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Abstract—The design of behaviors is essential for the con- problem of this approach is that of resolving the conflict
struction of complex control architectures in mobile robotics. petween the performance of individual rules and that of the
The controller that implements a behavior can be learned in rule base [7]. The objective is to obtain a good rule base

two stages: offline learning stage, and online tuning stage. In . . o
this paper we propose a methodology for online tuning, based which means to obtain good individual rules, but also rules

on an evolutive strategy that is adequate to be implemented on that cooperate with each other to get adequate outputs.
the real robot. In order to be able to analyze the behavior of  On the other hand, in the Pittsburgh approach each chro-
the robot along several control actions, we have considered the mosome represents a full knowledge base. This approach has
behavior as a multi-step problem, which means that the payoffis 5 pigher computational cost, since several knowledge bases
obtalr]ed after some control cycles (eplsodg) using thg Q-learning have to be evaluated. Finally, in the IRL approach, each
technique. The methodology has been applied for tuning the wall- : A '
following behavior using the Nomad 200 simulation software. ~ Chromosome represents an individual rule, but contrary to the
Michigan approach, a single rule is learned after each sequence
. INTRODUCTION of iterations, and not the whole rule base.

In mobile robotics, the control of the robot is usually Learning a behavior on the real robot from the beginning
implemented by hybrid architectures in which at the highés always very time consuming, difficult, and means that
level the deliberative and planning tasks are solved, whillke robot can reach hazardous situations, because some non-
at the lower level the reactive control is done. This makeslequate control actions can be selected during the learning
the robot able to cope with complex tasks and, at the samecess. For these reasons it seems adequate to divide the
time, interact and move in real environments with reactiMearning into two different stages: a first one in which the
capabilities. This reactive layer is generally composed bthavior is learned offline using a set of examples [2], [8].
different behaviors that are selected and coordinated by thethis stage, the time spent for learning is not as important,
higher level. One of the main difficulties of mobile robotics isnd also a wide range of control actions can be tested without
the high amount of uncertainty present in the measuremeaty risk for the robot. The second stage consists on tuning
provided by the ultrasound sensors. Fuzzy logic has showntlh@ knowledge base obtained in the previous step on the real
be an appropriate tool for the implementation of behaviors [Ipbot. In this way, the learning process on the real robot is
as the designed controllers can deal with the unreliable afadter and safer.
noisy data. A number of different approaches have been described in

On the other hand, the implementation of a controller réhe literature for learning behaviors in mobile robotics. They
quires expert knowledge, and a tedious tuning process in ortiewe different shortcomings: some of them spend a lot of
to adjust the control actions that are going to be implementtddhe to learn the behaviors [2], [9], [10], [11]. Others need
on the real robot. This is not always possible, and is alslee definition of a lot of parameters, or a partial description
highly time consuming. For these reasons, different learnio§ a knowledge base [12], which makes the design of new
techniques have been applied for obtaining controllers: evolehaviors more difficult: parameters must be tuned and expert
tionary algorithms, neural networks, etc. In particular, evollknowledge has to be acquired. Besides, sometimes the learned
tionary algorithms have been successfully applied for this tabkhavior is not general [11], [12], [13], thus the performance is
[2], [3], [4], [5]- One of the great advantages of evolutionargdequate in some environments, but poor in others: the learned
algorithms is that they let the designer to choose the mdsthavior is not reliable, and its implementation on the real
adequate tradeoff between accuracy and interpretability.  robot will not be adequate. Finally, the interpretability of some

Learning of knowledge bases using evolutionary algorithnog the learned controllers is low [2], [10], [13], [14] and, as
has three main approaches: Michigan, Pittsburgh and Iterataveeonsequence, it will be difficult to detect and solve errors
Rule Learning (IRL) [6]. In the Michigan approach, each chraduring the operation of the controller.
mosome represents an individual rule. Rules evolve throughin this paper, a methodology for the tuning of a fuzzy
time due to their interaction with the environment. The majaontroller on a mobile robot is presented. This approach



is valid for the tuning of different kinds of behaviors, as For each rule of the population the chromosome is con-
the designer has only to redefine the function that scorssucted in the following way:
the states the robot has reached. The methodology is quite P ;
fast, only a few parameters must be defined, the obtained ¢t =cy, - e ®)
behavior is general (as will be shown with the results), anghere ¢i is an integer number that represents the linguistic
the interpretability of the knowledge base is high. label of the output variablé for rule 4.
Among the three main approaches for learning knowledgeThe tuning algorithm is as follows:
bases, Michigan has been selected. The other two approacheﬁ Construct the match set
are not adequate because they require a high amount of timﬁ) Construct the subsets of rules
to obtain a valid knowledge base. Tuning is implemented 3) Select the subset of rules to be fired
with a (1, 1)-ES (Evolution Strategy) that is applied to the 4) Calculate payoff of previous action
consequents of the rules. It has been considered as a multi-st If episode is over
problem, in order to analyze the states reached by the robot _ S
along a number of iterations of the controller (episode). That a) Ca_lculafce weights of_the_ |_nd|V|duaIs
way, the influence of the noisy measurements from the sensors, b) Adjust fitness of the individuals
and the changes in the state of the robot due to its movement c) Apply (1, 1)-ES
(detection of new features in the environment, movement of/n €ach control cycle, the match set will be composed of
people, ...) can be reduced. The methodology has been appfédhe rules that fulfill:
for the tuning of the wall-following behavior using the Nomad — —
200 simulation software. pi = Ay () A oo AN Afyy (2na) > 0 (4)
The paper is structured as follows: in the next section
the tuning methodology is presented. Section 3 describr(ﬁ
the application of the methodology to the wall-followin
behavior. Then, the obtained results are presented and, fin
conclusions and future work are commented.

Taking into account all the rules of the match set, the active
thes (input subspaces) for this iteration are determined. The
bsets of rules are constructed using all the combinations
'the rules of the match set, considering the following
constraints:

[I. ONLINE TUNING OF BEHAVIORS « All the active niches must be covered by each subset.

The rules that are going to be tuned have been obtaine¢ TWO rules covering the same active niche are not allowed
during a previous offline learning process, as described in [2], N @ subset.
[8]. They are conventional fuzzy rules in Disjunctive Normal The score of each subset is calculated as:

Form (DNF) like: s — Zﬂ y 5)

—~ — m P p
Ri: IfXiisAband ... and Xnais Al , P

@) where fp is the fitness of individuap. The subset of rules

ThenYyis Bi and ... andYnc is By that will be fired can be selected in different ways: choosing
where R, i=1, ..., NR, is thei-th rule, X', j=1, ..., N4, and thr(]a b:ast Isub.set, with a nc:n-dﬁterm|n|st|c prr?cedure (lroctjjlert]te
Y/, k=1, .., NC, are linguistic variables of the antecedent anjfheel selection, etc), ... In this paper we have applied the

consequent parts, respectiveN R is the number of rulesy A selection of the best subset.

the number of input variables, andC' the number of output An episode is defined as a number of control cycles,

variables.A% is a subset of all the possible linguistic values o long which the payoff is calculated. At the end of the
J P 9 episode the reward is distributed among the rules. As will

variablej, which are connected by a t-conorm (the maximu@e explained when commenting the obtained It :
has been used): explaine _ g the obtained results, using an
episode withle > 1 increases the robustness of the learned
X;‘_ =Aj1V ... VA np (2) behavior, because it minimizes the importance of the noisy
T measurements and the changes in the state of the robot due to
and A;, and Bj, are linguistic values, an&/ L} is the number the movement.
of linguistic labels inA’. Payoff P is estimated using the Q-learning technique, which
Prior to the beginning of the tuning process, the initializatiol$ @ classic model-free algorithm for reinforcement learning
of the population is done. The initial population will consisfom delayed rewards [15]. Q-learning is applied along the
of x copies of the rules of the previously obtained knowledgterations of the episode in the following way:
base (VR = k- #RB,), where#RDBy is the number of rules _ t
of the previous rule base. Theq,— 1 copies of each rule are Pt) = Pt =1)+7"- SF(s-ssi((t — 1)) ©
mutated in its consequent part, until not repeated rules remairheret is the iteration of the episode, < [0, 1] is the discount
The mutation operator simply increases or decreases, wiictor, andSF (s_ss;—1(z(t—1))) is the score assigned to the
equal probability, the integer value that represents a linguisitate reached by the robot starting from state — 1) and
label of a variable. applying the control actions proposed by the subset of rules



s_ss;_1 (the one selected in the previous iteration). Scorinfys in [16], the Widrow-Hoff procedure is applied only after the
function, SF, must be defined by the designer and is behaviordividual has been adjusted at ledgi3 times. Prior to that,
dependent. the MAM technique is applied. This technique lets the fithess
Once the maximum number of iteratiorig)(of the episode values approach faster to their true values, and makes the
is reached, the payoff must be distributed among the rules. §ystem less sensitive to the initial values of some parameters

do this, the weight of each rule is calculated: [16]. In this case, we have used a weighted average of the
e ayoff values:
Wi — Yooy k- smi - (7)! e bay 1/8
() fi=Y vi-P(t) (10)
t=1

where 1! is the degree of fulfillment of rulé at iterationt, . ' ]
and sm! measures the similarity between the output of thherev; is defined as:
controller and the output proposed by rdlén the following Z1/5 E ()t
way: v = = /l;i i
) L1 (y)t
sm; = (8) After the adjustment of the fitness values, an evolution

k=0 strategy (1, 1)-ES is applied to those individugl$or which
where y/. is the value for output variablé selected by the w: > 0 at the end of the episode, and that have been fired at
controller at iterationt, &ka is the center of gravity ofIg}; Ieastl/_ﬁ times since the beginning of the algorithim, A)-
(Bi. after inference), and, is the maximum difference that strateglgs '[1'8] us@ parents to creatd descendants, and the
is permitted. w1 best individuals, (_)ut of the descendants on_ly, are_selected

Thus the weight of a rule is proportional to the degree 5?” the next population/( < /\)_' Thg @, 1)'E_S IS appll_e_d to
fulfilment of the rule, but also to the closeness of the outpHt€ consequents of the rules (individuals) with probabiify
The procedure is as follows: once an individual is selected

roposed by the rule to the controller output. Similariyn{
prop y P () r applying the ES, the consequents of this rule are copied on
f

(11)

NC max (0, ok — ‘yi —yh
. :

Ok

is useful in that situations in which a rule that is good for dividual of the niche th le bel h
state of the robot is fired with other rules that are bad for ttj3€ Worst in vidual o the nic e.t at rule belongs to_. T en,
g 1, 1)-ES is performed on this modified worst individual.

same state, and also the selected action is not adequate ; S g .
ith this strategy we maintain the best individual (elitism),

vice versa). If similarity is not taken into account, the goo ; e ) X
) ty d and we modify the worst individual of the niche. The mutation

rule would be penalized. . : AR .
The point is that a good control action does not mean thyperator is the same used in the initialization of the population.

the rules that contribute to that output are also good. As an  [|I. TUNING THE WALL-FOLLOWING BEHAVIOR

example, suppose that four rules hgve been fired with equal, o ger to evaluate the proposed methodology, we have
degree of fulfillment: one of them with-1 as value for the qoiocteq the wall-following behavior, which is usually imple-

output variable, two withD, a_nd t_he_ other one with-1. The  onieq when the robot is exploring an unknown area, or
control output will be0 and, if this is a good output for that,, o it is moving between two points in a map. A good

state, the payoff will be high. Without considering similarity, )| toliowing controller is characterized by three features:

all the rules will get the same payoff, while when including th?o maintain a suitable distance from the wall that is being
similarity to calculate the weight, the first and last rules W"Ilollowed to move at a high velocity whenever possible

not receive payoff. So the closer the output of the rule to tléq,]d finally to avoid sharp movements, making smooth and
controller output the higher the similarity (and the weight) oﬁrogressive turns and changes in velocity.

the rule, and the proportion of the payoff the rule will receive. The controller can be configured modifying the values of

Of course, there can occur that sometimes a good rule dQgs Harameters: the reference distance, which is the desired
not receive payoff although it has been fired, but this onlyiance petween the robot and the selected wall, and the
means that its fitness will not be adjusted at this iteration (the. i um velocity attainable by the robot. In what follows
rule is neither penalized, nor rewarded). The same applies Wé assume that the robot is going to follow a contour that

bad rules. o _ is on its right side. Of course, the robot could also follow
The fitness for each individual is adjusted using the standen:g3 left-hand wall, but this can be easily dealt with by simply

Widrow-Hoff delta rule [16], but taking into account theinterchanging the sensorial inputs.
weights of the rules to distribute the adjustment [17]: The input variables of the control system are the right-
fi—fi+B-wi-(P—fi) (9) hand distance KD), the distances quotientQ), which is

calculated as:
whereP is the payoff at the end of the episode, ahéd [0, 1]

is the learning rate parameter. In that way the difference DQ - left — hand distance (12)
between the payoff of the episode and the fitness of the RD

rule contributes to change the fithess of the individual, but As it can be seen (figure 1JQ shows the relative position
proportionally to the weight of the rule and the learning ratef the robot inside a corridor, which provides with information




that is more relevant to the problem than simply using thewhen learning a behavior on the real robot or with the sim-
left-hand distance. A high value fdp@ means that the robotulation software, a collision avoidance module must oversee
is closer to the right-hand wall, whilst a low value indicategat none of the control actions that are implemented is going
that the closer wall is the left-hand one. The other inptd provoke a collision. This module, taking into account the
variables are the linear velocity of the robot (LV) and theurrent velocity, advance direction, distances to the obstacles,
orientation of the robot with respect to the wall it is followingand the linear acceleration and angular velocity that are going
A positive value of the orientation indicates that the robot ie be implemented, determines if this will make the robot reach
approaching to the wall, whilst a negative value means théazardous situation. In that case, the module tries to stop the
robot is moving away from the wall. The output variables arebot, the episode ends, and the payoff is set to 0, so the rules
the linear acceleration and the angular velocity. that have been fired along the episode are penalized decreasing
their fitness.

I Left-hand distance 6 - RD > I IV. RESULTS

The proposed system has been tested using the Nomad

Fig. 1. Description of some of the distances used to calculate inputvariablgg).o.Siml'llat_ion software. The initial rule base has b.een
obtained using a set of 48 examples and a hand-designed
The values for the distances and the orientation are obtairf@ja base with the labels uniformly distributed along the
from the distances measured by the ultrasound sensorsuBfverses of discourse of the variables. The number of la-
the robot. We use thdistributed perceptiorj19]: distance is Pels is {3, 2,3, 2,9, 9} for RD, DQ, orientation, LV,
measured as the minimum distance of a set of sensors, #tgar acceleration andangular velocity, respectively. This
the orientation will be a weighted sum of the orientation d#€nerates 36 rules, one for each niche or input subspace. An
each sensor in the set, giving more weight to those sensBr@&mple belongs to the niche that better covers its antecedent

that detect closer obstacles. part. In the same way, the linguistic labels of the output
FunctionSF, that scores the state reached by the robot, Ygriables for each rule are selected choosing those that better
defined as: cover an example of the niche to which the rule belongs.
The values of the parameters used for the online tuning
SF (x) :\/ 1 Cw (13) methodology arex = 5, #RBy = 36, le = 5, v = 0.8,
a1 +az +az+1 B=0.1, 6, = 0.05, w =100, ando; = gy = 0.5.
wherez is the state of the robot, is a scaling factor, and, Tuning of the rule base was made in environmér(figure
ag, andag are respectively: 2), and lasted five laps (approximately 11 minutes). Six
environments (including environmedf have been chosen for
ay = 100 - |RD — reference distance| (14) Comparing the tuned rule base with the initial rule base. These
PRD environments include very different situations that the robot

) ) usually faces during navigation: straight walls of different
|mazimum velocity — LV|

s = 10 - (15) lengths, followed and/or preceded of a number of concave and
pLv convex corners, gaps, ... thus covering a wide range of contours
. . to follow and truly defining very complex test environments.
g = W (16) Figure 2 shows the robot path along environmantvhere

Porientation tuning took place. The robot trajectory is represented by

DPRD, PLV, aNdDyrientation are the precisions of the respec<ircular marks. A higher concentration of marks indicates
tive input variables. Precisions are used in these equationdawer velocity. The maximum velocity the robot can reach is
order to evaluate the deviations of the values of the variablé$ cm/s, and the reference distance at which the robot should
from the desired ones in a relative manner (the deviation of tfalow the right wall is 51 cm. It is important to choose a
value of variablen from the desired one is measured in unitfraining environment which covers as many different situations
of p,,). This makes possible the comparison of the deviatiomas possible in order to tune the rules of all the niches. However,
of different variables and, as a consequence, the assignntbete will be rules in some niches that will not be fired enough
of the weights for each one of the variables. These weighimes (/5 times), and in these cases the original rule will be
(100, 10 and 1 for (14), (15), and (16) respectively) have besalected for the final rule base.
heuristically determined, and indicate how much important It is of great importance to consider the behavior that is
the deviation in the value of a variable is with respect tbeing tuned as a multi-step problem. The reason is twofold:
the deviation of other variables. The highest weight has befrstly, in a real environment the ultrasound sensor measure-
assigned to the distance, as small variationsRdD with ments are very noisy and unreliable. So, a good control action
respect to the reference distance should be highly penalizedn be taken in a situation (robot state) that is not truly the
An intermediate weight is associated to velocity and, finallyeal one. As a result, a good rule will be penalized because
the least important contribution to functiofiF' is for the of a failure in the estimation of the state of the robot, or vice
orientation of the robot. versa. In the same way, it sometimes occurs that the controller
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Fig. 2. Path of the robot along environmestfor the tuned rule base.

T
AR

Fig. 3. Path of the robot along environmefitfor the tuned rule base.

selects an adequate control action for an state of the roldistance to the wall is too high and the orientation is bad.
but in the next cycle (when the action has to be evaluated) thbese measures are also unreliable because of the difficulties
configuration of the environment is completely different.  in the detection of the wall at that position: the angle between
This can be seen in figure 4: at the first position, the robgle direction of the different ultrasound sensors (that are ir_1 the
is following the wall at an adequate distance and orientatig}ght-front sector, thus the ones used to calculate the right-
and selects a rule that increases its speed, maintaining fa@d distance) and the direction perpendicular to the wall
orientation with the wall (a good control action for that state§S Nigh- That means that probably they will not be able to
At the second position, the wall has finished (there is a Convggppe_rly measure tha_t distance due _to thq specular reflection
corner) and the current state of the robot indicates that feg high angles. Again, a good action will produce a low



TABLE Il
AVERAGE VALUES OF SOME PARAMETERS FOR THE ORIGINAL
CONTROLLER

payoff. These situations are more frequent in environments
with many corners, gaps, ...

For all these reasons, the evaluation of the actions of
the controller along an episode is more robust and tends t®Env. [ RD (cm) | Velocity (cm/s) | Vel. change (cm/s)| Time (s) |

minimize these kind of problems, as several control actions A a1 21 Z.01 139
contribute to the calculation of the payoff, and also the B 47 47 281 114
robot has time to recover from a bad action. We have found g ol jg gi; ;8
significant differences in the quality of the tuned behavior: if—¢ a5 9 533 271
the length of the episodded] is 1, the obtained behavior is [ F 49 48 2.98 112

very poor, withie = 3 the quality increases a lot, while for
le = 5 the best results are obtained.

As can be seen, the tuned controller has increased the
average velocity in all the environments around a 10% without
degrading the smoothness of the behavior. On the other hand,
the average right-hand distance has also been improved, and
in some cases the reference distance has been maintained (as
an average) along all the path. The worst case corresponds
to environmentA (the training environment), where the tuned

o system also beats the original one, but due to the complexity of
Initial position . .
the environment and the number of gaps, the average distance

RD N .
4—0 is not close to the reference distance.

In order to show the quality of the controller we are going
to describe in detail the path of the robot in environmant
(figure. 2). As said before, this environment is quite complex,
Final position with ten concave corners and six convex corners in a circuit
of a length of 57 meters. The measurements of the ultrasound
sensors are quite noisy due to the gaps present in the wall,
and also because of the convex corners. These are truly

In robotics, it is difficult to compare the learned controllergisicuit situations, because the robot's sensors may cease
with another ones proposed by other authors. The reasgScorrectly detect the wall at some given moments. The
are mainly due to the different characteristics of the roboggntroller must also significantly reduce velocity at corners.
(dynamic specifications, sensors of various kinds and WiK)| these situations provoke a reduction in the average distance
different distributions, ...), and also because each author dgg velocity. As can be seen, the robot follows the wall with
signs their own environments for the test, due to the abserg:qﬁigh precision, except at the corners, where it approaches

of a standardest.bank For these reasons, and in order tg; the wall (concave corners) or gets away from it (convex
evaluate the obtained controller, the average values of SOR¥ners) in order to turn.

parameters that reflect the controller performance have been
measured. The parameters are the average distance to the
right wall (the wall that is being followed), the average linear V. CONCLUSIONS AND FUTURE WORK
velocity, the time spent by the robot along the path, and the
average velocity change. The latter parameter measures th& methodology for rule base tuning of a fuzzy controller has
change in the linear velocity between two consecutive cyclé@en described. This field is of special importance in mobile
reflecting the smoothness of the behavior. Ten tests have b&pptics, where different behaviors have to be designed and
done for each one of the analyzed environments. The vali@tegrated on the real robot. The design of behaviors on the
of the parameters are shown in table I, while table Il showsal robot is very difficult and time consuming, so a better
the values for the initial rule base. approach consists in dividing design in two stages: learning
the behavior offline, and tuning it online.

The proposed algorithm has been tested for the online
tuning of the wall-following behavior using the Nomad 200

RD

Fig. 4. Change of the state of the robot after one control cycle.

TABLE |
AVERAGE VALUES OF SOME PARAMETERS FOR THE TUNED CONTROLLER

Env. | RD (cm) | Velocity (cm/s) | Vel. change (cm/s)| Time (s) simulation software, showing a good performance, increasing
A 44 45 4.41 125 the speed of the robot around a 10%, and also improving the
B o1 o1 2.83 105 distance to th ll. The results are promising for
c 1 1 Toq 55 average distance to the wall. The results are pro g

D 29 =7 515 75 the application of the methodology on the real robot, where
E 50 55 2.18 109 the performance of the initial rule base will be worst, and the
F 51 52 3.08 105 enhancement of the behavior due to the tuning will be more

relevant.
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