
Robotics and Autonomous Systems 00 (2018) 1–18

Journal
Logo

Motion Planning under Uncertainty in Graduated Fidelity Lattices

Adrián González-Sieiraa,∗, Manuel Mucientesa, Alberto Bugaŕına

aCentro Singular de Investigación en Tecnolox́ıas da Información (CiTIUS), Universidade de Santiago de Compostela, Spain

Abstract

We present a new approach to motion planning in mobile robotics under sensing and motion uncertainty based on state lattices
with graduated fidelity. Uncertainty is predicted at planning time and used to estimate the safety of the paths. Our approach
takes into account the real shape of the robot, introducing a deterministic sampling based method to estimate the probability of
collision. Anytime Dynamic A*, an informed search algorithm, is used to find safe and optimal paths in the lattice. Moreover,
due to the anytime search capabilities of this algorithm our planner is able to retrieve a solution very fast and refine it iteratively
until the optimal one is found. We present a novel graduated fidelity approach to build a lattice whose complexity adapts to
the obstacles in the environment, along with a multi-resolution heuristic based on the same idea. Thus, the running time of
the planner is drastically reduced while maintaining its performance. Experimental results show the potential of the approach
in several scenarios, with different robot shapes, motion models and under different uncertainty conditions. The impact of the
graduated fidelity approach and the multi-resolution heuristic in the efficiency and performance of the planner is also detailed.

Keywords: state lattices, graduated fidelity, multi-resolution, motion planning under uncertainty

1. Introduction

Representing the state space of the robot in a discrete
manner has proven to be a successful approach to reduce
the computational complexity of motion planning. Both
stochastic and deterministic sampling strategies have been
described in the literature [1]. In the state lattices the sam-
pled states are arranged in a regular way, thus giving way
to a very efficient representation of the state space. More-
over, state lattices encode a graph whose vertices are the
discrete states and the edges connecting them are feasible
motions generated in accordance with the dynamics model.
Consequently, an informed search algorithm, which relies
on heuristics to find the optimal solution faster, can be
used to find the path with the minimum cost in it.

The benefits of sampling the state space come at the
expense of sacrificing optimality of the planned paths and,
more importantly, the feasibility of the planner —its ca-
pacity to compute suitable solutions satisfying the con-
straints. However, asymptotic optimality may be retained
under certain conditions [2, 3]. Focusing on state lattices,

∗Corresponding author.
Email addresses: adrian.gonzalez@usc.es (Adrián

González-Sieira), manuel.mucientes@usc.es (Manuel Mucientes),
alberto.bugarin.diz@usc.es (Alberto Bugaŕın)

the fidelity is the resolution of the sampled states. In-
creasing the fidelity, and thus making the number of sam-
ples tend to infinite, would make the state space and the
corresponding control set approach the continuum, which
makes the state lattices a resolution-complete approach.
However, in order to obtain reasonable planning times
the fidelity has to be the lowest possible. A state lattice
with graduated fidelity varies the resolution of the sampled
states in different areas of the state space, which allows the
planner to be more efficient while maintaining the feasibil-
ity and the optimality of the solutions retrieved. Heuristics
also play a significant role in the planning efficiency, and
their precision and computation time are equally relevant.
To manage the trade-off between them, multi-resolution
techniques can be used.

In order to maintain the feasibility of the planner and
the optimality of the solutions, both the fidelity of the lat-
tice and the resolution of the heuristic should adapt to
the environment. The use of multi-resolution maps, in
which the best resolution is selected for each area depend-
ing on whether it is cluttered with obstacles or not, allows
improving the overall planning efficiency. In this sense,
octree based maps [4, 5] are noteworthy for being able
to represent large environments with very low computa-
tional resources. Moreover, this kind of maps are a valu-
able source of information for developing multi-resolution

1

A. González-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1–18 2

heuristics and graduated fidelity lattices.
In mobile robots, uncertainty may arise from unmod-

eled external influences on the motion of the robot, or
imperfect state information due to noisy or incomplete
sensor measurements. The amount of uncertainty varies
for each path, since it depends on the executed motions
and the quality of the observations about the state the
robot is in. In real world domains the safety and accuracy
of the planned paths are critical, and therefore the best
plan has to be chosen taking into account its associated
uncertainty. Managing the uncertainty at planning time
allows estimating the safety of each path, such that the
best one can be selected accordingly. Moreover, this es-
timation should take into account the real dimensions of
the robot and the inaccuracies of the measurements and
the motion model, including the uncertainty in heading.
Otherwise, the reliability of the planner might be affected
under certain conditions.

In this paper, we present a motion planner based on
state lattices that manages the uncertainty at planning
time, automatically adapts the fidelity of the lattice and
obtains safe and optimal paths. Our proposal combines
and extends existing methods in the state of the art, ad-
dressing some of their drawbacks and resulting in an effi-
cient motion planning approach. These are the contribu-
tions of our proposal:

• A deterministic sampling based method to estimate
the probability of collision of each path from its asso-
ciated uncertainty. This method takes into account
the real shape of the robot, also dealing with the
uncertainty in heading.

• An approach for obtaining a graduated fidelity lat-
tice which, unlike prior works, adapts to the obsta-
cles in the environment and the maneuverability of
the robot.

• A novel multi-resolution heuristic that takes advan-
tage of the resolution of the map to efficiently esti-
mate the cost to the goal.

All the above allows the obtention of safe and optimal
solutions in a reliable and efficient way.

2. Related work

Sampling-based techniques in combination with search
algorithms have been successfully applied in the field of
motion planning. There are approaches based on either
random sampling or deterministic sampling. The Prob-
abilistic Roadmaps, PRM [1], and the Rapidly-exploring
Random Trees, RRT [6], are noteworthy among the for-
mer; while the state lattices described by [7] are the most
representative of the latter, standing out for the regular
arrangement of the sampled states. PRM and RRT are
very efficient exploring the state space, although the regu-
larity of the state lattices makes possible to obtain a finite

set of actions from the vehicle motion model. These ac-
tions can be computed offline, opening the door to apply
techniques to boost the performance of the search, like
multi-resolution planning.

State lattices with graduated fidelity, or multi-resolution
state lattices, were introduced by [8]. Their approach uses
high fidelity only in selected areas, but elsewhere the dy-
namics model is not taken into account. Thus, the un-
certainty cannot be estimated throughout the entire lat-
tice, so it cannot be managed at planning time. In [9]
they present a similar approach that uses a subset of the
motion primitives to connect those states within the low
fidelity areas, addressing this issue. However, [8] and [9]
share an important drawback that would make it difficult
to combine them with uncertainty management: their ap-
proach is based on obtaining a pre-planned path very fast
and improve it in real time as the robot moves along it.
To achieve this, they place the high fidelity areas around
the robot, the start and the goal. However, every time the
lattice changes, the uncertainty of all the affected paths
must be re-computed and their probabilities of collision
updated, which is a non trivial operation.

The motion planner presented in this work relies on
a novel graduated fidelity approach. The fidelity of each
lattice state is defined in accordance with the obstacles in
the the map and the maneuverability of the robot. There-
fore, our approach increases the fidelity only in those areas
which are challenging for planning. By doing so, the trade-
off between the computational complexity and the quality
of the solution is managed, and the computation time is
significantly reduced. Moreover, our method does not re-
quire updating the solution unless the map changes, since
the fidelity does not depend on the position of the robot.
Thus, the drawbacks of prior approaches in the literature
are addressed.

The use of heuristics significantly improves the effi-
ciency of state lattice based motion planners, especially
in high dimensional domains. In this sense, [10] described
an admissible heuristic which copes with the robot kine-
matic constraints assuming free space. This is a good in-
formed heuristic in uncluttered environments, and it can
be computed offline and stored in a look-up table. In [9]
they presented a low dimensional heuristic which copes
with the obstacles in the environment. This heuristic, in
combination with that of [10], obtained very good results.
However, the approach of [9] is based on applying Dijk-
stra’s algorithm over a grid with a fixed resolution which
matches the maximum fidelity of the lattice. Computing
this heuristic can be costly and affect the planning effi-
ciency, specially in large, uncluttered environments.

To address this, in this paper we present a heuristic
based on that of [9] which, instead of a fixed resolution,
uses the information of the map to build a multi-resolution
grid. This allows improving the efficiency and scalability
of the heuristic in large environments.

While classical planners do not take into account mo-
tion uncertainty, which originates in noisy controls and

2

A. González-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1–18 3

measurements, approaches which manage it at planning
time have received increasing attention in the last years.
Some of them only consider uncertainty in control, like
[11], which combines PRM and the theory of Markov De-
cision Processes, MDP, to maximize the probability of suc-
cess of the given paths. This method can be extended and
consider Partially Observable MDPs, POMPDs, to also
manage sensing uncertainty, as in [12]. However, this ap-
proach has scalability issues which can only be addressed
with approximate sample-based solutions, as described by
[13]. In spite of these efforts, discretizing high-dimensional
continuous dynamics to be used with POMPDs did not
get promising results [14]. The work developed by [15]
overcame this drawback, but further research is needed to
extend it to non smooth dynamics and observations.

Current state of the art for motion planning with un-
certainty is the algorithm proposed by [16] and the sim-
ilar approach of [17], as both consider motion and sens-
ing uncertainty and do not assume maximum likelihood
measurements. The former, LQG-MP, relies on RRT to
find the path that minimizes the probability of collision,
but the obtained paths might be non smooth. This is-
sue is addressed applying smoothing techniques over the
planned path, which might affect the predicted uncertainty
and therefore the probability of collision in execution time.
Although results for LQG-MP combined with a search
algorithm are outlined, they were obtained from simple
roadmaps made by hand. Moreover, in [2] they demon-
strate that RRT is not asymptotically optimal. As a con-
sequence, there is no guarantee that the optimal path will
be found even for a high number of samples, either in terms
of cost or probability of collision. The latter presents a
similar approach that makes use of RRT*, an extension of
RRT which addresses this issue with an increased connec-
tivity. This work achieves good results in the uncertainty
prediction. However, a significant number of iterations of
RRT* is required to find a near-optimal solution. While
this method obtains paths significantly more smooth than
RRT, like in [18], this issue is not completely overcome,
especially when the number of samples is low.

In this work, motion uncertainty is managed with the
method of [17]. However, in this proposal it is combined
with a state lattice, addressing those issues related with
the smoothness of the paths which arise from the use of
random sampling-based methods.

Despite the good results obtained by prior works in pre-
dicting motion uncertainty, the probability of collision is
estimated assuming simplified versions of the robot shape,
such as circles [16, 19]. While this allows the probability of
collision to be estimated faster, the influence of the uncer-
tainty in heading is not taken into account. Others rely on
chance-constrained search [17, 18], only checking collisions
between the Probability Density Functions —PDFs— and
the obstacles, therefore considering punctual robots. Since
these approaches disregard the real shape of the robot,
there is no guarantee that the provided paths will be safe
under all circumstances. In fact, their reliability falls when

the uncertainty in heading is clearly significant —i.e. when
the shape is long or asymmetric.

To solve this drawback, this proposal introduces a novel
method to accurately estimate the probability of collision,
based on sampling the PDFs. This method uses the real
shape and deals with the uncertainty in heading. Thus,
reliable collision free paths for all kinds of robot shapes
are obtained.

3. Planning on state lattices

3.1. Motion primitives

The motion planner presented in this work relies on
a state lattice to sample the state space, X , in a deter-
ministic and regular manner. In this work a rectangular
arrangement of the samples was chosen, although other
configurations are possible. The states belonging to the
lattice, Xlat, are connected by a set of actions —U , also
called motion primitives— extracted from the dynamics
model. Due to the regular arrangement of the sampled
states, these actions can be computed offline and efficiently
stored. As they are position-independent, the same motion
primitive connects every pair of states equally arranged.
Fig. 1 illustrates the regularity of the states belonging to
the lattice and the connectivity obtained via replication of
the set of actions U .

It is straightforward that using the motion primitives
to connect the lattice states ensures that, by construction,
this structure is generated in accordance with the robot
dynamics. Since the kinematic restrictions are observed,
all paths contained in it are feasible.

In this work, the control set was obtained applying a
numerical optimization technique based on the Newton-
Raphson method, introduced by [20]. The resulting ac-

Figure 1: Motion planning based on state lattices. Due to the reg-
ular sampling, the motion primitives can be obtained offline and
replicated to connect the sampled states. Then, an informed search
algorithm can be used to find optimal paths in the lattice.

3

A. González-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1–18 4

Figure 2: Parametrization of the control function via cubic spline
interpolation. k0 and kn are given by the initial and final states con-
nected by the motion primitive, while ki are the knot points defining
the rest of the function.

tions are optimal in terms of cost, given the constraints:
the initial an final states —which belong to Xlat— and the
dynamics model.

The motion primitives have been parametrized via cu-
bic spline interpolation [21] to represent the evolution of
the controls over time. The parameters are the knot points
of the splines, a set of equally spaced values —k1, k2, ..., kn—
from which the rest of the function is interpolated, as
shown in Fig. 2. Each control variable is represented by a
different spline, which might be given by a different num-
ber of knots. Hence, the parameter vector for a motion
primitive is defined as follows:

p = [(k10, k
1
1, ..., k

1
n1

), (k20, k
2
1, ..., k

2
n2

), ..., t] (1)

where kji is the i-th knot belonging to the spline of the
j-th control variable, and t is the duration of the motion
primitive.

Finally, the parameter vector p is optimized with re-
spect to an error function, e(p), which measures the dif-
ference between the desired final state and the one given
by the parameters —obtained from the dynamics model.
The parameter vector is modified following:

∆p = −
[
∂e(p)

∂p

]−1
· e(p) (2)

This is repeated until the constraints are satisfied, typi-
cally when e(p) is under a threshold.

The dynamics model is learned from motion data of
the robot, as described in [22]. The approach relies on
parametrizing the equations for all linear and angular ve-
locities in this manner:

vt+1 = βv1 · vt + βv2 · uvt + βv0 (3)

ωt+1 = βω1 · ωt + βω2 · uωt + βω0 (4)

making use of an iterative least-squares method to obtain
the parameters, βvi and βωi , which best fit the input data.
uvt and uωt are the linear and angular controls, respectively.
The motion primitives obtained with this model are accu-
rate representatives of the robot maneuvering capabilities,
since they encode its real response to the different controls.

3.2. Optimal path

As the state lattice has the structure of a graph, an
informed search algorithm can be used to find the optimal
path in it. This proposal uses Anytime Dynamic A* —
AD* [23]— because of its capability to obtain sub-optimal
bounded solutions varying an heuristic inflation parame-
ter, ε. The solutions can be iteratively refined taking ad-
vantage of the information previously calculated, without
need for replanning from scratch.

Alg. 1 outlines the main operations of AD* —see [23]
for the detailed pseudocode of AD*. The inputs are the
initial state and the goal, x0 and xG, and the output is the
path with minimal cost connecting them. In each iteration
a state xa is extracted from OPEN —Alg. 1:9. This state
is the one which minimizes the sum of the cost from the
start, cx, and the estimated cost to the goal —hx, given
by the heuristic—, scaled by ε. Next, the successors of xa

are retrieved —Xb, in Alg. 1:10— and the evaluation of
the outgoing actions is done in Alg. 1:12. Finally, in Alg.
1:13-16, the cost of xb is updated, its heuristic obtained
and it is inserted into the OPEN queue to be explored
in following iterations —only if xb is visited for the first

Algorithm 1 Main operations of the search algorithm

Require: x0, initial state
Require: xG, goal state
Require: ε0, initial value of ε

1: function main (x0, xG, ε0)
2: initializeHeuristic(x0, xG) . Alg. 5
3: ε = ε0
4: while ε >= 1 do
5: cx0 = 0
6: hx0 = heuristic(x0)
7: OPEN = {x0}
8: repeat
9: xa = arg minx∈OPEN(cx + ε · hx)

10: Xb = successors(xa) . Alg. 4
11: for all xb ∈ Xb do
12: ĉxb = cxa+ cost(xa, xb) . Alg. 3
13: if xb not visited or ĉxb < cxb then
14: cxb = ĉxb

15: hxb = heuristic(xb) . Alg. 5
16: OPEN = OPEN ∪ {xb}
17: OPEN = OPEN− {xa}
18: until xa = xG

19: publish path(x0, xa)
20: decrease ε
21: return

4

A. González-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1–18 5

time or the current path improves an existing one. The
algorithm finds a valid path when the state extracted from
OPEN, xa, is the goal xG.

The planning algorithm relies on the use of heuristics
to efficiently explore the state space and obtain an opti-
mal solution in fewer iterations. The heuristic function
provides an estimation of the cost between each state xa

and the goal xG, which influences the order in which the
states are processed and therefore the number of iterations
needed to find the optimal path.

AD* introduces a parameter, ε, which inflates the val-
ues of the heuristic. This allows obtaining sub-optimal
bounded solutions faster than the optimal one. Thus, the
algorithm is run in an iterative way, obtaining an initial
solution for ε = ε0. This solution is refined in subsequent
executions, after decreasing the value of ε, taking advan-
tage of the information previously calculated —Alg. 1:19-
20. This is less computationally expensive than obtaining
a new solution from scratch every time ε changes.

The heuristic function is a combination of two values
—proposed by [9] and [24]— which allows using both the
information of the obstacles in the map and the dynamics
model: one is the cost of the path considering only the
kinematic restrictions, FSH, while the other is the cost of
the path only taking into account the information of the
map, H2D.

As it takes into account the kinematic restrictions, ob-
taining FSH is a costly operation. Therefore, it is com-
puted offline and stored in an Heuristic Look-Up-Table,
as described in [10]. The process starts with a first step
in which Dijkstra’s algorithm is applied to populate the
table in a rapid way, followed by another step in which
the most complex maneuvers are included. This heuris-
tic takes advantage of the regularity of the lattice and the
symmetries in the control set to improve the efficiency of
its calculation and storage.

On the contrary, H2D has to be initialized every time
the planner is run —Alg. 1:2—, since it depends on the
location of the goal and the obstacles in the environment.
Therefore, the lower the obtention time of this heuristic,
the higher the overall efficiency of the planner.

3.3. Uncertainty management

Uncertainty management requires to predict the prob-
ability of the robot being in each state of the path. This
uncertainty depends on the one at the initial state, the
executed controls and the location accuracy, and therefore
it varies along the different candidate paths in the lattice.
The prediction of these probability distributions is inte-
grated in planning time.

This proposal focuses on nonlinear, partially observ-
able systems. Dynamics —f— and observations —z—
are described in a discrete time manner:

xt+1 = f(xt, ut) +mt, mt ∼ N (0,Mt) (5)

zt = z(xt) + nt, nt ∼ N (0, Nt), (6)

Algorithm 2 Uncertainty propagation along a trajectory
between xa and xb

Require: xa and xb, beginning and final states
1: function uncertainty(xa, xb)
2: ua:b = cmd(xa, xb)
3: x̄t−1 = xa

4: Σt−1 = Σxa

5: P a:b = ∅
6: for all ua:bt ∈ ua:b do
7: x̄t = f(x̄t−1, u

a:b
t)

8: Σ̄t = AtΣt−1A
T
t +Mt

9: Kt = Σ̄tH
T
t (HtΣ̄tH

T
t +Nt)

−1

10: Σ̃t = (I −KtHt)Σ̄t
11: Ct = At +BtLt
12: Λt = CtΛt−1C

T
t +KtHtΣ̄t

13: Σt = Σ̃t + Λt
14: P a:b = P a:b ∪ {xt ∼ N (x̄t,Σt)}
15: x̄t−1 = x̄t

16: return P a:b . PDFs of the path

where xt ∈ X are the states of the robot, ut ∈ U are
the controls and zt are the measurements. mt and nt are
random motion and observation disturbances, which are
described by Gaussian distributions. Mt and Nt are their
respective covariances.

Obtaining the cost for a path between two states xa

and xb is a two step process. First the uncertainty is
propagated along the trajectory, and then the resulting
probability distributions —PDFs— are used to estimate
the probability that the robot collides when executing the
path.

The former is done following the approach of [17], which
has good results for the kind of systems described above.
It is an EKF-based method and it manages the uncer-
tainty which arises from the controls and the observations.
Moreover, it also takes into account the influence of using
a Linear Quadratic Gaussian controller —LQG, a widely
extended controller to correct deviations from the planned
path in execution time, detailed in [25]. For approximating
the probability of collision along the paths we introduce a
novel method in Sec. 4.1 which takes into account the real
shape of the robot and provides a reliable estimation.

Uncertainty prediction is detailed in Alg. 2. Inputs
are the beginning and final states of the trajectory —xa

and xb—, while the output is the list of PDFs along the
path between them —P a:b, which is obtained iteratively
propagating the uncertainty at xa ∼ N (x̄a,Σa). ua:b are
the control commands of the trajectory —Alg. 2:2. Lt is
the gain of a LQG controller, which is taken into account
due to its influence on the PDFs. Ht is the Jacobian of
the measurement model and At and Bt are the Jacobians
of the dynamics model.

Motion uncertainty is predicted as follows: first, an
EKF is used to calculate the distributions of the state in
the prediction step —N (x̄t, Σ̄t), in Alg. 2:7-8— and the

5

A. González-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1–18 6

true one after the update —x̃t ∼ N (x̄t, Σ̃t), Alg. 2:9-10.
This distribution can be seen as P (xt|x̃t), which represents
the probability of being in xt if the EKF predicts so. After,
P (x̃t) = N (x̄t,Λt) is obtained in Alg. 2:11-12. This mod-
els the uncertainty due to obtaining the state estimation
without having taken the real observations. These two dis-
tributions are used to calculate P (xt, x̃t) = P (xt|x̃t)P (x̃t),
the joint one of the real robot state and the true state given
by the EKF. With all of the above we can finally get the
PDF of the real state, P (xt) = N (x̄t, Σ̃t + Λt), in Alg.
2:13, which the motion planner uses as:

xt ∼ N (x̄t,Σt) (7)

This distribution is the one the planner uses to estimate
the probability of collision along the paths.

4. Improving the reliability and efficiency of the
motion planner

In this section the contributions of this work are de-
tailed. First, we present a method to estimate the prob-
ability of collision of each path from its associated un-
certainty which takes into account the real shape of the
robot and the uncertainty in heading. Then, we propose
a novel graduated fidelity approach which goes in accor-
dance with the obstacles in the environment and the ma-
neuverability of the robot. Finally we present H2DMR,
an heuristic based on the idea of H2D which makes use of
multi-resolution techniques to improve its scalability and
efficiency.

4.1. Reliable probability of collision

The goal of the planner is to obtain paths minimiz-
ing the probability of collision and the traversal time. To
achieve this, each candidate path between two states, xa

Algorithm 3 Cost of a trajectory between xa and xb

Require: xa and xb, beginning and final states
1: function cost(xa, xb)
2: P a:b = uncertainty(xa, xb) . Alg. 2
3: ta:b = time(ua:b)
4: ca:b = 0
5: for all xa:bt ∼ N (x̄a:bt ,Σa:bt) ∈ P a:b do
6: wc = 0
7: wt = 0
8: XS = sampling(xa:bt)
9: for all xs ∈ XS do

10: w = pdf(xs, xa:bt)
11: wt = wt + w
12: if collision(xs) then . with real shape
13: wc = wc + w

14: pc = wc/wt
15: ca:b = ca:b − log(1− pc)
16: return

[
ca:b, ta:b,Σb

]
. Σb, uncertainty at xb

and xb, is evaluated to obtain a cost comprised by three
elements: a safety measurement —ca:b, proportional to the
probability of collision along it—, the traversal time ta:b,
and the uncertainty at the final state Σb.

Alg. 3 details how this evaluation is done. As men-
tioned before, this requires first obtaining the PDFs in Alg.
3:2, since they are needed to calculate ca:b and to know the
final uncertainty Σb. On the contrary, the traversal time
is directly obtained from the motion primitives —ta:b, in
Alg. 3:3.

The probability of collision is estimated from the PDFs
by obtaining a set of samples XS and checking collisions
with the obstacles in the environment taking into account
the real shape of the robot, as detailed in Alg. 3:8-13. The
sampling strategy is based on the method of the Unscented
Kalman Filter —UKF [26]— to obtain the sigma points
of a PDF, which represents the distribution reasonably
well with a small number of samples. These sigma points
are distributed in all dimensions, making them suitable
for checking collisions also dealing with the uncertainty in
heading. Moreover, their obtention only depends on the
parameters of the PDF, retaining the deterministic nature
of the motion planner.

A n-dimensional distribution belonging to the path,
xt ∼ (x̄t,Σt), is sampled as follows:

xs[i+] = x̄t + λ ·
(√

Σt

)
i

for i = 1, ..., n

xs[i−] = x̄t − λ ·
(√

Σt

)
i

(8)

The scaling factor λ allows obtaining samples with dif-
ferent distance to the mean —i.e. λ = 3 will generate
samples with a distance of 3 standard deviations from the
most probable state. Two samples —xs[i+] and xs[i−]— are
obtained for each dimension of the distribution, adding
and subtracting each column of the factorized matrix —(√

Σt
)
i
— to the mean of the PDF, x̄t. This generates

2 · n + 1 samples for each value of λ, the sigma points.
While these are good representatives of the distribution,
their coverage for checking collisions with the obstacles in
the environment may be not enough. For example, sam-
ples with different headings would be generated only in the
position of x̄t. For this reason, our method also operates
with different columns of the covariance matrix to obtain
samples not only in the main axes of the distribution, but
also in the diagonals, which results in an improved cover-
age of the PDF. Thus, for each sigma point from Eq. 8
—xs[i−] and xs[i+]— the following samples are obtained:

xs[i−, j−] = xs[i−] − λ ·
(√

Σt

)
j

for i, j = 1, ..., n

xs[i−, j+] = xs[i−] + λ ·
(√

Σt

)
j

j 6= i

xs[i+, j−] = xs[i+] − λ ·
(√

Σt

)
j

xs[i+, j+] = xs[i+] + λ ·
(√

Σt

)
j

(9)

6

A. González-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1–18 7

Figure 3: Estimation of the probability of collision taking into ac-
count the real shape of the robot, via sampling the PDF using the
strategy of an UKF.

Fig. 3 shows the samples obtained applying this method
for λ = 1, 2 and 3. These samples are used to check col-
lisions with the surrounding obstacles, for which the real
shape of the robot is taken into account. Each sample
xs has a weight, w, in accordance with its probability —
function pdf , in Alg. 3:10. wt is the sum of weights of all
samples, while wc is the sum of those in which the real
shape collides —Alg. 3:11 and Alg. 3:13, respectively.
The quotient between them is the probability of collision
of the distribution, pc, in Alg. 3:14. Finally, the individual
estimations are combined in a logarithmic scale to obtain
a cost related to the probability of collision of the entire
path, as detailed in Alg. 3:15. By doing so we assume that
the probabilities of collision in different stages of the path
are independent, in the same way that most approaches in
the state of the art. Although this is not the case, it is a
reasonable assumption for practical purposes.

Each element returned by the cost function —Alg. 3:16—
represents an objective to be minimized by the motion
planner, and therefore an order of priority was introduced
when comparing the cost of two paths, which is done as
follows:

cost(xa:b) < cost(xa:c)⇔ (ca:b < ca:c) ∨
(ca:b = ca:c ∧ ta:b < ta:c) ∨

(ca:b = ca:c ∧ ta:b = ta:c ∧ Σb < Σc)
(10)

Thus, the motion planner first minimizes the cost re-

Figure 4: Example of graduated fidelity lattice. Trajectories in red
are those with highest fidelity, required to maneuver near the obstacle
—in black. The rest of trajectories have lower fidelities —in blue—,
since the obstacles do not affect the maneuverability.

lated to the probability of collision, prioritizing the safety
of the planned paths. Among all the safe paths, it selects
the one minimizing the traversal time and, finally, the un-
certainty at the goal. Therefore, the planned paths are
safe and optimal. Moreover, since the probability of colli-
sion is estimated taking into account the real dimensions
of the robot, it is reliable for all kinds of shapes.

4.2. Graduated fidelity lattice

The efficiency of the planner strongly depends on the
fidelity of the state lattice. While a higher fidelity allows
more precision in representing the state space and the ma-
neuvering of the robot, decreasing it significantly dimin-
ishes the runtime of the search. Although the latter may
result in paths with higher costs, the use of a graduated
fidelity lattice can balance precision and efficiency ade-
quately. Moreover, if the fidelity adapts to the obstacles
in the environment and the maneuverability of the robot,
the efficiency can be improved with minimal impact in the
planning results, as shown in Sec. 5.

Figure 4 depicts a state lattice with graduated fidelity,
in which only those areas which require complex maneu-
vering to avoid obstacles in the environment are repre-
sented with high fidelity. The proposed approach is to se-
lect, whenever possible, the longest maneuver of each type
to move between states. To achieve this, those motion
primitives in U which are similar maneuvers of different
lengths are grouped. Then, the longest primitive of each
group which does not affect the probability of collision is
selected, and the rest discarded. This allows to dimin-
ish the number of states belonging to the lattice, and at
the same time the number of candidate paths connecting
them, therefore simplifying the state space. This technique
is applied when generating the successors of the state xa

explored by the search algorithm, in Alg. 1:10.
Alg. 4 details how the outgoing trajectories of a state

xa are selected using the proposed graduated fidelity tech-
nique. As mentioned before, this procedure first requires
grouping the motion primitives from U in maneuvers of
the same kind but different length. Those trajectories with
the same values for orientations, linear and angular speeds
both at the beginning —θi, vi, ωi— and at the end —

7

A. González-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1–18 8

θf , vf , ωf— belong to the same group —U(θi,vi,ωi,θf ,vf ,ωf).
The union of all groups is the whole set of primitives —
U =

⋃
U(θi,vi,ωi,θf ,vf ,ωf),∀(θ, v, ω) ∈ Xlat—, whereas the

intersection of any two of them is empty.
The successors of a state, Γ, are generated as follows:

First, those groups of trajectories with the same initial
speeds —vi and ωi— and orientations —θi— as xa are
selected, in Alg. 4:4. Then, the algorithm chooses a prim-
itive of each group to be part of the successors and discards
the rest. The candidates, U c, are evaluated in descending
order by length until one that fulfills the restrictions is
found, as Alg. 4:5-8 details. If none of the trajectories
in the group fulfills the restrictions, the shortest one is
selected.

As regards to the evaluation of candidates, two con-
ditions must be fulfilled to select them: the resolution of
both the source and destination octree cells, sa and sb,
and the probability of collision of the candidate trajectory
U c. The former is related to the structure of the octree:
in the vicinity of the obstacles the cells contain different
occupancy information and cannot be compacted in higher
level cells, so the higher the cluttering the lower the size
of the cells in the map. Thus, limiting the length of the
maneuvers in accordance with the size of the cells —Alg.
4:12-13— results in a lattice with high fidelity only in those
areas challenging for the planner. The second condition is
introduced to maintain the safety of the solutions. Those
maneuvers which affect the probability of collision —ca:b,
in Alg. 4:14— are discarded. This is obtained from the
cost of the trajectory, as detailed in Alg. 3.

Fig. 5 illustrates how this approach discards the longest
maneuvers in the vicinity of obstacles due to their prob-
ability of collision, while navigating in uncluttered areas
causes the acceptance of the first explored candidates. This
graduated fidelity approach results in a lattice with a con-
siderably lower density of states and maneuvers except in

Algorithm 4 Successor generation for a graduated fidelity
state lattice
Require: U = {U(θi,vi,ωi,θf ,vf ,ωf)},∀(θ, v, ω) ∈ Xlat

1: function successors(xa)
2: θi = xaθ ; vi = xav ; ωi = xaω
3: Γ = ∅
4: for U ∈ {U(θi,vi,ωi,θf ,vf ,ωf)},∀(θf , vf , ωf) do
5: repeat
6: U c = arg maxta:b(U) . Get longest
7: U = U \ U c
8: until check(U cxa , U cxb) ∨ U == ∅
9: Γ = Γ ∪ U c

10: return Γ
11: function check(xa, xb)
12: κa = cell(xa); κb = cell(xb) . Get map cells
13: sa = size(κa); sb = size(κb) . Get size of cells
14: ca:b = cost(xa, xb)[0] . Alg. 3
15: return (sa + sb >

∥∥xa − xb∥∥) ∧ (ca:b == 0)

those areas in which complex maneuvering is required for
obstacle avoidance. Consequently, the efficiency of the
planner is considerably improved, while its performance
—the cost of solutions— is barely affected.

4.3. Multi-resolution heuristic

As mentioned in Sec. 3, our approach combines two
heuristics: one takes into account the kinematic restric-
tions in free space, FSH, while the other only considers
the obstacles in the environment, H2D. In this section
H2DMR, a multi-resolution heuristic based on the latter,
is proposed. Unlike H2D, this novel heuristic takes ad-
vantage of the octree structure of the map to obtain a
multi-resolution grid, resulting in improved efficiency and
scalability.

Alg. 5 details how H2DMR is calculated. The process
is done applying Dijkstra’s algorithm to obtain a multi-
resolution grid. The inputs are the initial state of the
robot and the goal, x0 and xG. Since the heuristic uses
positions instead of states, their counterparts —p0 and
pG— are obtained in Alg. 5:4-5. The grid is generated
backwards, starting in pG. Thus, the resulting grid will
contain the estimated cost between each point and the
goal, which is used as the heuristic value for planning.

Iteratively, the point with the lowest cost from the start
—p, in Alg. 5:9— is selected and its successors obtained. κ
is the cell of the map containing the selected point —Alg.
5:10. To generate its successors in accordance with the

Figure 5: Example of the selected candidates with the graduated
fidelity approach in different situations —in green. Long trajectories
are discarded when they affect the probability of collision with ob-
stacles —in black—, while in free space they are selected to have a
lower fidelity.

8

A. González-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1–18 9

resolution of the map, the adjacent cells of κ—adjacent(κ),
in Alg. 5:12— are explored.

Figure 6 details how the resolution of the octree is
taken into account when obtaining the neighbors of p.
Given the size of a cell —s, in Alg. 5:13— and the highest
fidelity of the motion primitives, f+, two situations are
considered: on the one hand, a cell is split into subcells
when f+ exceeds the resolution of the map, in order to
keep the accuracy of the heuristic —Alg. 5:16-20. On the
other hand an upper bound in the resolution was intro-
duced to avoid generating neighbors with a distance lower
than f+ —Alg. 5:23-27. Therefore, the size of the cells
this heuristic works with is in fact limited according to f+

—Alg. 5:23. In both cases the resulting neighbors are ob-
tained from the center of the selected cells —position(κ′′),
in Alg. 5:18 and Alg. 5:25.

Finally, the cost between p and each neighbor p′ —the
distance between them— is obtained and p′ is introduced

Algorithm 5 Obtention of H2DMR

Require: f+, highest fidelity of the lattice
1: function heuristic(x)
2: return max

(
h2dmr(xb), fsh(xb)

)
3: function initializeHeuristic(x0, xG)
4: p0 = position(x0) . Initial position
5: pG = position(xG) . Goal position
6: c(pG) = 0
7: OPEN = {pG}
8: repeat
9: p = arg minp∈OPEN c(p)

10: κ = cell(p) . Get map cell containing p
11: /* Iterate over those cells adjacent to κ */
12: for all κ′ ∈ adjacent(κ) do
13: s = size(κ′) . Size of cell κ′

14: if s > f+ then
15: /* Split κ′ into subcells */
16: for all κ′′ ∈ subcells(κ′) do
17: /* Get center of cell κ′′ */
18: p′ = position(κ′′)
19: c(p′) = c(p)+ costH(p, p′)
20: OPEN = OPEN ∪ {p′}
21: else
22: /* Adjust size of κ′ to f+ */
23: κ′′ = adjust(κ′, f+)
24: /* Get center of cell κ′′ */
25: p′ = position(κ′′)
26: c(p′) = c(p)+ costH(p, p′)
27: OPEN = OPEN ∪ {p′}
28: until c(p) > 2 · c(p0)

29: function costH (p, p′)
30: if collision0(p′) then . Optimistic shape
31: return ∞
32: else
33: return ‖p′ − p‖

Figure 6: Neighborhood of H2DMR —in blue. Given a point —in
green—, those cells adjacent to the one containing it are explored —
in gray. When a cell is smaller than the highest fidelity of the lattice
—f+—, a bigger one containing it is selected. On the contrary, a
cell is split into subcells when its size exceeds f+.

into the OPEN queue to be explored by the algorithm
later. Collisions are checked using the inscribed circle in
the robot shape, also called optimistic shape, in Alg. 5:30.
Thus, the optimistic nature of the heuristic is maintained.

The stopping condition of the algorithm is to expand
a point with a cost which doubles the one between p0 and
pG —Alg. 5:28. Those areas of the map left outside the
generated grid are not interesting for planning due to their
distance to the most promising path. H2D uses this same
stopping condition, which was introduced by [9] for effi-
ciency purposes.

This algorithm allows the obtention of a multi-resolution
grid which contains the cost between each point and the
goal, which is used by AD* as heuristic. Unlike H2D,
this grid takes into account both the resolution of the oc-
tree map and the highest fidelity of the motion primitives.
Thus, this approach outperforms H2D in the number of
iterations required to explore the map, and consequently
the time spent in initializing the heuristic. This is specially
noticeable in large environments, since H2DMR scales bet-
ter than H2D due to its capability to use lower resolutions
in uncluttered areas.

Since the positions of the multi-resolution grid and the
states in the lattice do not directly match, obtaining the
heuristic value for a state xa is done as follows: first, the
octree cell containing it is retrieved, and then all positions
of the grid within this cell and the adjacent ones are ex-
plored. The heuristic of the state is given by the position
—p— which minimizes the sum of its cost —c(p)— and
the distance to xa:

h2dmr(xa) = arg min
p

(‖xa − p‖+ c(p)) (11)

Heuristics play a significant role in the anytime search
capabilities of AD*, since their value is scaled by the pa-
rameter ε. By doing so, a sub-optimal solution can be

9

A. González-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1–18 10

Figure 7: Control set used in the experiments: 336 trajectories con-
necting neighbors of levels 1, 2, 4, 8 and 16 —in red, blue, pink, gray
and yellow, respectively. The highest fidelity, f+, is 0.5 m.

retrieved faster and then improved iteratively until the op-
timal one is found or the available computing time is used
up. The planner takes advantage of this possibility by
adjusting the quality of the solution in terms of traversal
time. However, the safety of the solutions is not affected
by the use of anytime search. This is because the heuristic
only estimates the traversal time of the path, even though
the cost function has three elements —probability of col-
lision, traversal time and uncertainty at the goal. Since
anytime search works inflating the heuristic and these el-
ements are compared hierarchically —see Eq. 10—, the
probability of collision is always minimal regardless the
value of ε.

5. Results

In this section results of the proposed motion plan-
ner in different scenarios and uncertainty conditions are
reported. Moreover, tests varying the robot shape were
run, showing the relevance of taking it into account to
predict the probability of collision along the paths. Also,
results for the proposed graduated fidelity approach are
detailed, comparing them with those of a standard state
lattice planner. Thus, we show the ability of the proposed
method to improve the efficiency while maintaining the
performance —the cost of the solutions. Finally, we detail
results for H2DMR, the proposed multi-resolution heuris-
tic, focusing on its validity and the improved efficiency,
specially in large scenarios. Runtimes reported in this sec-
tion are for a computer with a CPU Intel CoreTM i7-4790
at 3.6 GHz and 16 GB of RAM.

All tests were run on a 2D world and a robot with
Ackermann dynamics, in which Mt = 0.01 · I. Robot di-
mensions are 3.0×0.75 m, with the rotation center located

at 0.9 m from its back side, centered in the short axis. Lin-
ear speed ranges between 0 and 0.5 m/s, and the angular
speed is between −30 and 30 deg/s. The state vector is
5-dimensional and contains the pose of the rotation center
of the robot, and also the linear and angular speeds:

[x, y, θ, v, ω] (12)

The control vector contains the linear and angular speeds.
These commands are sent to the robot at 3 Hz. The mea-
surements are the position and the heading, with an uncer-
tainty of Nt = 0.01·I in normal conditions. However, there
are location denied areas in the environments in which the
robot does not receive any measurement. Within them,
sensing uncertainty is Nt =∞ · I.

With regard to the dynamics model, it was learned
from 183 s of navigation data for a simulated robot in
Gazebo. Then, a set of 336 motion primitives was obtained
—shown in Fig. 7. These primitives connect states of
distances 1, 2, 4, 8 and 16 in a lattice with a highest fidelity,
f+, of 0.5 m.

Figure 8 shows a plan obtained with the proposed al-
gorithm. Areas with high uncertainty exist in the region
where maneuvering is required to enter the corridor, which
together with the robot dimensions makes difficult to find
a safe path trough it. In spite of this, the planner provides
a solution which is not only optimal but also smooth. This
contrasts with other approaches based on RRT and RRT*,
which rely on smoothing techniques to achieve similar re-
sults, affecting the predicted uncertainty.

Figure 9 details the behavior of the planner under dif-
ferent uncertainty conditions. In this environment, several
alternatives are available to reach the goal, but the ma-
neuvering is limited due to the robot length. Moreover,
motion uncertainty has a great impact in the front side
of the robot, since any small deviation in heading can re-

Figure 8: Planned path for a car-like robot with dimensions 3.0 ×
0.75 m in a cluttered environment. Obstacles are in black, while re-
gions in light gray are those with no location signal. The maximum-
likelihood path is represented with a black line, with the robot trail
in light blue. The green and red diamonds are the start and the goal
points.

10

A. González-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1–18 11

(a) (b) (c)

Figure 9: Planned paths for a car-like robot of 3.0 × 0.75 m under different uncertainty conditions. The robot trail is in blue, the maximum-
likelihood path is in black, and the diamonds in green and red are the start and the goal points. (a) shows the path without location denied
areas; (b) a different path which is selected when two of the corridors are location denied areas; and (c) another solution when the same
happens in the corridor on the right. Here the black ellipses are 3 · σ of the predicted PDFs.

sult in a collision. The chosen path depends on the PDFs
along the different candidates, as the planner favors the
safety of the solution rather than its traversal time. The
optimal solution is shown in Fig. 9a, in which there are no
location denied areas and motion uncertainty only arises
from the controls. A safe plan that crosses the two narrow
corridors is obtained, maneuvering only in those areas in
which there is enough space to avoid collisions.

Fig. 9b shows the solution for the same environment
but different uncertainty conditions. Here the probability
of collision of the prior path is affected, as the motion un-
certainty grows due to the location denial in the corridors
of the left. Therefore, a safer alternative which avoids this
area is selected despite increasing the traversal time. Hav-
ing another location denied region in the right of the map,
as shown in Fig. 9c, results in a variation of this path. In
this case, the planner minimizes the probability of collision
avoiding to maneuver just after leaving the location denied
area in the corridor of the right. Instead, the planned path
crosses the first narrow corridor and allows the robot to
receive measurements before turning.

Fig. 9c shows in black the predicted PDFs, which ex-
plain the solution obtained. The uncertainty grows when
the navigation is done without receiving measurements;
thus, the distance to obstacles must be higher to main-
tain the safety of the path. After leaving those areas, the
uncertainty shrinks due to the measurements and the use
of a LQG controller, which is taken into account when
predicting the distributions at planning time. Hence, the

path can go through the final obstacles and safely reach
the goal.

As mentioned before, Fig. 9c shows in black the uncer-
tainty estimated at planning time. The ellipses represent
3 · σ of the PDFs, a 99.7% of confidence. Moreover, 1, 000
simulations of each planned path were run to estimate the
real behavior of the robot, and also to compare the pre-
dicted distributions with the real ones. These simulations
allow the comparison of the probability of collision ob-
tained from the PDFs, p̂c, and the one from the simulated
paths, pc, in which collisions were checked with the real
shape.

In Fig. 10 the behavior of the planner in a map with
high uncertainty is shown. In this experiment the robot
has a significant uncertainty at the beginning of the path
—Σx0 = I—, and the only area in which measurements
are received is far away from the obstacles. Directly cross-
ing the door following the shortest path, without taking
into account the uncertainty conditions, is too risky and it
would result in a plan with a 55% of probability of collision.
Instead, our planner obtains a path which goes outside the
location denied area to diminish the uncertainty and en-
sure that the robot safely crosses the door. In fact, our
planner is conservative in this matter and considers that
the robot only receives measurements when there is no
overlap between the PDFs and the location denied areas.

Prior works already reported planning results in this
environment, so we used it to compare the performance
of our proposal with them. The approach of [17] finds a

11

A. González-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1–18 12

Table 1: Planning results for the experiments in this section using the graduated fidelity lattice and the heuristic H2DMR. Robot dimensions
are 3.0× 0.75 m. The planner was run with ε0 = 1.5 and decreasing it iteratively. Column ε has the value for which the optimal solution was
found. Columns “Iterations”, “Insertions” and “Time” detail the planning efficiency —nodes expanded by AD*, nodes inserted in the OPEN
queue and planning time. “Cost” is the traversal time. The estimated probability of collision (p̂c) and the real one (pc), obtained from 1, 000
simulations, are 0 in all cases. All times are in seconds.

Planning Solution
Problem ε Iterations Insertions Time (s) Cost (s)
Fig. 8 1.05 228 1,043 0.38 68.66
Fig. 9a 1.5 252 639 0.32 132.02
Fig. 9b 1.5 659 2194 0.85 157.37
Fig. 9c 1.5 799 1,872 2.26 172.28
Fig. 10 1.03 684 2,595 2.18 108.27
Fig. 11b 1.06 611 1,559 0.96 131.14

Figure 10: Planned path for a car-like robot of 3.0 × 0.75 m in an
environment with high uncertainty. The nominal path is in black,
while the simulated executions are in blue. The ellipses are 3 · σ of
the predicted PDFs. The robot receives measurements only when
the PDF is completely outside the gray region.

valid solution in these conditions and converges in approx-
imately 17, 500 iterations, with a planning time of 40 s.
As reported in this work, the method of [16] fails in this
environment due to the Voronoi-bias that prevents the ex-
pansion of the paths going through the area in which the
robot can receive measurements. Our approach outper-
forms these results and finds the best solution in 2.18 s
and 684 iterations for our dynamics model1.

The approach of [15] finds an initial path and then ob-
tains a locally-optimal control policy. The convergence of
their method took 3.65 s, and the 93% of the simulated ex-
ecutions were collision free. On the contrary, for the plans
obtained with our proposal the simulations showed that in
all cases the robot was able to safely cross the narrow pas-
sage, also varying the starting point. Their method does
not assume a fixed control gain along each section of the
planned path. However, with their approach a different
control policy has to be obtained for each homotopy class

1[15, 17] use a punctual robot with 2D dynamics, while our re-
sults are for a car-like robot.

of trajectory in order to find the globally optimal solution.
As a consequence, the planning times would be higher in
more complex environments —i.e. the map of Fig. 9 al-
ready contains 4 homotopy classes for the given start and
goal points.

Table 1 contains the detailed results for all the envi-
ronments in this section. In all cases the planner finds the
optimal solution in a few seconds.

5.1. Reliable collision check

The capability of the planner to work with different
robot shapes is shown in Fig. 11. In this example the
planner was run in the same environment and uncertainty
conditions, but using two different shapes, a squared one
with size 0.75 × 0.75 m, and another one with size 3.0 ×
0.75 m. Approximating the former by a circle could be a
reasonable assumption, but for the latter this cannot be
done without drawbacks.

The proposed method accurately estimates the proba-
bility of collision of the path in accordance with the real
shape, which leads to the obtention of different paths in
the example of Fig. 11. Fig. 11a shows the motion plan
obtained for a squared robot of 0.75× 0.75 m. This robot
can safely pass through the room at the center of the map
after maneuvering in the narrow passage. However, for the
robot of 3.0×0.75 m this maneuver would be too risky due
to its dimensions. In fact, the robot collides with its right
front corner even before crossing the door, while after-
wards the collision involves all its right side. Our motion
planner manages that and obtains for this robot a slightly
longer path, but with the minimal probability of collision,
shown in blue in Fig. 11b. Table 1 details the planning
results for the 3.0× 0.75 m shape.

This example shows the relevance of taking into ac-
count the real shape, which is systematically disregarded
in the state of the art. In this environment, approximating
the large robot by the inscribed circle —with a diameter of
0.75 m— would result in underestimating the probability
of collision, which would lead to unplanned collisions, as
shown in red in Fig. 11b. The same happens to chance-
constraint planning only using the PDFs. On the contrary,
with the outer circle the probability of collision of the paths
would be highly overestimated.

12

A. González-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1–18 13

(a) (b)

Figure 11: Influence of the robot shape in the planned paths: (a) shows the plan for a shape of 0.75 × 0.75 m (b) shows in blue the path for
a larger robot, of 3.0 × 0.75 m, in orange the path that this robot would follow if its real dimensions were not taken into account, and in red
the most probable collisions in that situation. The diamonds in green and red are the start and the goal points.

Figure 12: Planned path for a robot with “T” shape, of 3.0× 2.2 m,
shown in blue. The diamonds in green and red are the start and the
goal points.

In Fig. 12 we show that our approach is able to reliably
estimate the probability of collision and find safe paths
regardless the robot shape. In this experiment the robot
shape is a “T”, which makes more difficult to maneuver in
narrow spaces. The planned path is similar to that of Fig.
11b, since the robot cannot enter through the first door
due to its dimensions. However, in this case the robot has

to enter the corridor completely aligned with the walls to
avoid collisions with them. Similarly, the robot has to take
the curve wide before crossing the doors at the top of the
map. The planner finds the optimal solution in 1.38 s —
525 iterations. The cost is 136.89 s, slightly higher than
in the experiment of Fig. 11b.

Whatever the kind of environment, the uncertainty in
heading clearly influences the probability of collision for
those robots with non-circular shapes. This is aggravated
if, due to the robot dimensions, like the one in the example,
slight changes in heading cause large variations in the dis-
tance to the obstacles. This is managed by the proposed
method, since the probability of collision is obtained by
sampling PDFs in a way that not only takes into account
deviations in position, but also in heading. The estimated
probability of collision, p̂c, is correct regardless the robot
dimensions, and it approximates well the real value, pc, ob-
tained from 1, 000 simulations of the planned path. Thus,
reliable and safe paths are found for any shape.

Fig 13 compares the estimation error of our method
with that of other approaches [16, 19] which approximate
the robot by its bounding circle. They estimate the prob-
ability of collision using the regularized gamma function,
Γ(n/2, r2/2), which gives the probability that a sample
is within r standard deviations for a multivariate Gaus-
sian distribution of dimension n. A challenging situation
for planning is when a non-circular robot is approaching
a diagonally placed obstacle —i.e. entering a corridor or
turning a corner. In these situations, the reliability of the
gamma function falls due to not taking into account the
uncertainty in heading and approximating the robot by a

13

A. González-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1–18 14

Figure 13: Error of the probability of collision estimated with our
method compared with that of the gamma function. The error was
measured varying the distance between a robot with shape 3.0 ×
0.75 m and a single obstacle placed diagonally with it, and for Σ = I.

circle, which results in a significant error of the estimated
probability of collision with respect to the real one. In-
stead, our method accurately approximates it with only a
1.5% of average error.

5.2. Graduated fidelity lattice

Most of the planning time, approximately a 80%, is
spent in propagating the PDFs through the candidate paths
and estimating their probability of collision. Diminishing
the fidelity of the lattice allows to reduce the number of
paths contained in the state lattice, obtaining better com-
putation times. However, doing it in a general way affects
the robustness of the system and its capability to find near-
optimal solutions. On the contrary, the proposed grad-
uated fidelity approach allows to drastically reduce the
number of analyzed paths, highly increasing the efficiency
of the planner while keeping nearly the same performance.

Fig. 14 shows the lattice for the motion plan in Fig.
8 and the results of the graduated fidelity approach. The
highest fidelity is selected in those areas with more density
of obstacles, such as the corridors. In those areas the oc-
tree cannot be compacted due to the different occupancy
information of adjacent cells, and therefore cells tend to
be small. This leads to the selection of the highest fidelity,
f+, using the motion primitives with the minimum length,
0.5 m. Similarly, higher fidelities are selected when the
uncertainty affects the probability of collision of the paths
—i.e. maneuvering in the vicinity of obstacles.

The opposite occurs in the uncluttered areas of the
map. In those regions lower fidelities are selected, which
significantly reduces the density of states in the lattice.
Moreover, reducing the maneuverability in those areas has
a limited influence in the cost of the solutions retrieved,

while saving significant computational resources. Only
near the goal an exception is made, and the whole set
of actions U is used to facilitate maneuvering in this area
regardless the density of obstacles.

Table 2 shows a comparison between the executions
of the proposed planner with graduated fidelity, GF, and
those of a standard state lattice planner. For the latter,
the connectivity is given by the whole set of primitives.

This comparison shows a significant reduction in the
number of iterations of the search algorithm —an average
decrease of 83.3%—, but more importantly in the number
of insertions in the OPEN queue —reduced in a 88.1%.
The latter highly influences the planning time, as the in-
sertions involve propagating the PDFs and estimating the
probability of collision along the candidate paths. Thus,
the planning time diminished on average by 88.5% when
making use of the graduated fidelity lattice. Conversely,
the cost of the solutions slightly increases —an average of
6.2%— due to the selection of longer maneuvers for turn-
ing. However, when compared with the solutions provided
without the graduated fidelity approach, the differences
are minimal.

5.3. Anytime search

This subsection focuses on the capabilities of combin-
ing anytime search with a graduated fidelity lattice. This
feature allows obtaining sub-optimal solutions faster and
refine them later, which is desirable when using the plan-
ner in real world domains.

To test this feature the planner was run with ε0 =
1.5, and later the parameter was iteratively decreased to
refine the solution. Thus, an initial plan is retrieved in a
very short time and the robot can move while the plan is
improved. Table 3 details the results of these tests.

The cost of the sub-optimal solutions is bounded by the
value of ε, so the cost of the solution decreases in accor-
dance with the value of the parameter. Also, the higher

Figure 14: Graduated fidelity selection for an environment combining
cluttered and non-cluttered areas. Areas making use of the highest
fidelity are in red, while those with lower ones are in blue. This
lattice corresponds to the motion plan of Fig. 8.

14

A. González-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1–18 15

Table 2: Performance comparison between the planner using the graduated fidelity lattice (GF) and a standard one. All tests were run with
ε = 1.0. Robot shape is 3.0 × 0.75 m. Columns “Iterations”, “Insertions” and “Time” detail the planning efficiency —nodes expanded by
AD*, nodes inserted in the OPEN queue and planning time. “Cost” is the traversal time. The estimated probability of collision (p̂c) and the
real one (pc), obtained from 1, 000 simulations, are 0 in all cases. All times are in seconds.

Planning Solution
Problem GF Iterations Insertions Time (s) Cost (s)
Fig. 8 3 144 586 0.59 68.66
Fig. 8 7 272 1,446 1.58 68.04
Fig. 9a 3 318 774 0.84 132.02
Fig. 9a 7 1,501 6,287 5.25 127.19
Fig. 9b 3 820 2,093 1.54 154.71
Fig. 9b 7 2,957 12,346 12.96 146.91
Fig. 9c 3 2,030 4,522 4.52 172.28
Fig. 9c 7 7,277 26,942 25.90 160.55
Fig. 10 3 1,302 2,868 2.68 108.27
Fig. 10 7 15,952 42,594 45.38 95.96
Fig. 11b 3 593 1,321 1.29 131.14
Fig. 11b 7 3,196 12,183 8.53 126.27

Table 3: Anytime planning performance. Planner was run starting in ε0 = 1.5, decreasing it iteratively. Column ε has the value for which
the optimal solution was found. Robot shape is 3.0 × 0.75 m. Columns “Iterations”, “Insertions” and “Time” detail the planning efficiency
—nodes expanded by AD*, nodes inserted in the OPEN queue and planning time. “Cost” is the traversal time. The estimated probability
of collision (p̂c) and the real one (pc), obtained from 1, 000 simulations, are 0 in all cases. All times are in seconds.

Planning Solution
Problem ε Iterations Insertions Time (s) Cost (s)
Fig. 8 1.5 92 484 0.15 68.78
Fig. 8 1.05 228 1,043 0.38 68.66
Fig. 9a 1.5 252 639 0.32 132.02
Fig. 9b 1.5 659 2194 0.85 157.37
Fig. 9b 1.15 1,032 3,152 1.40 154.71
Fig. 9c 1.5 799 1,872 2.26 172.28
Fig. 10 1.5 466 1,164 1.57 112.79
Fig. 10 1.03 684 2,595 2.18 108.27
Fig. 11b 1.5 64 225 0.12 132.98
Fig. 11b 1.06 611 1,559 0.96 131.14

its value, the lower the number of iterations and inser-
tions, and consequently the planning time. For ε = 1.0
the solution retrieved is guaranteed to be optimal. While
this applies to the traversal time of the path, the probabil-
ity of collision is always minimized —p̂c is always minimal,
even for anytime solutions. This is because anytime search
works scaling the value of the heuristic by ε, which only
estimates the traversal time, not the rest of the elements
of the cost function, as detailed in Sec. 4.3.

It is specially noticeable the reduction in the planning
times for those cases in which the heuristic is too optimistic
with respect to the real cost of the path —due to the uncer-
tainty conditions, i.e. Fig. 10. In those cases, finding the
optimal solution is not trivial and anytime search avoids
long waiting times. However, while increasing ε0 speeds
up the obtention of the initial solutions, it may lead to
longer computational times if too many values of ε are
tested. This is because each time ε changes, the priorities
of all the nodes in OPEN have to be updated, which can
be costly depending on its number. Therefore, if there are
too many nodes in OPEN it might be better to obtain a

new plan from scratch, as pointed out in [23].

5.4. Multi-resolution heuristic

Several tests were run to compare the performance of
H2DMR, the multi-resolution heuristic, with the one with
a fixed resolution, H2D. For the latter, the grid is built
with the resolution given by the highest fidelity of the mo-
tion primitives, f+. A map of an empty environment with
dimensions 50× 50 m was built for testing purposes, and
then several octrees with the same occupancy information
were obtained. For all of them, the minimum size of the
cells is 0.1 m while the maximum one, C+, ranges between
0.1 m and 25.6 m, depending on the test. Finally, both
heuristics were run in each octree until they completely ex-
plored the free space —until the OPEN queue was empty.

Figure 15 compares the performance of H2DMR with
that of H2D in terms of runtime and number of iterations.
In the case of H2D, the number of iterations is constant, as
the grid is built only taking into account f+. Conversely,
as H2DMR takes advantage of the octree structure to de-
cide the best resolution for each area of the map, the num-

15

A. González-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1–18 16

Figure 15: Performance of H2DMR compared with that of H2D.
Results for the run time and the number of iterations needed to
calculate heuristics over an empty 50 × 50 m map are shown.

Table 4: Efficiency of H2DMR compared with that of H2D. Runtimes
and number of iterations to obtain the heuristics over an empty map
of 50 × 50 m are given. The maximum resolution of the octree is
0.1 m, while f+ = 0.5 m. Tests were run for several maximum cell
sizes, C+ (in meters).

Iterations Time (ms)
C+ SR MR Gain SR MR Gain
0.1 8,281 3,250 60.8% 261.2 96.0 63.2%
0.2 8,281 3,250 60.8% 173.7 85.3 50.9%
0.4 8,281 3,250 60.8% 143.8 73.0 49.2%
0.8 8,281 3,250 60.8% 128.6 70.0 45.6%
1.6 8,281 842 89.8% 123.4 33.0 73.3%
3.2 8,281 842 89.3% 119.0 30.0 74.8%
6.4 8,281 410 95.1% 117.8 20.0 83.0%
12.8 8,281 362 95.6% 116.2 19.0 83.7%

ber of iterations is significantly lower, and so it is the ob-
tention time. Not only H2DMR is more efficient for all res-
olutions, but also the divergence from H2D increases with
the cell size. Consequently, the benefits of this approach
are specially noticeable in large environments, where the
octree cells can be larger. The reduction in the runtime
of H2D is only related with the collision check operations,
which are more efficient with larger octree cells. Table 4
gives full detail of these tests, also quantifying the perfor-
mance gain achieved by H2DMR with respect to H2D for
each maximum octree resolution.

Finally, Fig. 17 compares the grids built by H2DMR
and H2D. The goal is located at the center of the map.
In the case of H2DMR, shown in Fig. 17b, the resolution
goes in accordance with the size of the octree cells and f+

—0.5 m in this example. This results in a grid with a com-
plexity considerably lower than that of H2D. However, this
grid has an increased connectivity, as all points between
adjacent cells have a link between them, instead of the 8-
connected grid of H2D. This compensates the reduction in
the number of paths due to diminishing the density of po-

Figure 16: Planned path for an odometric robot of 0.75×0.75 m in a
real environment. Obstacles are in black, while regions in light gray
are those with no location signal. The robot trail is in blue and the
diamonds in green and red are the start and the goal points.

sitions in the grid, specially in those areas with large octree
cells. This allows retaining the quality of the estimations.
In fact, the costs given by H2DMR were compared with
those of H2D, showing an average reduction of a 4%. This
means that H2DMR is also more precise than H2D.

5.5. Planning in a real environment

In this section we report results for a large real en-
vironment —292 × 167 m. It is a map of the Freiburg
University campus built from 3D laser scans, and it was
obtained from a public dataset2. The location denied ar-
eas are located around the obstacles to simulate the effect
that they have on the GPS signal. Concretely, for this
experiment we considered that the space of 2 m around
the obstacles has high uncertainty. The motion model was
that of an odometric robot. The set of motion primitives
has 246 motions which connect the lattice states of dis-
tances 0, 1, 2, 4, 8 and 16. The highest fidelity, f+, is
1.0 m.

Figure 16 shows the optimal solution for this environ-
ment. Our approach finds a valid path, and the robot is
able to safely maneuver between the trees of the right. Its
cost was 359.28 s and it was obtained in 34 s of planning
time, after 26, 972 iterations, for ε = 1.05. Due to the
anytime search capabilities of AD*, a first sub-optimal
solution is available after 1.1 s of planning time, in 823
iterations, with a cost of 402.20 s for ε = 1.5.

The cluttered areas of the map do not affect the ability
of the planner to find the shortest path. Nevertheless, the
planner might require slightly higher runtimes due to the
size of the map and the cluttered areas.

6. Conclusions and future work

We have presented a motion planner based on state
lattices which manages motion and sensing uncertainty.

2Available at http://ais.informatik.uni-freiburg.de/

projects/datasets/octomap/

16

http://ais.informatik.uni-freiburg.de/projects/datasets/octomap/
http://ais.informatik.uni-freiburg.de/projects/datasets/octomap/

A. González-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1–18 17

(a) Single-resolution (H2D) (b) Muti-resolution (H2DMR)

Figure 17: Comparison of the grid generated by H2D with that of H2DMR. The grid is in blue, the structure of the octree is in black, and
the goal is the red diamond. The environment is 50 × 50 m.

Our proposal introduces a reliable method to obtain the
probability of collision of the paths taking into account
the real shape of the robot. We have also introduced
a novel graduated fidelity approach which adapts the fi-
delity of the lattice to the obstacles in the environment
and the maneuverability of the robot, resulting in a dras-
tic increase of the planning efficiency without affecting
the performance. Moreover, we have proposed H2DMR,
a multi-resolution heuristic which significantly improves
the computation times required to estimate the cost to
the goal taking into account the obstacles in the map.

We have validated our proposal with 21 tests in several
environments, with different robot shapes, motion models
and under a variety of uncertainty conditions. Results
show the good performance of the motion planner. The
probability of collision was always reliably estimated, even
for shapes which cannot be approximated as circles. Due
to the graduated fidelity lattice, planning time decreased
on average by 88.5% with respect to a standard lattice,
while the heuristic was obtained a 65.5% faster due to the
multi-resolution grid. Experimental results show the any-
time search capability of the planner, which allows obtain-
ing safe paths regardless they are sub-optimal or not. All
of the above results in an efficient and reliable approach.

Acknowledgments

This research was supported by the Spanish Ministry of
Economy and Competitiveness —grants TIN2014-56633-
C3-1-R and TIN2017-84796-C2-1-R—, and the Galician

Ministry of Education, Culture and Universities —grants
GRC2014/030 and accreditation 2016-2019, ED431G/08.
These grants are co-funded by the European Regional De-
velopment Fund —ERDF/FEDER program.

[1] S. M. LaValle, Planning Algorithms, Cambridge University
Press, Cambridge, U.K., 2006.

[2] S. Karaman, E. Frazzoli, Incremental sampling-based algo-
rithms for optimal motion planning, Robotics Science and Sys-
tems VI 104.

[3] L. Janson, B. Ichter, M. Pavone, Deterministic Sampling-Based
Motion Planning: Optimality, Complexity, and Performance,
Vol. 2, Springer International Publishing, 2018, pp. 507–525.

[4] D. Meagher, Geometric modeling using octree encoding, Com-
puter graphics and image processing 19 (2) (1982) 129–147.

[5] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, W. Bur-
gard, Octomap: An efficient probabilistic 3d mapping frame-
work based on octrees, Autonomous Robots 34 (3) (2013) 189–
206.

[6] S. M. LaValle, J. J. Kuffner, Randomized kinodynamic plan-
ning, The International Journal of Robotics Research 20 (5)
(2001) 378–400.

[7] M. Pivtoraiko, A. Kelly, Efficient constrained path planning via
search in state lattices, in: 8th International Symposium on
Artificial Intelligence, Robotics and Automation (I-SAIRAS),
2005.

[8] M. Pivtoraiko, A. Kelly, Differentially constrained motion
replanning using state lattices with graduated fidelity, in:
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2008, pp. 2611–2616.

[9] M. Likhachev, D. Ferguson, Planning Long Dynamically Fea-
sible Maneuvers for Autonomous Vehicles, The International
Journal of Robotics Research 28 (8) (2009) 933–945.

[10] R. Knepper, A. Kelly, High Performance State Lattice Plan-
ning Using Heuristic Look-Up Tables, IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (2006)
3375–3380.

[11] R. Alterovitz, T. Siméon, K. Goldberg, The stochastic motion

17

A. González-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1–18 18

roadmap: A sampling framework for planning with Markov mo-
tion uncertainty, in: Robotics: Science and Systems, 2007, pp.
246–253.

[12] L. P. Kaelbling, M. L. Littman, A. R. Cassandra, Planning
and acting in partially observable stochastic domains, Artificial
intelligence 101 (1) (1998) 99–134.

[13] C. H. Papadimitriou, J. N. Tsitsiklis, The complexity of Markov
decision processes, Mathematics of operations research 12 (3)
(1987) 441–450.

[14] N. Roy, S. Thrun, Coastal navigation with mobile robots, in:
Advances in Neural Information Processing Systems, 2000, pp.
1043–1049.

[15] J. Van den Berg, S. Patil, R. Alterovitz, Motion planning under
uncertainty using iterative local optimization in belief space,
The International Journal of Robotics Research 31 (11) (2012)
1263–1278.

[16] J. Van den Berg, P. Abbeel, K. Goldberg, LQG-MP: Optimized
path planning for robots with motion uncertainty and imper-
fect state information, The International Journal of Robotics
Research 30 (7) (2011) 895–913.

[17] A. Bry, N. Roy, Rapidly-exploring random belief trees for mo-
tion planning under uncertainty, in: IEEE International Confer-
ence on Robotics and Automation (ICRA), 2011, pp. 723–730.

[18] B. D. Luders, S. Karaman, J. P. How, Robust sampling-based
motion planning with asymptotic optimality guarantees, in:
AIAA Guidance, Navigation, and Control (GNC) Conference,

2013, p. 5097.
[19] S. U. Lee, R. Gonzalez, K. Iagnemma, Robust sampling-based

motion planning for autonomous tracked vehicles in deformable
high slip terrain, in: Robotics and Automation (ICRA), 2016
IEEE International Conference on, IEEE, 2016, pp. 2569–2574.

[20] T. M. Howard, A. Kelly, Optimal rough terrain trajectory gen-
eration for wheeled mobile robots, The International Journal of
Robotics Research 26 (2) (2007) 141–166.

[21] C. De Boor, A Practical Guide to Splines, Vol. 27 of Applied
Mathematical Sciences, Springer-Verlag New York, 1978.

[22] P. Abbeel, Apprenticeship learning and reinforcement learning
with application to robotic control, Stanford University, 2008.

[23] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, S. Thrun,
Anytime dynamic A*: An anytime, replanning algorithm, in:
Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), 2005, pp. 262–271.

[24] M. Pivtoraiko, R. A. Knepper, A. Kelly, Differentially con-
strained mobile robot motion planning in state lattices, Journal
of Field Robotics 26 (3) (2009) 308–333.

[25] D. Bertsekas, Dynamic programming and optimal control,
Vol. 1, Athena scientific Belmont, MA, 1995.

[26] S. J. Julier, J. K. Uhlmann, H. F. Durrant-Whyte, A new ap-
proach for filtering nonlinear systems, in: Proceedings of the
American Control Conference, Vol. 3, IEEE, 1995, pp. 1628–
1632.

18

	Introduction
	Related work
	Planning on state lattices
	Motion primitives
	Optimal path
	Uncertainty management

	Improving the reliability and efficiency of the motion planner
	Reliable probability of collision
	Graduated fidelity lattice
	Multi-resolution heuristic

	Results
	Reliable collision check
	Graduated fidelity lattice
	Anytime search
	Multi-resolution heuristic
	Planning in a real environment

	Conclusions and future work

