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Abstract. Multi-link wheeled robots provide interesting opportunities
within many areas such as inspection and maintenance of pipes or vents.
A key functionality in order to perform such operations, is that the robot
can follow a predefined path fast and accurately. In this paper we present
an algorithm to learn the path-following behavior for a set of motion
primitives. These primitives could then be used by a planner in order
to construct longer paths. The algorithm is divided into two steps: an
example-based stage for controller learning, and a controller tuning stage,
based on an objective function and simulations of the path-following pro-
cess. The path-following controllers have been tested with a simulator of
a multi-link robot in several complex paths, showing an excellent perfor-
mance.

Keywords: Path-following, snake-like robot, multi-link mobile robot,
fuzzy control.

1 Introduction

Mobile robots constitute versatile platforms for a vast range of operations. In
particular, multi-link mobile robots have the potential of traversing complex
structures and narrow and confined spaces, which can be either too difficult or
too dangerous for people to operate in. A key functionality in order to perform
such operations, is that the robot can follow a predefined path fast and accu-
rately. Moreover, the robot should also be able to recover to the path even in
the case of large deviations (e.g. after avoiding an obstacle that was placed on
the path).

The field of path-following for mobile robots is vast, but much of the focus
has been limited to wheeled robots [1,2,3,4,5]. These robots have restrictions
in their movements, as most of them are nonholonomic, but their kinematics
are not as complex as for snake-like robots and, therefore, the complexity for
path-following is lower.

In this paper we present an algorithm for learning a path-following behavior
for multi-link mobile robots. Unlike in [4], the multi-link robot tries to reduce
heading and deviation errors jointly at each step (and not independently), ad-
justing velocity and turning angle properly. Also, in our approach, the learning
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complexity of the path-following behavior is reduced, as long paths are divided
into a set of small motion primitives [6] (Fig. 1a) that can reach almost any
point in the neighborhood. These primitives can be used for forward and reverse
motion, but the latter have been omitted in Fig. 1a for clarity. Thus, a set con-
trollers are learned (one for each motion primitive), instead a single one. The
combination of these motion primitives allows to construct longer paths from any
two points in the environment (Fig. 1b). This method favors accuracy because
a single controller is dedicated to a single primitive. The learned controllers can
be used with a planner that permits the coupling of the path-following behavior
with an obstacle avoidance behavior, but this planner is not implemented for
this paper.

 

(a)

 

(b)

Fig. 1. a) A set of motion primitives. b) A repeated and regular pattern of motion
primitives that constructs the overall motion plan (bold curve).

A nonholonomic multi-link wheeled robot called PIKo (Pipe Inspection
Konda) is used as a basis for simulation trials of the algorithm presented in
this paper. The simulation results show that this robot is able to follow the
paths with great accuracy. Moreover, it is able to quickly move onto its path
when it is initially placed with a large deviation. The presented approach can
be applied to other mobile robots just replacing the kinematics model.

The kinematic model of PIKo makes the reverse motion controllability dif-
ficult, only with information of the first link. So, only controllers for forward
motion have been learned. For this reason, has been assumed that in case of a
dead end, the snake will replan the path so that it can turn around.

This paper is arranged as follows: Sec. 2 presents the multi-link robot used
for the simulation trials, while Sec. 3 details the controller learning algorithm
for the path-following behavior. Sec. 4 analyzes the obtained results and, finally
Sec. 5 points out the conclusions.

2 Description of PIKo Robot

The approach presented in this paper has been validated with a snake-like robot
with active wheels (Fig. 2), called PIKo (Pipe Inspection Konda). PIKo is a
nonholonomic robot developed by the Norwegian research organization SINTEF
[7]. The robot currently consists of five interconnected modules, each with joints
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with two degrees of freedom. The wheels provide for a third degree of freedom
per module. Each module has a measured maximum joint moment of 11 Nm and
a weight of 1.2 kg. Current sensors include angle encoders for all joints, wheel
encoders, and a 3D time-of-flight (TOF) camera system. The advantages of this
robot are:

– The long and articulated body of snake-like robots make them ideal for
internal inspection of complex pipe structures or other confined spaces. PIKo,
moreover, can move through these narrow spaces, while maintaining the
direct motion of wheeled vehicles. The direct motion is a great advantage
against passive wheeled robots motion because it is less complex.

– The robot has many degrees of freedom (speed, horizontal and vertical angles
for each module) but its movement can simulate the n-trailer problem [9]
through a set of kinematic equations (with good accuracy), reducing the
number of parameters needed to control it[8].

– A PIKo simulator based on an open-source physics engine called Open Dy-
namics Engine [12] has been developed by SINTEF and the Norwegian Uni-
versity of Science and Technology (NTNU). We have used this simulator for
controller tests and for the tuning stage of the learning method presented in
this paper.

Fig. 2. The snake-like robot PIKo

3 Path-Following Learning Algorithm

A two step method is proposed to learn path-following behavior. This technique
combines inductive and deductive learning in optimization methods, with a first
example-based learning stage and a second tuning stage with data from a sim-
ulator, which improves the accuracy of the obtained controllers. The proposal
is valid for any learning algorithm based on the optimization of an objective
funcion (e.g. genetic algorithms or artificial neural networks).

The example-based learning stage is based on the algorithm proposed in [10].
It has been used in problems like wall-following or moving object following with
differential steering robots. In this paper, the different steps of this algorithm
have been adapted to be applied to the path-following behavior for multilink
robots, from the selection of variables to the scoring function.

3.1 Example-Based Learning Stage

In this stage, a general fuzzy controller that will seed the tuning stage is learned
through a set of path-following examples. Each example of the training set con-
sists of a combination of state and action values. The examples are generated in
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the space of the input (state) variables, starting from the minimum value of each
variable and increasing the value in a quantity pi until the maximum value is
reached. The set of examples is created combining these values for all the input
variables. On the other hand, the action values are determined testing all the
posible combinations of the output variables (discretized with precision pi), and
selecting those values that place the robot in the state closest to the ideal state
according to a score function. These examples are used as the training dataset of
an advanced algorithm that learns the fuzzy controller (database and rulebase)
that best fits the data.

In order to perform this stage, we need to define: the kinematics model of the
robot, the input and output variables, the universe of discourse and precision pi

for the example generation, the scoring function (SF) and the test function.

Kinematics Model. The kinematics model of the robot PIKo is described in
[7,8]. This model is used to describe the motion of the robot for the evaluation
of the examples. In order to calculate the next position of the head of the robot,
the following equations are needed:

θ1(t + 1) = θ1(t) +
VP1

LPJ
· tan (δ1) · Δt (1)

x1(t + 1) = x1(t) + VP1 · sin (θ1) ·Δt, y1(t + 1) = y1(t) + VP1 · sin (θ1) ·Δt (2)

φ2(t + 1) = φ2(t) − VP1

LPJ
·
[
sin (φ2(t)) +

(
LJP

LPJ
· cos (φ2(t)) + 1

)
· tan (δ1)

]
· Δt

(3)
where x1, y1 and θ1 are the position and heading of the first link of the robot,
φ2 is the angle between the first and second links of the robot, VP1 and δ1 are
the linear speed and angular speed of the first link and LPJ and LJP are the
lengths of the segment Pi Ji and Pi Ji being Pi the center point of the wheel
shaft of link i and Ji the location of the front end of link i.

Input and Output Variables. For the path-following behavior, the deviation
of the robot from the path must be minimal at each step. We can use Frenet
frames to find the deviation in position and orientation of the robot head with
respect to the expected path. Therefore, two of input variables will be the dis-
tance from the robot position to the closest point of the path (Δz) and the
heading error (Δθ). Instead of using the closest point heading to estimate the
heading error, the closest point heading in the next step is picked. This approach
has some advantages:

– The robot can control both deviation and heading at the same time.
– The recovery process is stable and soft, especially at curves.

The other two input variables are the current linear speed (v), and φ2(t) (Eq.
3). Finally, the output variables are the linear aceleration (a) and the turning
angle (δ1).
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Universe of Discourse. In order to generate the training dataset, the lim-
its and precisions of the values of the variables have to be stablished. Some
of the variables have very large universes of discourse (Δz ∈ [−∞,∞], Δθ ∈
[−180o, 180o]). For these variables, the universe of discourse must be a reduced
version of the real universe, and it should contain those values of the variable that
are meaningful for learning (high values of distances are not useful for learning,
as for all of them the robot will execute the same action).

Taking into account the kinematic equations, and assuming that δ1 ∈
[−20, 20], a maximum speed v (VP1) of 0.2 m/s and time step Δt = 0.1s,
the values for the different variables are: Δz = 0.003m, Δθ = 6o, and φ2 = 15o.
Although higher values for the limits are not really significant, the ranges have
been extended for precision discretization. The final universes of discourse and
precisions for each variable are: Δz ∈ [−0.0042, 0.0042] (negative values are
used on left deviation, positive on right), pΔz = 0.0007; Δθ ∈ [−6, 6], pΔθ = 1;
φ2 ∈ [−15, 15], pφ2 = 5; v ∈ [0, 0.2], pv = 0.1; a ∈ [−0.2, 0.2], pa = 0.05;
δ1 ∈ [−20, 20], pδ1 = 1.

Scoring Function. An important aspect of the proposed example set genera-
tion technique is the definition of the SF, a function that evaluates the action of
the fuzzy controller over an example. The role of SF is to measure the deviation
of each variable from the desired value (the one associated to the ideal state).
For the path-following behavior, the robot needs to reach the closest point of the
desired path, but keeping a low heading error. This causes two major problems:

– If the robot is located at a point on the path, the best action is to stay in the
same place, because other actions may increase heading or distance error.

– It is crucial to find a good balance between heading and distance error im-
provements because these two variables are hardly coupled: if we want to
reduce the distance error, the heading error must be increased.

The solution for the first issue is to penalize low speeds, including the speed
as a parameter with high weight on the score function. The second issue can
be partially solved with dynamic weights: the weights of deviation and heading
errors depend on their respective initial errors. When the initial distance error
is small, its weight is lower, increasing the importance of heading and speed
weights. Then, the score function is defined as:

SF (RB(el)) = α1 + α2 + α3, (4)

where el is the l-th example and SF is the score of the state reached by the robot,
starting at the state defined by el and applying the control action proposed by
the combination of the output values of the rulebase (RB). α1, α2 and α3 are
computed as follows:

α1 = ω1 · el
Δz

maxΔz
· Δz

pΔz
, Δz =

√
(xrobot − xpath)2 + (yrobot − ypath)2 (5)
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α2 = ω2 · el
Δθ

maxθ
· Δθ

pΔθ
, Δθ = |θrobot − θpath| (6)

α3 = ω3 · (maxv − v)
pv

(7)

ω1, ω2 and ω3 are three weights used for balancing the importance of each vari-
able in the scoring function. These weights depend on the universe of discourse
and the precision of the variables. el

Δz

maxΔz
is the dynamic weight for distance.

Δz
pΔz

determines the score of the action, divided by the precision of the variable.
This makes possible the comparison of the deviations of different variables. The
heading score is estimated in the same way and, finally, lower speeds are penal-
ized on α3, using the maximum speed (maxv) as limit. Thus, the best actions
are those that set the speed closest to the maximum value and with the lowest
distance and heading error. Therefore, the scoring function has to be minimized.

Test Function. After the learning process is performed, the quality of the
fuzzy controllers has to be evaluated. This is done with the test function. This
function simulates the path-following process in a path using the fuzzy controller
that will be evaluated and the PIKo simulator. Deviation error (Δz) and current
speed (v) are registered at each step until the robot reaches the final point or a
maximum step limit. After that, average deviation and speed are calculated and
presented together with the success flag: 1 if the robot reaches the final point, 0
in other case. Each controller is tested with several different paths.

3.2 Tuning Stage

Learning the whole fuzzy controller (database and rulebase) with examples is
faster and easier than learning it with an objective function and the simulator.
This is a quite theoretical learning and the generated controllers are not per-
fect, but they are a good starting point for the tuning stage. In this phase, the
seed controller (obtained in the previous stage) is tuned based on several motion
primitives, creating a set of fuzzy controllers (one for each primitive). For this
task, a learning algorithm has to be used. It is run once for each motion prim-
itive. This algorithm uses the previous generated controller rulebase and tries
to improve the fuzzy database through an objective function. Also, this stage
tries to improve the recovery process from large deviations. For this reason, the
universe of discourse needs to be expanded for the variables Δz and Δθ.

For this stage, we need to define: the set of motion primitives (Fig. 1a) and
the objective function.

Objective Function. In the tuning stage we need to improve both deviation
and recovering behaviors: the former by minimizing the distance error while
maintaining a good average speed, and the latter by reducing the number of
steps necessary to reach the path in a stable state (which does not generate
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future large deviations). The objective function (which has to be minimized)
considers all this requirements:

ObjF = ωdev · dev + ωrec · rec (8)

where ωdev and ωrec are the weights that determine the importance of deviation
and recovering and dev and rec are the variables that measure the quality of the
controller on both behaviors:

dev = ωΔz · Δz + ωv · (maxv − v) (9)

rec = ωΔzr · Δzr + ωrv · (maxrv − rv) (10)

Eq. 9 uses the same parameters of the test function: average distance error (Δz)
and average speed (v) during a controller full test (until the robot reaches the
final point or a maximum limit of steps). These values are weighted with ωΔz

and ωv respectively.
Eq. 10 uses the number of steps necessary to reach a point close to the desired

path (rv), and the average deviation from the time instant the point was reached
until the end of the controller test (Δzr). rv is calculated as:

rv =
nr

nsteps
(11)

where nr is the number of steps needed to reach a point of the path, and nsteps

represents the steps needed to complete the full test.

4 Results

4.1 Simulation Setup

Three different values for ω1, ω2 and ω3 for the dataset generation have been
tested, with five different seeds. Learned controllers have been tested on the
PIKo simulator, with several paths of varying complexity. It is important to
remark that these paths have not been used during training. In the first stage, the
training set is only composed of a list of examples that have been chosen covering
the input space with an adequate precision. Nine evaluations have been made
for each controller: one without initial deviation and eight more with different
initial offsets (for recovery testing), and average distance error, average speed
and steps needed for recovering have been recorded (Table 1).

Controller learning and tuning have been realized with an advanced genetic
fuzzy system called EGLFP [11], especially developed for fuzzy learning. We have
used the following parameter values for this algorithm in both stages: 50,000
evaluations for learning and 5,000 for tuning, 50 individuals, 0.8 as crossover
probability and 0.3 as mutation probability.

The set of motion primitives presented on Fig. 1 has been used in the tuning
phase. It consists of 11 different primitives, so 11 different controllers have been
learned. We have used a modified version of EGLFP for this task, replacing
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example learning with the objective function defined in Eq. 8 and data from the
PIKo simulator. The weights that have been used on this phase are the following:
ωdev = 0.6, ωrec = 0.4, ωΔz = 0.99, ωv = 0.01, ωΔzr = 0.95 and ωrv = 0.05. Five
seeds have been used for each pattern and each controller has been evaluated
9 times, like in the first stage. Average speed, steps needed for recovering and
average deviation after recovering are presented at Table 2.

4.2 Path-Following

In this section we present the results of the different learned controllers, from
the first and second stages, and a short study of the three weights of the score
function of the first stage. Table 1 collects the results of these weights for the
path-following problem with and without initial offset.

Table 1. Path-following deviation data. Deviation values are in meters and speed in
m/s.

Right (2,2,90) Left (1,2,0) Left (1,1,90) Right (2,2,45)
Weights (ω1, ω2, ω3)

Dev/Spd/Rec Dev/Spd/Rec Dev/Spd/Rec Dev/Spd/Rec

(0.8, 0.2, 1) 0.092/0.17/0.69 0.102/0.13/0.72 0.025/0.13/0.80 0.88/0.16/0.68

(0.775, 0.225, 1) 0.022/ 0.2 /0.74 0.011/ 0.2 /0.71 0.022/ 0.2 /0.84 0.018/ 0.2 /0.69

(0.7, 0.3, 1) 0.024/ 0.2 /0.80 0.016/ 0.2 /0.77 0.022/ 0.2 /0.90 0.037/ 0.2 /0.79

Some of the tests with the weight combination of the first row have not reached
the final position in the maximum number of steps, some of them were blocked
at some point (first issue described in the score function subsection) and oth-
ers caused for extreme heading deviation (second issue). These problems are
represented in Fig. 3 (a and b). On the other hand, when the heading error
has greater importance, the recovering process is slower or the robot never re-
covers (we can see this in the rec column of second and third rows). Without
dynamic weights, a valid balance is never found. We can select any controller
generated with the weights of the second row to be the seed of the tuning stage
(Figure 3c).

Table 2 presents the deviation error, speed, and necessary steps for recovering
after the tuning phase. Each motion primitive is identified with its direction, x
and y displacements, and heading change. Each controller was tested with its
corresponding motion primitive.

As we can see in Table 2, the proccess is very accurate: only a few millimeters
of average deviation for all the patterns, with good speed. The recovering process
is also improved: only a 15-30% of the total steps are needed for recovering offsets
of 0.2 m (around 40% in the shortest paths). Fig. 4 shows other tests of different
primitives.

Figs. 3c and 4c present the same paths with the same initial deviation. We
can see that the tuning phase has greatly improved both recovery speed and
deviation error.
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Fig. 3. Examples of controller tests. a) Blocked. b) Extreme heading error. c) One test
of the controller selected as seed. The dotted curves are the ideal paths, continuous
curves are the robot steps.

Table 2. Path-following deviation data after the tuning stage. Deviation values are in
meters and speed in m/s.

Path Dev/Rec/Spd Path Dev/Rec/Spd

Line (2,0,0) 0.002/0.24/0.13 Right (2,2,45) 0.006/0.21/0.14

Left (1,1,90) 0.009/0.41/0.16 Left (1,2,45) 0.005/0.31/0.16

Right (1,1,90) 0.007/0.36/0.15 Right (1,2,45) 0.002/0.21/0.13

Left (2,2,90) 0.001/0.16/0.14 Left (1,2,0) 0.007/0.33/0.15

Right (2,2,90) 0.002/0.16/0.13 Right (1,2,0) 0.008/0.25/0.13

Left (2,2,45) 0.004/0.20/0.14
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Fig. 4. Examples of controller tests. a) Line (2, 0, 0), b) Left (1, 2, 0), c) Right (2, 2,
90).

5 Conclusions

A two stage learning method for the path-following problem has been presented.
It consists of a example based learning phase and a subsequent tuning phase
for accuracy improvement. This process is applied to a set of motion primitives,
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obtaining a set of fuzzy controllers that could be combined in order to build
longer paths. A tuning stage for the controllers is used to produce a very accurate
path-following behavior: distance errors are reduced from various centimeters to
several millimeters in this stage. This is very important for snake-like robots, as
they can move in narrow spaces like pipes or vents where large path deviations
must be avoided. In addition, the methodology also steers the robot quickly onto
its desired path even for large initial deviations. Reverse motion controllers can
also be learned with this method, but the kinematic function of the robot makes
the reverse motion controllability difficult using only head information. This will
be a topic for future work.

The use of motion primitives allows the robot to reach all the points of the
lattice space with the combination of a few primitives. This facilitates the design
of a planner, and reduces the path complexity for the learning algorithm. The
areas of robot learning and multi-link robots are rapidly expanding and will even-
tually provide systems for autonomous inspection and maintenance operations.
The results provided in this paper are steps toward such robot functionality.
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