSE), and the number of rules [8], in
order to penalize those knowledge bases with a high number
of rules:

FRT = ω1 · MSE + ω2 · NR (14)

1

ai
n bi

n ci
n di

n

Ai
n

bri
nalin ari

n

blin

cri
n

clin

dri
n

dlin

Fig. 2 Intervals of performance of each of the parameters that define
the membership function of rule i and variable n

where ω1 has been set to 1,

ω2 = β · MSEirl

NRirl

(15)

with β = 0.1, and MSEirl and NRirl , being respectively the
mean square error and the number of rules for the knowledge
base obtained after the IRL algorithm. Finally, MSE is given
by:

MSE = 1

2 · NE

NE∑

l=1

{{

1 − SF
(
R

(
el

))

max
(
SF

(
el

))

}

· ω3

}2

(16)

where SF
(
R

(
el

))
is the score assigned to the state reached

by the system after applying the rules of the knowledge base
over example el , and ω3 is a scaling factor that has been set
to 1000.

The population has been initialized setting all the genes
in the CR part to 1. For the CT part, the first individual has
been copied from the one obtained after the IRL algorithm,
and the remaining individuals have been generated randomly,
taking into account the corresponding intervals of perfor-
mance. The genetic algorithm uses the Baker’s stochastic
universal sampling procedure [2] for the selection, together
with elitism. The crossover operator will depend on the chro-
mosome part where it is applied. Thus, for the CT part, the
max–min-arithmetical crossover [9] is considered. Then, if
Ct

v = (c1, ..., ck, ..., cH) and Ct
w = (

c′
1, ..., c′

k, ..., c′
H

)

are going to be crossed, four sons will be generated:

1. Ct+1
1 = aCt

v + (1 − a) Ct
w

2. Ct+1
2 = aCt

w + (1 − a) Ct
v

3. Ct+1
3 with ct+1

3,k = min
{
ck, c

′
k

}

4. Ct+1
4 with ct+1

4,k = max
{
ck, c

′
k

}

Parameter a is selected by the designer, and in this appli-
cation takes a value of 0.35. For the CR part of the chro-
mosome, the standard two-point crossover is used, obtaining
two sons. This two sons are joined to the four sons generated
from the CT part, giving a total of eight sons. The two best
combinations of the offspring will replace their parents.

The mutation operator also depends on the selected part
of the chromosome. For the CR part, the mutation operator
simply changes the allele from 1 to 0 and vice versa. For the
CT part, a value in the interval of performance (Eqs. 10–13)
is randomly selected.

5 Learning the wall-following behavior

The methodology presented in the previous sections is ap-
plied here for the design of a fuzzy controller for the wall-
following behavior in a Nomad 200 mobile robot.

The wall-following behavior is usually implemented when
the robot is exploring an unknown area, or when it is moving
between two points in a map. A good wall-following control-
ler is characterized by three features: to maintain a suitable
distance from the wall that is being followed, to move at a high

Evolutionary learning of a fuzzy controller for wall-following behavior in mobile robotics 885

velocity whenever possible, and finally to avoid sharp move-
ments, making smooth and progressive turns and changes in
velocity. The controller can be configured modifying the val-
ues of two parameters: the reference distance, which is the
desired distance between the robot and the selected wall, and
the maximum velocity attainable by the robot. In what fol-
lows we assume that the robot is going to follow a contour
that is on its right side. Of course, the robot could also follow
the left-hand wall, but this can be easily dealt with by simply
interchanging the sensorial inputs.

In the bibliography, the wall-following behavior has been
implemented with different techniques, the most used being
fuzzy logic [1,15,20] and neural networks [11]. The advan-
tage of using fuzzy logic lies in the interpretability of the
fuzzy rules, as opposed to the weights of the neural networks.
Also, some authors have merged both techniques, giving way
to neuro-fuzzy controllers [18].

The input variables of the control system are the right-
hand distance (RD), the distances quotient (DQ), which is
calculated as:

DQ = left-hand distance

RD
(17)

As it can be seen (Fig. 3), DQ shows the relative position
of the robot inside a corridor, which provides with informa-
tion that is more relevant to the problem than simply using
the left-hand distance. A high value for DQ means that the
robot is closer to the right-hand wall, whilst a low value indi-
cates that the closer wall is the left-hand one. The other input
variables are the linear velocity of the robot (LV), and the ori-
entation of the robot with respect to the wall it is following.
A positive value of the orientation indicates that the robot is
approaching to the wall, whilst a negative value means the
robot is moving away from the wall. The output variables are
the linear acceleration and the angular velocity.

All the information used to calculate distances and orien-
tations comes from the ultrasound sensors of the robot. The
distances and the orientation are obtained in two ways: if any
of the walls (left or right) can be modeled with a straight line
using a least square mean of the raw sensor data, then the
corresponding distance and orientation are measured from
that line. Otherwise, distance is measured as the minimum
distance of a set of sensors, and the orientation will be the
orientation of that sensor with respect to the advance direc-
tion.

The function SF used in (3) is defined for this application
as:

SF
(
Ri

(
el

)) = 1

α1 + α2 + α3 + 1
(18)

Left-hand distance RD

Fig. 3 Description of some of the distances used for the calculation of
the input variables

where α1, α2, and α3 are respectively:

α1 = 100
|RD-reference distance|

gRD

(19)

α2 = 10
|maximum velocity − LV |

gLV

(20)

α3 = |orientation|
gorientation

(21)

and gRD , gLV , and gorientation are the granularities of the
respective input variables. The granularities are used in these
equations in order to evaluate the deviations of the values
of the variables from the desired ones in a relative manner
(the deviation of the value of variable n from the desired one
is measured in units of gn). This makes the comparison of
the deviations of different variables possible and, as a con-
sequence, the assignment of the weights for each one of the
variables. These weights (100, 10 and 1 for (19), (20), and
(21), respectively) have been heuristically determined, and
indicate how much important the deviation in the value of a
variable is with respect to the deviation of other variables.

SF takes values in [0, 1]. The highest weight has been
assigned to the distance, as small variations of RD with re-
spect to the reference distance should be highly penalized.
An intermediate weight is associated to velocity and, finally,
the least important contribution to function SF is for the ori-
entation of the robot.

The defuzzification method that has been used for the
learned fuzzy controller is the height defuzzifier [14]:

Ok =
∑NR

i=1 Y
i

k Bi
k(Y

i

k)
∑NR

i=1 Bi
k(Y

i

k)
(22)

where Y
i

k is the center of gravity of the membership function
Bi

k , and Ok is the defuzzified value for variable k.

6 Results

The system has been implemented using the parameters de-
scribed in Table 1.

For the IRL stage, these values have been selected in order
to focus search in a few promising areas (low crossover prob-
ability), but exploiting those areas doing a local search due
to the high mutation probability, in a similar way evolution
strategies, for example (1+1)-ES, work. We noticed that a
high crossover probability distracted the search due to the

Table 1 Values of some of the parameters for the two stages of the
system

Parameter IRL R+T

Generations 50 460
Population size 300 61

Crossover probability 0.2 0.6
Mutation probability 0.4 (per gene) 0.2 (per chromosome)

886 M. Mucientes et al.

75

125

175

225

275

325

0,06 0,07 0,08 0,09 0,1 0,11 0,12

δ

N
u

m
b

er
o

f
ru

le
s

3

3,5

4

4,5

5
A

verag
e

velo
city

ch
an

g
e

(cm
/s)

Number of rules Average velocity change (cm/s)

Fig. 4 Variation of the number of rules and the average velocity change of the final knowledge base, after iterative rule learning (IRL), with δ

50

60

70

80

90

100

110

120

0,06 0,07 0,08 0,09 0,1 0,11 0,12

δ

N
u

m
b

er
o

f
ru

le
s

3,0

4,0

5,0

6,0

7,0

8,0

9,0

A
verag

e
velo

city
ch

an
g

e
(cm

/s)

Number of rules Average velocity change (cm/s)

Fig. 5 Variation of the number of rules and the average velocity change of the final knowledge base, after the reduction and tuning stage (IRL-RT),
with δ

combination of rules from quite different areas of the search
space (this is due to the standard one-point crossover used),
but a low crossover probability is still necessary to discover
new promising areas. Different values for parameter δ (Eq. 3)
have been tried. All the parameters of evolutionary learning
have been heuristically obtained.

Figure 4 shows the variation of the number of rules and
the average velocity change of the final knowledge base after
the IRL algorithm with δ. As δ increases the number of rules
rises. Values of δ < 0.06 have been discarded since they did
not produce valid controllers. The average velocity change

of the robot was measured for the environment shown in
Fig. 6(b). This variable evaluates the average change of the
robot’s velocity between two consecutive control iterations.
Low values of the average velocity change indicate smooth
and progressive changes in velocity, reflecting more accu-
racy and quality in the control actions. As can be seen in Fig.
4, as δ increases the average velocity change decreases, and
consequently the accuracy and quality of the controller rises.

Once the first stage (IRL) has finished, the reduction and
tuning process is implemented. Figure 5 shows the variation
of the number of rules and the average velocity change of

Evolutionary learning of a fuzzy controller for wall-following behavior in mobile robotics 887

Fig. 6 Path of the robot in different simulated environments for δ =
0.06 after the reduction and tuning stage

the final knowledge base after the reduction and tuning stage
(IRL-RT) with δ. The main objective has been to reduce the
number of rules, thus enhancing the interpretability of the
knowledge base, while maintaining the quality and accuracy
of the controller.

All the controllers that have been obtained were tested
in three simulated environments using the Nomad 200 sim-
ulation software. The training set is composed of a list of
examples, while the testing set is formed by three different
environments constructed with the simulation software of the
Nomad 200. These environments have not been used during
the training of the controller. Learning only depends on func-
tion SF , which has to be carefully selected, and also on the
examples, that must be chosen covering the input space with
an adequate granularity (selection of the granularity of the
variables is also of high importance). These conditions war-
rantee that the quality of the learned behavior does not depend
on the environment, and also that the robot will be capable
to face any situation.

Figure 6 shows as an example the robot path in three
simulated environments for δ = 0.06 after the reduction and
tuning stage. The robot trajectory is represented by circu-
lar marks. A higher concentration of marks indicates lower
velocity. The learned controller has 54 rules, the maximum
velocity the robot can reach is 61 cm/s, and the reference dis-
tance at which the robot should follow the right wall is 51 cm.
Ten tests have been done for each one of the environments.
The average values measured for some parameters that reflect
the controller performance are shown in Tables 2 (knowledge
base after IRL – 100 rules – named IRL) and 3 (knowledge
base after reduction and tuning – 54 rules – named IRL-RT).

Results show a very important reduction in the number
of rules now needed to implement the behavior (from 100 to
54). The IRL-RT controller follows the wall in a more reli-
able way and, as a consequence, the average right distance
is slightly lower. But due to this precision in the trajectory,
values of average velocity and smoothness are not as good as
for IRL.

Let’s analyze in detail the path of the robot in environ-
ment [Fig. 6b]. This environment is quite complex, with three
concave corners and seven convex corners in a circuit of a
length of 54 m. Convex corners are truly difficult situations,
because the robot’s sensors may cease to correctly detect
the wall at some given moments, even though some of them
may occasionally detect it. The controller must also signifi-
cantly reduce velocity at corners. In spite of these difficul-
ties, the obtained average velocity has been quite high, and
the distance at which the robot should follow the wall is near
the desired reference distance. The difference between both

Table 2 Average values of some parameters for the environments of
Fig. 6 for iterative rule learning (IRL)

Environment RD Velocity Velocity change Time
(cm) (cm/s) (cm/s) (s)

6a 70 57 4.23 62
6b 65 51 4.59 106
6c 63 48 5.48 87

888 M. Mucientes et al.

Table 3 Average values of some parameters for the environments of
Fig. 6 for IRL-RT

Environment RD Velocity Velocity change Time
(cm) (cm/s) (cm/s) (s)

6a 64 51 9.74 67
6b 65 45 8.65 114
6c 60 48 7.26 86

distances is caused by the high number of corners, in which
the orientation of the robot is very bad (at concave corners
the robot is detecting two perpendicular walls, and some-
times at convex corners it detects no wall), and a fast turning
is prioritized over a correct distance.

Nevertheless, some aspects could be improved. Thus,
comparing this controller with [15,16] (fuzzy temporal
rule-based controller, hand-designed involving 313 rules),
the obtained behavior provokes sharp changes in velocity.
For this reason, one of the aspects that characterizes a good
wall-following controller (smooth and progressive turns and
changes in velocity) is not fulfilled. Also, the controller pro-
posed in [15,16] gets a trajectory closer to the shape of the
contour being followed. This is mainly due to two reasons:
first, the higher number of rules of the temporal rule-based
controller. But also the use of fuzzy temporal rules, which fil-
ter the sensorial noise and analyze the evolution of the values
of the variables along temporal intervals, let the controller
to smooth the behavior, anticipating future positions of the
robot in the environment.

7 Conclusions and future work

An evolutionary process for the learning of fuzzy control-
lers has been described. The first stage is based on the IRL
approach while, in the second stage, a reduction and tuning
process is done. Learning has no restrictions neither in the
number of linguistic values for each variable, nor in the val-
ues that define the membership functions. The process only
depends on function SF , and on the selected granularities
of the variables, which are application dependent and must
be carefully chosen. The algorithm has been applied to the
learning of the wall-following behavior.

A number of control systems (for different values of δ)
have been learned. The final controller has been tested in
three simulated environments with a high number of corners,
showing a good performance both in the distance the wall
was followed and in the average velocity. Due to the learning
process, the quality of the learned behavior does not depend
on the environment, and also the robot will be capable to face
any situation.

As future work, we will try to learn Fuzzy Temporal
Rule-based controllers [15–17], which have a high degree of
expressiveness and the capacity of analyzing the evolution of
variables, whilst taking past values into account.

Acknowledgements The authors wish to acknowledge the support
from the Spanish Ministry of Education and Culture through grant

TIC2000-0873. Part of this research has been developed during a re-
search stay of the first author at the Department of Computer Science
and Artificial Intelligence of the University of Granada (Soft Comput-
ing and Intelligent Information Systems Group) that was supported by
the Dirección Xeral de I+D, Xunta de Galicia. They also wish to thank
Dr. Francisco Herrera and Dr. Jorge Casillas for their kind collaboration
and insightful comments on this research.

References

1. Arrúe BC, Cuesta F, Braunstingl R, Ollero A (1997) Fuzzy behav-
iours combination to control a non-holonomic robot using virtual
perception memory. In: Proceedings of the 6th IEEE international
conference on fuzzy systems (Fuzz-IEEE’97), Barcelona, Spain,
pp 1239–1244

2. Baker JE (1987) Reducing bias and inefficiency in the selection
algorithm. In: Proceedings of the 2nd international conference on
genetic algorithms, Hillsdale, NJ USA, pp 14–21

3. Bonarini A (1996) Evolutionary learning of fuzzy rules: compe-
tition and cooperation. In: Pedrycz W (ed) Fuzzy modelling: par-
adigms and practice, Kluwer Academic Press, Norwell, USA, pp
265–284

4. Braunstingl R, Mujika J, Uribe JP (1995) A wall following robot
with a fuzzy logic controller optimized by a genetic algorithm. In:
Proceedings of the international joint conference of the fourth ieee
international conference on fuzzy systems and the second interna-
tional fuzzy engineering symposium, vol 5, Yokohama, Japan, pp
77–82

5. Carse B, Fogarty TC, Munro A (1996) Evolving fuzzy rule based
controllers using genetic algorithms. Fuzzy Sets Syst 80:273–293

6. Cordón O, Herrera F (2001) Hybridizing genetic algorithms with
sharing scheme and evolution strategies for designing approximate
fuzzy rule-based systems. Fuzzy Sets Syst 118:235–255

7. Cordón O, Herrera F, Hoffmann F, Magdalena L (2001) Genetic
fuzzy systems: evolutionary tuning and learning of fuzzy knowl-
edge bases, vol 19. World Scientific

8. Cordón O, Herrera F, Villar P (2001) Generating the knowledge
base of a fuzzy rule-based system by the genetic learning of the
data base. IEEE Trans Fuzzy Syst 9(4):667–674

9. Herrera F, Lozano M,Verdegay JL (1997) Fuzzy connectives based
crossover operators to model genetic algorithms population diver-
sity. Fuzzy sets Syst 92:21–30

10. Herrera F, Lozano M, Verdegay JL (1998) A learning process
for fuzzy control rules using genetic algorithms. Fuzzy sets Syst
100:143–158

11. Iglesias R, Regueiro CV, Correa J, Barro S (1998) Supervised rein-
forcement learning: application to a wall following behaviour in a
mobile robot. In: Pasqual del Pobil A, Mira J, Ali M (eds) Tasks
and methods in applied artificial intelligence (IEA-98-AIE), vol 2
of Lecture Notes in Computer Science, Benicassim (Spain), pp
300–309

12. Leitch D (1996) In: Herrera F, Verdegay JL (eds) Genetic algo-
rithms and soft computing, vol 8 Studies in fuzziness and soft
computing, chapter Genetic algorithms for the evolution of behav-
iours in robotics, Physica-Verlag, pp 306–328

13. Magdalena L, Velasco JR (1996) In: Herrera F, Verdegay JL (eds)
Genetic algorithms and soft computing. Studies in fuzziness, vol 8
Fuzzy rule-based controllers that learn by evolving their knowledge
base, Physica-Verlag, pp 172–201

14. Mendel JM (1995) Fuzzy logic systems for engineering: a tutorial.
Proc IEEE 83(3):345–377

15. Mucientes M, Iglesias R, Regueiro CV, Bugarı́n A, Barro S (2003)
A fuzzy temporal rule-based velocity controller for mobile robot-
ics. Fuzzy Sets Syst 134:83–99

16. Mucientes M, Iglesias R, Regueiro CV, Bugarı́n A, Barro S (2003)
Intelligent systems: technology and applications, vol 2. Fuzzy Sys-
tems, neural networks and expert systems of CRC Press Interna-
tional volumes on intelligent systems techniques and applications,
A fuzzy temporal rule-based approach for the design of behaviors
in mobile robotics, CRC Press, pp 373–408

Evolutionary learning of a fuzzy controller for wall-following behavior in mobile robotics 889

17. Mucientes M, Iglesias R, Regueiro CV, Bugarı́n A, Cariñena P,
Barro S (2001) Fuzzy temporal rules for mobile robot guidance in
dynamic environments. IEEE Trans Syst Man Cybern-Part C: Appl
Re 31(3):391–398

18. Ng KC, Trivedi MM (1998) A neuro-fuzzy controller for mobile
robot navigation and multirobot convoying. IEEE Trans Syst Man
Cybern-Part B: Cybern 28(6):829–840

19. Pratihar DK, Deb K, Ghosh A (1999) A genetic-fuzzy approach
for mobile robot navigation among moving obstacles. Int J Approx
Reason 20(2):145–172

20. Urzelai J, Uribe JP, Ezkerra M (1997) Fuzzy controller for wall-
following with a non-holonomous mobile robot. In: Proceedings
of the 6th IEEE International Conference on Fuzzy Systems (Fuzz-
IEEE’97), Barcelona, Spain, pp 1361–1368

