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Abstract— Mobile robots operating in populated environments
typically can improve their service and navigation behavior
when they know where people are in their vicinity and in
which direction they are heading. In this paper we present
an algorithm for tracking clusters of people using Multiple
Hypothesis Tracking (MHT). The motivation for our approach
is that tracking clusters of objects instead of the individual
objects enhances the reliability and robustness of the tracking
especially when the objects move in groups. To efficiently keep
track of multiple objects and clusters, our approach uses MHT
in combination with Murty’s algorithm. The set of hypothesis
for each iteration is constructed in two consecutive steps: one for
solving the data association problem, taking also into account the
frequent occlusions between the objects, and the second one for
considering the joining of different clusters. Our approach has
been implemented and tested on a real robot and in a typical
hallway environment. Experimental results demonstrate that our
approach can robustly deal with several groups of people and is
able to reliably manage the splits and joins of clusters.

I. INTRODUCTION

The presence of people and other moving objects in the
environments in which robots develop their tasks affects
several fields in robotics: mapping in dynamic environments,
planning, human-robot interaction, etc, and also can provide
the robot with interesting information about the environment.

Many papers have dealt with the problem of moving objects
tracking [1], [2]. One of the most popular approaches is
Multiple Hypothesis Tracking (MHT). It was proposed by
Reid [3], and it has been applied in several fields: in [4],
MHT is used for visual tracking of corners, while in [5] it
is implemented for tracking other robots.

An special case of tracking is that in which the moving
objects are people [6], [7]. In nearly all of the approaches,
individual persons are tracked. In [8], they have represented the
movement of a person with a dynamical model that takes into
account physical assumptions about the legs. In [9] a Sample-
based Joint Probabilistic Data Association Filter has been used,
showing a robust track of single people.

But all the proposed systems do the tracking for individual
objects. Clustering or grouping is only mentioned in [3], but
with a different purpose. The tracked objects are clustered
when they compete for the same measurements, and splitted
otherwise. The objective is to reduce the computation time
when solving the data association. In our approach, clusters
have a very different meaning. They are groups of tracks that
have similar states, but tracks inside a cluster can compete

for different measurements, and tracks from different clusters
can compete for the same measurements. As an example, in
a group of three people that walk together, the people in both
extremes of the group, generally, do not compete for the same
measurements, while one of these persons can compete for a
measurement with a person that passes besides the group.

In real environments, usually people move in groups. As
compared with the tracking of single people, the tracking
of clusters of people presents a higher difficulty in the data
association, not only because the tracks in a group are quite
close to each other, but also because the occlusions are very
frequent and not easy to predict.

To solve these problems, existing methods based on tracking
each moving object individually are not appropriate. The
novelty of our proposal is based in the tracking of clusters
of moving objects. Each cluster has its own individual tracks
(of the moving objects), but the reliability and robustness of
the system significantly increases, as a more complex and
close to the reality probability density function (PDF) can
be constructed. In this way, the high complexity in the data
association due to the existence of many close measurements
and the frequent occlusions, can be managed.

The system has been implemented with the MHT algorithm
[3] together with the Murty’s algorithm [10] to make it
computationally tractable. The main stages of the system are
the data association (which measurements belong to which
clusters) and the clusters join (clusters with similar states
are joined). The paper is structured as follows: Section II
briefly introduces the MHT algorithm, Section III describes
our proposal for tracking clusters of people, Section IV
presents the experimental results, while Section V points out
the conclusions.

II. MULTIPLE HYPOTHESIS TRACKING (MHT)

The MHT algorithm was proposed by Reid [3] for tracking
multiple targets in a cluttered environment. As pointed out in
[4], MHT integrates all the capabilities necessary to model the
tracking of multiple targets:

• Creation of new tracks when new measurements appear.
• Explicit modelling of the appearance of spurious (false

positive) measurements.
• Tracking of targets in the absence of measurements due

to false negatives (failures in the detection) or due to the
frequent occlusions among the different tracks.



• Explicit modelling of track deletion when the target being
tracked is out of the scope of the sensors, or when it has
not been seen for a long period of time.

• Explicit modelling of uniqueness constraints, as we want
that a measurement is assigned only to one track and vice
versa in each iteration.

The MHT algorithm begins with the set of hypothesis of
the previous iteration, Ωt−1, also called parent hypothesis set,
and the set of measurements from the beginning until that
iteration, Zt−1 = {Z (0) , ..., Z (t − 1)}. Each hypothesis
Ωt−1

p represents a different set of assignments of the set of
measurements to the different tracks. Taking into account
the new set of measurements, Z(t), and one of the previous
hypothesis, Ωt−1

p , a new hypothesis is generated, Ωt
k, making

an specific assignment of the current measurements. This
assignment is represented by ψt

p(k), where k is the index of
the new hypothesis, and p is the index of the parent hypothesis:

Ωt
k =

{
ψt

p(k), Ωt−1
p

}
(1)

The set of plausible assignments, ψt
p that can be done for a

parent hypothesis Ωt−1
p is named ambiguity matrix (sometimes

also called hypothesis matrix). Each element of the matrix, aij ,
can take a value of 1 or 0, representing the possibility that
measurement i is associated to a previous track, a new track,
is considered noise, etc, or not. Associated to the ambiguity
matrix, a cost matrix ζt

p must also be defined. Each element
of the matrix, cij , represents the probability that measurement
i has been originated due to j.

From a computational point of view, evaluating all the
possible assignments for all the existing parent hypothesis is
intractable (NP-hard). The solution is to apply an algorithm
proposed by Murty [10] to obtain the k-best assignments in
polynomial time. This algorithm has been modified by Cox
and Miller [11] in order to solve multiple assignment problems
at the same time, and also to change the termination condition,
as hypothesis with a likelihood below a certain percentage of
the best hypothesis can be discarded.

III. TRACKING CLUSTERS OF PEOPLE

When people move in groups the data association gets
much more complex as compared with the track of a single
person. The reason is double: inside a group, the measurements
are usually very close, so the possibility of making wrong
data associations highly increases. But also, because of the
high concentration of measurements, the frequency of the
occlusions is also very high. As a consequence, the data
association problem becomes really hard to solve.

For this reason, as will be pointed out in Section IV, solving
the problem trying to track the moving objects individually
has as a consequence very unreliable tracks. The originality
of our proposal is that, instead of tracking individual objects,
tracking is done using clusters. Inside the cluster, tracks can be
generated or deleted in a more dynamical way, as the impact in
the state of the cluster is low. The state of the cluster remains
reliable and its estimations are robust, as they are based on
the existing tracks (those that have high probabilities).

A. Tracks and clusters

A track is defined as a sequence of measurements along time
that are assumed to belong to the same moving object. On the
other hand, a cluster is a set of tracks that move together, i.e.,
that have similar states. The states of both the tracks and the
clusters, can be represented by quadruples < x, y, θ, v >.

The prediction and update of the tracks, and the prediction
of the clusters is done with an Extended Kalman Filter. To
update the state of a track with a measurement zt

m it must
pass the Mahalanobis distance test:(

zt
m − h (μ̄t)

)T (
HtΣ̄tH

T
t + Qt

)−1 (
zt
m − h (μ̄t)

) ≤ η2

(2)
where zt

m is measurement m at time t, h (μ̄t) is the prediction
of the measurement for the track with predicted state μ̄t, Ht

is the jacobian matrix of h, Σ̄t is the prediction about the state
covariance, and Qt is the covariance of the measurement noise,
while η2 is the maximum allowed Mahalanobis distance.

Finally, the update of the clusters is modelled as the average
of the PDFs of the tracks belonging to it.

The system designed for tracking clusters of people can
be divided in three stages: detection of moving objects, data
association, and join of clusters.

B. Detection of moving objects

This part of the system depends on the type of sensors.
In our case, the sensors that have been used are laser range
scanners. The existence of moving objects in the surrounding
of the robot appears in the distance histograms of the lasers
as local minima [9]. As other static obstacles (like the legs of
a table, etc) can also have this characteristic, the set of local
minima is filtered calculating the probability that the obstacle
has moved. This is done estimating the difference between two
consecutive occupancy grid maps. At the end of the process,
the list of measurements that have been considered as moving
objects is created: Z(t) =

{
zt
1, ..., zt

nm

}
.

C. Data association

According to Eq. 1, the probability of a hypothesis can be
calculated as:

P
(
Θt

k | Zt
)

= P
(
ψt

p(k), Ωt−1
p | Z(t), Zt−1

)
(3)

where ψt
p(k) is a solution to the ambiguity matrix, Θt

k will be
a hypothesis obtained after data association, and Ωt−1

p is its
parent hypothesis.

Applying Bayes’s rule, and taking into account that

P
(
ψt

p(k) | Ωt−1
p , Z(t), Zt−1

)
= P

(
ψt

p(k) | Ωt−1
p , Z(t)

)
(4)

P
(
Ωt−1

p | Z(t), Zt−1
)

= P
(
Ωt−1

p | Zt−1
)

(5)

then Eq. 3 can be rewritten as1:

P
(
Θt

k | Zt
)

= P
(
ψt

p(k) | Ωt−1
p , Z(t)

)
P

(
Ωt−1

p | Zt−1
)
(6)

1Ωt−1
p is the prior computed in the previous step of the Bayes filter.



Thus, the probability of a hypothesis in the current iteration,
will be the product of the probability of its parent hypothesis
and the probability of an specific assignment of the measure-
ments, i.e., a solution to the ambiguity matrix.

To model P
(
ψt

p(k) | Ωt−1
p , Z(t)

)
, all the possibilities for

the assignments must be defined. These are:

• The measurement comes from a track inside a cluster,
both belonging to Ωt−1

p . P c, f, m, t
CT will be the probability

that track f of cluster c is assigned to measurement m
at time t.

• The measurement is generated by a new track inside a
cluster that belongs to Ωt−1

p . P c, m, t
CN is the probability

that cluster c has a new track due to measurement m at
time t.

• The measurement is due to a new moving object that
is not in any of the clusters in Ωt−1

p . The probability is
defined as a constant, Pnew.

• The measurement is noise, and the probability will also
be modelled as constant, Pnoise.

1) PCT : This probability is defined as:

P c, f, m, t
CT = P c, f, m, t

M P c, f, t
D

= P c, f, m, t
M

(
1 − P c, f, t

Nseen

) (
1 − P c, f, t

del

)
(7)

where P c, f, m, t
M is the probability that measurement m belongs

to track f , and it is calculated as:

P c, f, m, t
M = N

[
h

(
μ̄c, f

t

)
, Hc, f

t Σ̄c, f
t

(
Hc, f

t

)T

+ Qt

]
(8)

being N a normal distribution with mean equal to the mea-
surement prediction, and with covariance matrix equal to the
innovation covariance matrix associated to measurement m
and track f .

On the other hand, Eq. 7 also depends on the probability
that a track is detected in the current iteration (P c, f, t

D ). This
is modelled with the probability of not seing the track (Eq. 9),
and the probability of deleting the track from both the cluster
and the hypothesis (Eq. 12):

P c, f, t
Nseen = P

(
Ec, f, t

occ ∨ Ec, f, t
out

)
(9)

P
(
Ec, f, t

occ

)
=

∑ns
s=1 Pocc

(
μ̄c, f, s

t

)
ns

(10)

P
(
Ec, f, t

out

)
=

∑ns
s=1 Pout

(
μ̄c, f, s

t

)
ns

(11)

P c, f, t
del = 1 − exp

{
−∑t−1

i=t0

(
1 − P c, f, i

occ

)
λd

}
(12)

P c, f, t
Nseen is defined as the probability that the track is now

occluded by one of the moving objects detected in the cur-
rent iteration, or it is outside the scope of the robot. Both
probabilities are estimated in the following way (Eqs. 10, 11):

the probability density function of the track in the previous
iteration is sampled, and the state of each sample (μc, f, s

t−1 )
is used for calculating a prediction of the state of the track.
With this prediction, μ̄c, f, s

t , the probability of occlusion (out
of scope) is calculated. Finally the probability of occlusion
(out of scope) of the track is estimated with the average of
the probabilities of occlusion (out of scope) of the samples.

The probability of deletion of a track from a cluster, P c, f, t
del ,

is modelled with an exponential to simulate the decay in
the probability of detecting it when it is not seen in several
consecutive iterations. λd gives the speed of the decay process,
while the summatory in the numerator of the exponential adds
the probabilities that the track was not occluded along the time
interval in which it was not detected (t0 to t − 1).

2) PCN : The probability that the measurement comes from
a new track of an existing cluster is defined as:

P c, m, t
CN = P c, m, t

bel Pnewtrack
(13)

being Pnewtrack
a constant value representing the probability

of appearance of a new track inside a cluster, and P c, m, t
bel , the

probability that measurement m belongs to cluster c:

P c, m, t
bel = P

({
nfc∨
i=1

Ec, i, m, t
M

}
∨ Ec, m, t

M

)
(14)

The probability is the likelihood that the measurement
belongs to one of the tracks in the cluster (nfc is the number
of tracks in cluster c), or that it belongs to the cluster.

3) Hypothesis probability: Recovering from Eq. 6, the first
term of the right part can be rewritten as:

P
(
ψt

p(k) | Ωt−1
p , Z(t)

)
= (Pnew)nnew (Pnoise)

nnoise (15){
nc∏

c=1

{ nfc∏
f=1

{
P

c, f, mc, f , t
M

(
1 − P c, f, t

Nseen

) (
1 − P c, f, t

del

)}δf

(16){
1 −

(
1 − P c, f, t

Nseen

) (
1 − P c, f, t

del

)}1−δf
} ngc∏

g=1

P
c, mc, g, t
CN

}

(17)

where (Pnew)nnew ((Pnoise)
nnoise) is the probability of as-

signing nnew (nnoise) measurements as new moving objects
(as noise). The product in c (Eqs. 16, 17) represents the
likelihood of the cluster. This can be divided in two products:
the product in f (Eqs. 16, 17), which evaluates the probability
of the assignment of measurements to existing tracks in the
cluster (mc, f is the measurement assigned to track f in
cluster c), and the product in g (Eq. 17), which represents
the probability of new measurements inside the cluster (ngc

is the number of new measurements in cluster c).
Going into the details of the product in f , variable δf

takes a value of one if for this assignment there is any
measurement corresponding to track f , and zero otherwise.
Thus, Eq. 16 represents the likelihood of the assignments of
the measurements to the tracks, and Eq. 17 is the probability
of not detecting a track.



Once all the probabilities have been defined, the ambiguity
matrix for each parent hypothesis can be constructed, and
all the obtained matrices are then inserted in the Murty’s
algorithm, in order to obtain the k-best hypothesis, Θt.

4) Split of clusters: After the data association, each cluster
belonging to each of the obtained hypothesis, Θt

k, must be
examined for checking if its tracks have very different states.
In that case, the cluster should be splitted in several new
clusters that substitute the parent cluster in the hypothesis.
The similarity of two different tracks, (i, j), in a cluster is
defined as:

P i, j
sim = P

(
EΣi

μi
(μj) ∨ EΣj

μj
(μi)

)
(18)

where P
(
EΣi

μi
(μj)

)
is the probability of μj in the normal

distribution with average μi and covariance Σi. Based on each
P i, j

sim a matrix of similarities is constructed for each cluster. If
the cluster is splitted, the new clusters will be generated using
the information of the similarities of the tracks, in order to
keep homogeneous clusters.

D. Clusters Join

In the same way as for the previous stage (Eqs. 3, 6), the
probability of a hypothesis is estimated as:

P
(
Ωt

k | Zt
)

= P
(
φt

p(k), Θt
p | Zt

)
(19)

where φt
p(k) is a solution to the ambiguity matrix of clusters

join, Ωt
k is a hypothesis obtained after the clusters join stage,

and Θt
p is its parent hypothesis, i.e., one of the hypothesis

obtained after data association.
Applying Bayes’s rule, and taking into account that

P
(
φt

p(k) | Θt
p, Zt

)
= P

(
φt

p(k) | Θt
p

)
(20)

then Eq. 19 can be rewritten as:

P
(
Ωt

k | Zt
)

= P
(
φt

p(k) | Θt
p

)
P

(
Θt

p | Zt
)

(21)

The simplification in Eq. 20 is valid as the ambiguity
matrices for the clusters join stage, φt

p, only depend on the
state of the clusters of the hypothesis, and this information
is already provided by Θt

p. Thus, the probabilities we want
to obtain are again the product of the parent hypothesis
likelihood, and the probability of a solution to the ambiguity
matrix.

The ambiguity matrices have two different types of assign-
ments:

• A couple of clusters, (i, j) can be joined. The probability
will be P i, j

join.
• The cluster remains independent. This is modelled with

a constant probability, Pindep.
P i, j

join is defined in as:

P i, j
join = NΣi

μi
(μj) (22)

Finally, Eq. 21 is rewritten as:

P
(
Ωt

k | Zt
)

=

{
nc∏

c=1

(
P i, c

join

)τc

(Pindep)
1−τc

}
P

(
Θt

p | Zt
)

(23)

where τc takes a value of one if the cluster joins another one,
and zero otherwise.

1) Pruning: The described system has been implemented
using three different trees for the hypothesis, clusters and
tracks. In that way a track can be shared by several clusters,
and a cluster can also be shared by several hypothesis. The
hypothesis tree is pruned in each iteration of the algorithm
in order to reduce the complexity using an ”N-scan-back”
algorithm [12]. This algorithm assumes that any ambiguity
at time tnow − treedepth can be solved at tnow. Thus, for
each hypothesis at tnow − treedepth, the sum of probabilities
of their offspring at tnow is calculated, and the branch of
the hypothesis with the highest sum is maintained, while the
hypothesis of the other branches are pruned. Finally the cluster
tree is pruned deleting those clusters that do not belong to any
hypothesis, and also the ones that are empty (with no tracks).
In the same way, the track tree is pruned taking into account
the tracks that do not belong to any cluster, and also those
tracks with a probability of deletion (P c, f, t

del ) over a certain
threshold, or that have been out of the scope of the robot for
several iterations.

IV. EXPERIMENTAL RESULTS

The experiment has been done with a Pioneer II robot
equipped with two laser range scanners. The lasers were
mounted at a height of 40 cm (front laser) and 60 cm (rear
laser), and with a resolution of 0.5 degrees. Thus, one laser
scan provides information of the whole surrounding of the
robot. Due to this disposition of the lasers the legs of people
will be detected. The experiment took place in the hall of a
building of the University of Freiburg and lasted 9 minutes.
During this time up to 10 people were tracked (that means 20
possible tracks at the same time). The size of the groups of
people (clusters) ranged from 1 to 6 people, and the maximum
number of clusters tracked at the same time was of 5. During
the experiment, more than half of the time the robot was
moving.

Fig. 1 shows part of the experiment, from cycle 177 to 240.
Both the laser scan and the best hypothesis are displayed in
the most significant cycles of this part of the test. Several local
minima in the distance histograms of the lasers appear in the
lower part of all the laser scan figures. All of them are noise
due to the presence of objects in the environment like legs
of chairs or tables. Most of them are filtered calculating the
difference between consecutive grid maps. The others can be
filtered with the MHT algorithm, as it explicitly manages this
possibility.

A detailed figure for the best hypothesis in a cycle is shown
in Fig. 2. The static obstacles are represented with bars and the
robot is represented as a black dot. The PDFs of the clusters
are displayed by sets of ellipses. Each ellipse represents a
normal distribution where the two radius of the ellipse are
the standard deviations for the x and y variables of the state.
The set of ellipses for each cluster corresponds to each one of
its tracks, and also to its own state. The center of each track



(a) Laser scan (177) (b) Laser scan (182) (c) Laser scan (191)

(d) Best hypothesis (177) (e) Best hypothesis (182) (f) Best hypothesis (191)

(g) Laser scan (200) (h) Laser scan (203) (i) Laser scan (207)

(j) Best hypothesis (200) (k) Best hypothesis (203) (l) Best hypothesis (207)

(m) Laser scan (227) (n) Laser scan (232) (o) Laser scan (240)

(p) Best hypothesis (227) (q) Best hypothesis (232) (r) Best hypothesis (240)

Fig. 1. Laser scan and best hypothesis in part of the experiment (cycles 177 to 240)

is also marked with a symbol (a triangle, circle, square or a
cross), while measurements are represented by dots.

Fig. 1(d) shows the initial situation at the beginning of this
part of the experiment. Cluster A has one person and clusters
B-D three people each. The different traced lines represent
the approximate trajectories that the clusters followed during
the displayed sequence. As the number of people in a cluster
increases, the occlusions between them make it virtually
impossible to detect all the tracks of a group. For clusters
B-D the higher number of mobile objects detected along the
displayed sequence was of four, while the real number was

six. In fact, several times only one or two tracks are detected,
as it happens, for example, with cluster B.

At cycle 182 (Fig. 1(e)), clusters C and D get very close,
but there is no join of these clusters as the states are quite
different due to their heading directions. From that cycle to
cycle 196, cluster D is partially or totally occluded by cluster
C. As an example, in cycle 191 (Fig. 1(f)) only one track is
detected in cluster D (the cluster keeps track of two), while
four measurements are detected for cluster C (the cluster keeps
track of six). The same occurs with cluster A, that is occluded
by cluster C several cycles (Figs. 1(k) to 1(l)).



Fig. 2. Detail of a figure for the best hypothesis

At cycle 227 (Fig. 1(p)), cluster A (one person) approaches
to B (three people), and the clusters join a few cycles later.
The new cluster AB has four people and, after a short time, it
is splitted in two clusters moving in opposite directions, each
one with two people.

In order to test the advantages of keeping track of clusters
instead of individual tracks, the same experiment was repeated,
but without the use of clusters. For both experiments, wrong
data associations were manually counted. An erroneous data
association for the cluster-based approach consists in assigning
a measurement to a wrong cluster. On the other hand, for the
track-based approach, an error consists in assigning a mea-
surement to a wrong track. The explanation of this difference
in the consideration of the errors is the following: a good
tracking must be able to reconstruct the path followed by the
tracked object. In the cluster-based approach, for example, a
track can be initially in one cluster, afterwards split from that
cluster and create a new one, and finally join another cluster.
Its path can be reconstructed with the information about all
the clusters it has belonged to, so the only source of error
is an incorrect assignment of a measurement to a cluster. In
the track-based approach, the reconstruction of the path is
based on the measurements assigned to the track, so a wrong
assignment or a deletion of the track can give rise to the
impossibility of reconstructing that path.

Fig. 3 shows the comparison between both approaches. Of
a total of 423 data associations in these cycles, the track-
based approach makes 75 errors (17.73%) while the cluster-
based approach has 2 (0.47%). The improvement is clear, and
enhances the usefulness of the cluster-based approach in those
situations in which the objects to be tracked are quite close
among them.

V. CONCLUSIONS

In this paper we presented a new MHT based approach for
tracking clusters of people. Our method differs from existing
tracking approaches (including those based in MHT) in that it
tracks clusters of objects whenever they get close to each other
instead of tracking all of them individually. The advantage
of this approach becomes apparent in situations in which the
objects that must be tracked have very similar states. In such
situations, the data association problem gets much harder, not
only because the observed features are close, but also because
of the huge number of occlusions.

Fig. 3. Number of measurements and wrong data associations

Our algorithm has been implemented and tested on a Pio-
neer II robot equipped with two laser range scanners that cover
the whole surrounding of the robot. Practical experiments, in
which the robot had to track up to 10 people walking in several
groups, demonstrate that our algorithm can reliably deal with
such situations. Additionally, it has shown a performance that
was superior to a standard MHT-based system that tracks all
objects individually.
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