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Abstract— The paper proposes a method to automatically de-
sign a fuzzy controller for the mobile object following behavior in
mobile robotics. The system has been tested in several simulated
situations using the Nomad 200 robot software. The proposed
approach obtains a knowledge base with a good interpretability
in a reduced time, and the designer only has to define the number
of membership functions and the universe of discourse of each
variable.

I. I NTRODUCTION

Modern control architectures for mobile robots are hybrid,
thus they are compound of layers [1]: at the lowest layer all the
reactive control(selection of control action from the current
sensorial information) is grouped, while on the top layer the
deliberative control(planning tasks about future positions and
actions of the robot) is done. In that way, the robot is able
to implement complex tasks, and also react to changes in the
environment (obstacles are moved, people appear, ...).

The reactive layer is usually implemented with behaviors
(tasks like wall-following, go through a door, follow a person,
avoid a moving obstacle, etc.) that are coordinated by the
planning layer. The environments in which an autonomous
robot moves are unconstrained, and have a high amount
of uncertainty. Furthermore, information provided by robot
sensors is noisy and unreliable. This problem becomes more
important when using the ultrasound sensors data: low angular
resolution and specular reflection. Fuzzy logic has shown to
be a useful tool when dealing with this uncertainty and has
been widely used for the design of behaviors in robotics [2].

The design of fuzzy systems requires a deep knowledge
on the task to be controlled and forces to spend long time
tuning the controller [3]. Due to that, in the last few years the
use of learning methods for the design of fuzzy controllers has
been generalized. There are different approaches: evolutionary
algorithms [4]–[7], neural networks [8], [9], reinforcement
learning [10]–[15], etc.

In this paper we present the automatic design of a fuzzy
controller for the mobile object following behavior in mobile
robotics using the COR (Cooperative Rules) methodology
[16], [17]. To do that, we introduce a technique to auto-
matically generate a training data set that represents state-
action pairs for the whole input space in the mobile object
following problem. The main advantages of the proposed

approach (which combines the data set generation technique
with the COR learning methodology) are the following:

• easiness in the design,
• very quick learning, and
• fuzzy controller with a good interpretability.

The paper is organized as follows. Section II introduces
the mobile object following behavior. Section III presents
the methodology that has been used. Section IV shows the
obtained results and, finally, conclusions are discussed in
Section V.

II. A UTOMATIC DESIGN OF AFUZZY CONTROLLER:
FOLLOWING A MOBILE OBJECT

In order to describe the methodology for obtaining a fuzzy
controller in mobile robotics, the “follow a mobile object”
behavior is going to be used as an example, but the same steps
could be applied for learning other behaviors. Other results
with the wall-following behavior are available in [18].

A mobile robot can implement the “follow a mobile object”
behavior for tracking a person, or when it is cooperating with
other robots in the implementation of a task and one of the
robots is guiding the other ones. A good implementation of
the behavior has to place the robot at the objective point
(xobj , yobj) (Fig. 1). This point is defined using the desired
distance (dref , Fig. 1) between the robot and the mobile object,
and the reference deviation (devref , Fig. 1), which is an angle
that indicates the position of the robot with respect to the
advance direction of the mobile object. Ifdevref = 0, the
robot will follow the mobile object exactly behind it, while
positive values ofdevref indicate that the robot will be placed
at the right of the advance direction of the object, and negative
values to the left. Also, a good controller for a behavior must
implement smooth changes in velocity and angle of the robot.

Before explaining the learning methodology, some steps in
the design of a behavior must be described.

A. Preprocessing of the Variables

The first step in the design of the controller is the selection
of the input and output variables. For this behavior, the input
variables are:

• The distance between the robot and the objective point
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Fig. 1. Description of the points, distances and angles needed for the
calculation of the input variables

d =

√

(xr − xobj)2 + (yr − yobj)2

dref

(1)

• The deviation of the robot with respect to the objective
point. A negative value indicates that the robot is moving
in a direction to the left of the objective point, while a
positive value means that it is moving to the right.

dev = arctan

(

yobj − yr

xobj − xr

)

− θr (2)

• The difference of velocity between the robot and the
object

△v =
vr − vm

maximumvelocity
(3)

• The difference of angle between the object and the robot

△θ = θm − θr (4)

The output variables are the linear acceleration and the
angular velocity.

B. Universe of Discourse and Precision

The second step in the design is the definition of the
universe of discourse, the number of fuzzy sets, and the
precision (pn) of each variablen. The universe of discourse is,
for some variables (d, △v, △θ), a reduced version of the real
universe of discourse, and should contain those values of the
variable that are meaningful for learning. For example, high
values of distances are not useful during learning, becausefor
all of them the robot will execute the same action. So, it is
enough to include only a few high values in the universe of
discourse.

The same occurs with the precision of the variables. Pre-
cision is used to generate the examples: very low values of
pn will generate a higher number of examples, and many
of them will not be meaningful because there will be very
similar examples. Selecting valid values for the universesof
discourse and the precisions is not difficult for somebody who
has defined the input and output variables, and always it is

possible to select an extended universe of discourse or a lower
precision. In the worst case, a higher number of examples will
be generated (some of them useless) and learning will take
more time. For this behavior 6,435 examples have been used.

C. Objective Function

In this methodology, it is of great importance the definition
of the Scoring Function,SF (equation 5), a function that
scores the action of the rule base over an example. This
function is behavior dependent, and for this behavior is defined
as:

SF
(

RB
(

el
))

= α1 + α2 + α3 (5)

whereα1, α2, andα3 are respectively:

α1 = 100 ·
|d|

pd

(6)

α2 = 10 ·
|dev|

pdev

(7)

α3 =
|△v|

p△v

(8)

pd, pdev, andp△v are the precisions of the respective input
variables. Precisions are used in these equations in order to
evaluate the deviations of the values of the variables from the
desired ones in a relative manner (the deviation of the value
of variable n from the desired one is measured in units of
pn). This makes possible the comparison of the deviations
of different variables and, as a consequence, the assignment
of the weights for each one of the variables. These weights
(100, 10 and 1 for (6), (7), and (8) respectively) have been
heuristically determined (no other values have been analyzed),
and indicate how much important the deviation in the value of
a variable is with respect to the deviation of other variables.
The highest weight has been assigned to the distance, as the
robot must be close to the objective point. An intermediate
weight is associated to the deviation and, finally, the least
important contribution to functionSF is for the difference
in velocity.

The index that measures the global quality of the encoded
rule set is:

f(RB) =
1

2 · NE

NE
∑

l=1

(

g(el)
)2

(9)

whereNE is the number of examples, andg(el) is defined
as:

g(el) =

{ (

1 − h(el)
)

· ζ + 1, if h(el) ≤ 1
exp

(

1 − h(el)
)

, otherwise
(10)

beingζ a scaling factor that has been set to 1000, andh(el):

h(el) =
min

(

SF (el)
)

+ 1

SF (RB(el)) + 1
(11)

where min
(

SF (el)
)

is the minimum score that an action
can obtain for exampleel (using only the discrete values
of the output variables). These equations (9, 10, and 11) are
independent of the behavior that is going to be learned.
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D. Robot Simulation

In order to reduce the time needed for learning, the simu-
lation software of the Nomad 200 robot will only be used for
testing the obtained controller. During learning, the movement
of the robot will be modeled with the following set of
equations (this model is valid but for all behaviors):

vk
r = vk−1

r + ak△t, (12)

whereak is the linear acceleration at timek, and△t is the
time between two control cycles (a value of△t = 1/3s has
been used);

θk
r = θk−1

r − ωk△t, (13)

whereωk is the angular velocity at timek; and

xk
r = xk−1

r + 2 vk
r △t cos

(π

2
− θk

r

)

, (14)

yk
r = yk−1

r + 2 vk
r △t sin

(π

2
− θk

r

)

, (15)

wherexk
r andyk

r are the coordinates of the robot at timek.
The model assumes that the finalvr and θr are reached

without time delay. To simulate the inertia of the robot in its
movements, the new position is calculated as if there were two
control cycles between orders (2 in equations 14 and 15), so
the selected accelerations and turnings are smoother (the robot
will move a longer distance) and, on the contrary, decelerations
must be harder.

E. Construction of the Training Set

The controller learning is done using a set of examples.
As has been mentioned, depending on the selected values for
the universes of discourse and the precisions, the number of
examples will be different. In this paper, 6,435 examples have
been used. Its automatic generation is as follows: startingfrom
the minimum value of each variable and increasing the value
in a quantity equal topn until the maximum value is reached,
a number of different values for the variables is obtained. The
set of examples is created combining these values for all the
variables of the antecedent part.

The values of the variables of the consequent part for each
example will be determined trying all the possible combina-
tions of their discrete output values, and selecting those which
let the robot reach the state closest to the ideal state (the state
in which the robot is placed at the objective point and with
a linear velocity that is equal to the velocity of the mobile
object). The function that determines how much close a state
is from the ideal state isSF : the lower the value ofSF , the
closer that the state is from the ideal state.

III. L EARNING METHODOLOGY BASED ON COR

The process followed to learn the fuzzy controller is based
on the COR methodology (proposed in [16] and extended
in [17]). We have selected this process due to its good
properties to quickly obtain knowledge bases with a high
interpretability. The two following subsections describethe
learning methodology and the proposed algorithm based on it.

A. COR Methodology

A family of efficient and simple methods to derive fuzzy
rules guided by covering criteria of the data in the example
set, calledad hoc data-driven methods, has been proposed
in the literature in the last few years. Their simplicity, in
addition to their quickness and easy understanding, make
them very suitable for learning tasks. However, ad hoc data-
driven methods usually look for the fuzzy rules with the best
individual performance (e.g. [19]) and therefore the global
interaction among the rules of the rule base is not considered,
thus involving knowledge bases with a bad accuracy.

With the aim of addressing these drawbacks keeping the
interesting advantages of ad hoc data-driven methods, the
COR methodology is proposed [16]. Instead of selecting the
consequent with the highest performance in each subspace like
these methods usually do, the COR methodology considers
the possibility of using another consequent, different from the
best one, when it allows the fuzzy system to be more accurate
thanks to have a knowledge base with better cooperation.

COR consists of two stages:

1) Search space construction— It obtains a set of candi-
date consequents for each rule.

2) Selection of the most cooperative fuzzy rule set—
It performs a combinatorial search among these sets
looking for the combination of consequents with the best
global accuracy.

A wider description of the COR-based rule generation
process is shown in Fig. 2.

B. COR Methodology with Ant Colony Optimization

Since the search space tackled in step 2. is usually large,
it is necessary to use approximate search techniques. In [16],
accurate linguistic models have been obtained using simulated
annealing. However, since one of our constrains is to deal with
a computational expensive evaluation function, in this paper
the use of ant colony optimization (ACO) [20] is considered.
It is a population search bio-inspired technique that considers
heuristic information to allow it to get good solutions quickly.
This section briefly describes the main components of the
considered COR-based ACO algorithm, that was previously
proposed in [21].

1) Problem Representation for Learning Cooperative Fuzzy
Rules: To apply ACO in the COR methodology, it is conve-
nient to see it as a combinatorial optimization problem with
the capability of being represented on a weighted graph. In this
way, we can face the problem considering a fixed number of
subspaces and interpreting the learning process as the way of
assigning consequents vectors—i.e., labels of the output fuzzy
partitions—to these subspaces with respect to an optimality
criterion (i.e., following the COR methodology).

Therefore, according to notation introduced in Fig. 2, each
node Sh ∈ S+ is assigned to each candidate consequent
(Bkh

1 , . . . , Bkh
m ) ∈ C(Sh) and to the special symbol “don’t

care” (R∅) that stands for absence of rules in such a subspace.
Fig. 3 shows the explored graph built from an example of
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Inputs:
• An input-output data set—E = {e1, . . . , el, . . . , eN}, with el =

(xl
1, . . . , xl

n, yl
1, . . . , yl

m), l ∈ {1, . . . , N}, N being the data set
size, and n (m) being the number of input (output) variables—
representing the behavior of the problem being solved.

• A fuzzy partition of the variable spaces. In our case, uniformly
distributed fuzzy sets are regarded. Let Ai be the set of
linguistic terms of the i-th input variable, with i ∈ {1, . . . , n},
and Bj be the set of linguistic terms of the j-th output variable,
with j ∈ {1, . . . , m}, with |Ai| (|Bj |) being the number of labels
of the i-th (j-th) input (output) variable.

Algorithm:
1) Search space construction:

1.1. Define the fuzzy input subspaces containing positive
examples: To do so, we should define the positive
example set (E+(Ss)) for each fuzzy input subspace
Ss = (As

1, . . . , As
i
, . . . , As

n), with As
i

∈ Ai being a
label, s ∈ {1, . . . , NS}, and NS =

∏n

i=1
|Ai| being

the number of fuzzy input subspaces. In this paper, we
use the following:

E+(Ss) = { el ∈ E | ∀i ∈ {1, . . . , n},
∀A′

i ∈ Ai, µAs
i
(xl

i) ≥ µA′

i
(xl

i) }

(16)
with µAs

i
(·) being the membership function associated

with the label As
i
.

Among all the NS possible fuzzy input subspaces,
consider only those containing at least one positive
example. To do so, the set of subspaces with positive
examples is defined as S+ = {Sh | E+(Sh) 6= ∅}.

1.2. Generate the set of candidate rules in each subspace
with positive examples: Firstly, the candidate conse-
quent set associated with each subspace containing at
least an example, Sh ∈ S+, is defined. In this paper, we
use the following:

C(Sh) = { (B
kh
1 , . . . , B

kh
m ) ∈ B1 × . . . × Bm |

∃el ∈ E+(Sh) where ∀j ∈ {1, . . . , m},
∀B′

j
∈ Bj , µ

B
kh
j

(yl
j
) ≥ µB′

j
(yl

j
) }.

(17)

Then, the candidate rule set for each subspace is de-
fined as CR(Sh) = {Rkh

= [IF X1 is Ah
1 and ... and

Xn is Ah
n THEN Y1 is B

kh
1 and ... and Ym is B

kh
m ] such

that (B
kh
1 , . . . , B

kh
m ) ∈ C(Sh)}.

To allow COR to reduce the initial number for fuzzy
rules, the special element R∅ (which means “do
not care”) is added to each candidate rule set, i.e.,
CR(Sh) = CR(Sh) ∪ R∅. If it is selected, no rules are
used in the corresponding fuzzy input subspace.

2) Selection of the most cooperative fuzzy rule set — This stage
is performed by running a combinatorial search algorithm to
look for the combination RB = {R1 ∈ CR(S1), . . . , Rh ∈
CR(Sh), . . . , R|S+| ∈ CR(S|S+|)} with the best accuracy.
Since the tackled search space is usually large, approximate
search techniques should be used.
An index f(RB) measuring the global quality of the encoded
rule set is considered to evaluate the quality of each solution.
In order to obtain solutions with a high interpretability, the
original function is modified to penalize excessive number of
rules:

f ′(RB) = f(RB) + β · f(RB0) ·
#RB

|S+|
(18)

with β ∈ [0, 1] being a parameter defined by the designer to
regulate the importance of the number of rules, #RB being
the number of rules used in the evaluated solution (i.e., |S+|−
|{Rh ∈ RB such that Rh = R∅}|), and RB0 being the initial
rule base considered by the search algorithm.

Fig. 2. COR algorithm

S 1

S 2 S 3

S 4

B1B2

B1B2B3 B2B3

B3

There are not
examples

There are not
examples

There are not
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X
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h
32

h
33

h
43

don't
care

h
44

h
34h

24

h
14

Fig. 3. Example of a graph built from sets of candidate rules generated by
COR

candidate rule sets. To construct a complete solution, an ant
iteratively goes over each rule and chooses a consequent with
a probability that depends on the pheromone trailτ and the
heuristic informationη associated to each decision. The order
of selecting the rules is irrelevant.

2) Heuristic Information:The heuristic information on the
potential preference of selecting a specific consequent vector,
Bkh , in each antecedent combination (subspace) is determined
as described in Fig. 4.

For each subspace Sh ∈ S+ do:
1) Build the sets E+(Sh) and C(Sh) as shown in Fig. 2.

2) For each Bkh = (B
kh
1 , . . . , B

kh
m ) ∈ C(Sh), make

use of an initialization function based on a covering
criterion to give a heuristic preference degree to each
choice. In this paper, we use the following:

ηhkh
= max

el∈E+(Sh)
Min

(

µAh(xl), µ
B

kh
j

(yl)

)

. (19)

3) For each Bkh /∈ C(Sh), make ηhkh
= 0.

4) Finally, for the “don’t care” symbol, make the follow-
ing:

ηh,|B1|·...·|Bm|+1 =
1

max
kh∈{1,...,|C(Sh)|}

ηhkh

. (20)

Fig. 4. Heuristic assignment process

3) Pheromone Initialization:The initial pheromone value
of each assignment is obtained as follows:

τ0 =
1

|S+|

∑

Sh∈S+

max
Bkh∈C(Sh)

ηhkh
. (21)

In this way, the initial pheromone will be the mean value of
the path constructed taking the best consequent in each rule
according to the heuristic information (a greedy assignment).

4) Fitness Function:The fitness function will be the said
objective function, defined in eq. (18) in Fig. 2.

5) Ant Colony Optimization Scheme: Best-Worst Ant System
Algorithm: Once the previous components have been defined,
an ACO algorithm has to be given to solve the problem. In
this contribution, the BWAS algorithm [22] is considered. Its
global scheme is shown in Fig. 5. The adaptation of these
components to COR can be consulted in [21].
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1) Give an initial pheromone value, τ0, to each edge.
2) While (termination condition is not satisfied) do:

a) Perform the track of each ant by the solution
construction process.

b) Apply the pheromone evaporation mecha-
nism.

c) Apply the local search process on the current-
best solution.

d) Update Sglobal best and Scurrent worst.
e) Apply the Best-Worst pheromone trail up-

date rule.
f) Apply the pheromone trail mutation.
g) If (stuck condition is satisfied) then apply

restart.

Fig. 5. BWAS algorithm

IV. EXPERIMENTAL RESULTS

The learnt fuzzy controller has been tested using the Nomad
200 simulation software. The position, velocity and advance
direction of the mobile object were directly obtained from
the simulation software and passed to the control system in
order to calculate the input variables. Tests have been carefully
chosen, trying to present the controller with a wide range
of situations of velocity and turning of the mobile object. It
is important to remark that these tests have not been used
during training. The training set is only composed of a list
of examples (6,435) that have been chosen covering the input
space with an adequate precision. These conditions warrantee
that the quality of the learnt behavior does not depend on the
movements of the mobile objects because the behavior can be
generalized.

We have used the following parameter values for the COR-
based ACO algorithm: 50 iterations, 30 ants,ρ = 0.8, α = 2,
β = 2, Pm = 0.3, σ = 4, LSi = 10, LSn = 30, and
R = 5. No experiments were made with different values for
these parameters. Therefore, the results shown below maybe
could be improved with a more exhaustive parameter value
selection. The learnt controller (shown in Fig. 6) has 112
linguistic rules and has been learned in only 36m (with an
Intel(R) Pentium(R) III 1400 MHz processor) using a value
of γ = 0.2 (eq. 18). If for any situation no rule is fired, then a
null linear acceleration and angular velocity are selected. The
maximum linear velocity the robot can reach is 61 cm/s, and
the maximum angular velocity is45o/s.

Figure 7 shows some trajectories of the robot when it is
following different mobile objects at a reference distanceof
1.5m and with a reference deviation of0o. The trajectories
are represented by circular marks. A higher concentration of
marks indicates lower velocity. In order to visualize adequately
both trajectories, in Fig. 7 the trajectory of the mobile object
has been shifted in the y-axis direction. Thus, at the beginning
(pointsAr for the robot andAm for the mobile object), both
the robot and the object have the samey coordinate, and their
x coordinate is the one represented in the figure (the robot is
placed 1.5m to the left of the mobile object). The labels that
have been placed along the trajectories represent a time gap

between them of 3.3s (ten control cycles).
Ten tests have been done for each one of the three analyzed

types of trajectories (Fig. 7). The average values measured
for some parameters that reflect the controller performance
are shown in Table I. These parameters are the average
distance error (δd = |d − dref |), the average deviation error
(δdev = |dev − devref |), and the average velocity change.
The latter parameter measures the change in the linear velocity
between two consecutive cycles, reflecting the smoothness of
the behavior (a low value indicates a smooth behavior).

TABLE I

AVERAGE VALUES OF SOME PARAMETERS FOR THE THREE TYPES OF

TRAJECTORIES

δd (cm) δdev (degrees) Vel. change (cm/s)
Fig. 7(a) 29 22 6.13
Fig. 7(b) 10 4 11.71
Fig. 7(c) 20 10 6.47

In order to show the accuracy of the controller, the three
trajectories of Fig. 7 are going to be described:

• Fig. 7(a): this example shows a behavior of the mobile
object that makes quite difficult to implement the “follow
a mobile object” task. At the beginning the robot is placed
at Ar and the object is placed atAm (remember that
really they coordinate is the same for both points). The
mobile object has a linear velocity of 38 cm/s along all the
path, and implements turnings with the maximum angular
velocity (45o/s). These sudden and very sharp changes
in direction make very difficult for the robot to be at the
right reference distance and with the adequate reference
deviation in the next control cycles. As a result, the errors
are the highest ones of the three types of trajectories
(Table I).

• Fig. 7(b): this is the easiest example, as there are few
turns of the mobile object. The object moves with a high
velocity (51 cm/s) except between pointsBm-Cm and
Gm-Hm, where velocity is decreased to 25 cm/s in order
to test the controller. Also, turning are implemented with
an angular velocity of30o/s. With these conditions, the
errors in distance and deviation are low, but the change
in velocity is high due to the abrupt changes in the speed
of the object.

• Fig. 7(c): the last type of trajectory is also quite difficult
because the mobile object is changing its movement
direction for a long time. Between pointsAm-Cm and
Gm-Lm the object moves straight and at 38 cm/s, but
betweenCm-Gm the speed is increased to 51 cm/s, and
a continuous turning at20o/s is implemented. Due to this
continuous change in the direction of the mobile object,
the values of the errors (Table I) take a value higher than
the previous type of trajectory.

As a resume, the accuracy of the controller is good, but
when the mobile object implements continuous or sharp
changes in direction the controller needs a few control cycles
to reach the reference distance and deviation. On the other
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Rule d dev △v △θ Lin. acc. Ang. vel. Rule d dev △v △θ Lin. acc. Ang. vel.
R1 Near HL Slower R HA MR R57 Medium Z Equal R SA SL
R2 Near HL Slower Z SA SL R58 Medium Z Equal Z MA SL
R3 Near HL Slower L HA VHL R59 Medium Z Equal L MA HL
R4 Near HL Equal R Z MR R60 Medium Z Quicker Z SB SL
R5 Near HL Quicker R VHB MR R61 Medium SR Slower R HA VHL
R6 Near HL Quicker Z VHB SL R62 Medium SR Slower Z VHA
R7 Near HL Quicker L HB R63 Medium SR Slower L VHA
R8 Near SL Slower Z HA HL R64 Medium SR Equal Z SA
R9 Near SL Slower L HA VHL R65 Medium SR Equal L MA
R10 Near SL Equal R SB HR R66 Medium SR Quicker R HB
R11 Near SL Equal L Z HL R67 Medium SR Quicker Z HB
R12 Near SL Quicker R HB MR R68 Medium SR Quicker L MB
R13 Near SL Quicker Z VHB HL R69 Medium HR Slower R Z
R14 Near SL Quicker L VHB VHL R70 Medium HR Slower Z SA
R15 Near Z Slower R HA Z R71 Medium HR Slower L SA
R16 Near Z Slower Z HA HL R72 Medium HR Equal R SB SL
R17 Near Z Slower L VHA VHL R73 Medium HR Equal Z HB
R18 Near Z Equal R Z MR R74 Medium HR Equal L SB
R19 Near Z Equal Z Z SL R75 Medium HR Quicker R VHB SL
R20 Near Z Equal L Z VHL R76 Medium HR Quicker L VHB
R21 Near Z Quicker R HB MR R77 Far HL Slower R SB
R22 Near Z Quicker Z HB SL R78 Far HL Slower Z SB SL
R23 Near SR Slower Z MA VHL R79 Far HL Slower L MB HR
R24 Near SR Slower L HA VHL R80 Far HL Equal Z VHB SL
R25 Near SR Equal R Z Z R81 Far HL Equal L VHB HR
R26 Near SR Equal Z SB SL R82 Far HL Quicker Z VHB VHR
R27 Near SR Equal L SB VHL R83 Far HL Quicker L VHB VHR
R28 Near SR Quicker Z HB SL R84 Far SL Slower R VHA VHR
R29 Near SR Quicker L HB R85 Far SL Slower Z VHA VHR
R30 Near HR Slower R SA HR R86 Far SL Slower L VHA VHR
R31 Near HR Slower Z HA SL R87 Far SL Equal R MA HR
R32 Near HR Slower L HA VHL R88 Far SL Equal Z MA VHR
R33 Near HR Equal Z Z SL R89 Far SL Quicker R SB VHR
R34 Near HR Quicker R HB MR R90 Far SL Quicker Z SB VHR
R35 Near HR Quicker Z VHB SL R91 Far SL Quicker L SB VHR
R36 Medium HL Slower R SB R92 Far Z Slower Z VHA SL
R37 Medium HL Slower Z MA VHR R93 Far Z Slower L VHA HL
R38 Medium HL Slower L SA R94 Far Z Equal R VHA MR
R39 Medium HL Equal R HB VHR R95 Far Z Equal Z VHA MR
R40 Medium HL Equal Z MB HR R96 Far Z Quicker R Z HL
R41 Medium HL Equal L HB VHR R97 Far Z Quicker Z Z SL
R42 Medium HL Quicker R VHB VHR R98 Far Z Quicker L Z HL
R43 Medium HL Quicker Z VHB SL R99 Far SR Slower R HA
R44 Medium HL Quicker L VHB HL R100 Far SR Slower Z VHA
R45 Medium SL Slower R VHA HR R101 Far SR Slower L VHA
R46 Medium SL Slower Z VHA VHR R102 Far SR Equal R Z VHL
R47 Medium SL Slower L HA HR R103 Far SR Equal Z MA
R48 Medium SL Equal R MA VHR R104 Far SR Quicker Z SB
R49 Medium SL Equal Z Z VHR R105 Far SR Quicker L SB
R50 Medium SL Equal L Z MR R106 Far HR Slower R SB VHR
R51 Medium SL Quicker R MB HR R107 Far HR Slower L HB HR
R52 Medium SL Quicker Z MB VHR R108 Far HR Equal R VHB
R53 Medium SL Quicker L HB HR R109 Far HR Equal Z VHB SL
R54 Medium Z Slower R VHA MR R110 Far HR Equal L VHB MR
R55 Medium Z Slower Z VHA Z R111 Far HR Quicker R VHB VHR
R56 Medium Z Slower L VHA HL R112 Far HR Quicker Z VHB VHR

Fig. 6. Knowledge base generated by the COR-based algorithm
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(a)

(b)

(c)

Fig. 7. Trajectories of the robot following different mobileobjects
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hand, the interpretability of the obtained rules is good, as
all the linguistic labels have the same shape (triangular),are
uniformly distributed along the universes of discourse, and
have the same meaning for all the rules.

V. CONCLUSIONS AND FUTURE WORK

A methodology for the design of behaviors in mobile
robotics has been presented. The main characteristics of the
approach are: first, the designer only needs to define the
universe of discourse, number of labels and precision of each
variable, together with the scoring function (SF ). In second
place, learning is done using a set of training examples that
have been automatically generated covering the whole universe
of discourse of each one of the variables. This makes the
learnt behavior very general, so the robot will be capable
to face any situation. In third place, the learning process is
very fast. Finally, the obtained knowledge base has a high
interpretability, which makes easy to detect possible errors
during the design or the learning process.

This methodology has been applied to the design of the
“follow a mobile object” behavior. The controller with 112
linguistic rules has been tested with three complex types of
trajectories for the mobile object showing good results in the
average values of some parameters that reflect the quality of
the behavior. In a near future, a system for the detection of
moving objects will be implemented to provide the controller
with the information of the object.
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