
Anytime Motion Replanning in State Lattices for
Wheeled Robots

Adrián González-Sieira, Manuel Mucientes and Alberto Bugarı́n

Abstract—Autonomous robots require robust and fast motion
planning algorithms to operate in complex real environments. In
the last years, motion planning in state lattices has emerged as a
powerful paradigm to real time path planning taking into account
the kinematic restrictions of the vehicle. The approach requires
the definition of the state lattice and the off-line calculation of
the motion primitives. Therefore, motion planning is transformed
into a search problem over a directed graph. In this paper, we
apply the state lattice approach for motion planning of wheeled
robots usign the AD* algorithm. Thus, the planning algorithm
is anytime and dynamic, i.e., the path is improved incrementally
and, also, the algorithm can replan. Results of different tests on
a Pioneer P3-DX show the validity of the proposal.

Index Terms—motion planning, state lattices, motion primi-
tives, replanning, wheeled robots.

I. INTRODUCTION

Motion planners are essential components of autonomous
vehicles. Their purpose is to determine a set of control actions
that allow the vehicle to reach one or more objectives from
the starting position.

Desirable properties for a motion planner are: i) react in
real time to changes in the environment (specially in dynamic
or dangerous situations); ii) avoid unnecessary risks when
traversing areas with obstacles; iii) generate optimal paths
fulfilling certain criteria (time spent in reaching the objective,
energy cost, minimum distance, etc.); iv) consider changes
in the environment and adapt the solution to guarantee the
successful completion of the task.

Many motion planners have been proposed over the years.
However, most of them present drawbacks related with the
computational burden necessary to calculate the solution, the
weakness of the planner from preventing local minimums or
the lack of mechanisms to allow an efficient replanning in dy-
namic environments, or not fulfilling the kinematic restrictions
of the motion model of the robot.

Motion planning solutions can be classified in two sets
of approaches: those that consider the motion model of the
vehicle at planning time, and those that obtain the path without
considering those kinematic restrictions. The second approach
is the most usual, and it makes the control of the vehicle an
independent problem to be solved separately. This simplifies
a lot the path finding problem, but it may provoke fails when
the solution paths are not truly feasible because of the vehicle
motion model.

Adrián González-Sieira, Manuel Mucientes and Alberto Bugarı́n are with
the Centro de Investigación en Tecnoloxı́as da Información (CITIUS), Uni-
versidade de Santiago de Compostela (Spain).
Their e-mails are: adrian.gonzalez@usc.es, manuel.mucientes@usc.es and
alberto.bugarin.diz@usc.es

On the other hand, planning with the motion model involves
a greater computational effort, as the algorithms must consider
the information about the complete vehicle state (not only its
pose), manage the kinematic restrictions of the motion model,
assign a cost for each action depending on several criteria
(obstacles, time, energy, etc.).

The discretization of the robot state space is a usual way
to reduce the computational complexity of motion planning.
A special discretization, called state lattice [1], can be used
to express the planning problem as a directed graph, where
the nodes are all the reachable states of the vehicle, and the
arcs the feasible motions that connect them. This type of
discretization has proved to have two important properties: its
construction observes the motion model kinematic constraints,
and its regularity allows to perform many optimizations to
reduce the computational effort of calculating a path between
states.

In this paper, a global planning method for a wheeled
robot is presented. It uses the state lattice discretization to
efficiently represent the search space. The connectivity is built
from a motion primitives set that fulfills the vehicle kinematic
constraints. The planner uses an anytime and incremental
search algorithm (AD* [2]) guarantee a real time response, and
refine the solution while there is available computation time.
The algorithm is also able to replan: it takes into account the
recent changes in the environment and modifies the proposed
trajectory in real time.

The paper is structured as follows: Sec. II summarizes recent
work related with this proposal. Sec. III presents the proposed
state lattice discretization, while Sec. IV describes the search
algorithm and its heuristics and Sec. V the construction of the
feasible motions. Sec. VI presents the obtained results and,
finally, Sec. VII points out the conclusions.

II. RELATED WORK

There are many different approaches to solve motion plan-
ning problems [3]. The simplest proposals are those based
on local planning, which are focused on giving the next
feasible action for the vehicle that seems closer to the objective
considering the surrounding environment. These techniques
include the potential fields [4], [3], [5], the curvature velocity
[6], dynamic window [7], etc.

This set of algorithms is very efficient and its performance
in simple problems is reasonably good. However, these al-
gorithms have demonstrated their lack of utility in complex
configuration spaces. As local search methods, the decision of
the next control action is greedy, which makes them to fail
when trapped in local minima.

217

To get better results than the previous approximations, the
local control was improved by selecting the most promising
choice according to the estimated distance to the goal [8],
[9] using the global environment information. Since they still
follow a greedy strategy, they cannot guarantee the vehicle
to reach the objective. This strategy was modified to use
the composition of several simple actions [10], [11], but the
problem of falling in local minimums is still present.

Solutions using the global environment information can
be grouped in [3]: geometric methods, and sample based
approximations. The first one uses the robot and obstacle
representation to search all feasible paths in the environment.
The second ones use a discretization scheme to avoid taking
into account the full environment representation in order to
minimize the computational burden.

Geometric methods try to connect every two points of the
free space. They require the fulfillment of two conditions: all
points in the free space are connected at least for a path,
and the possibility of representing the free space points as
a graph. Although the approach is very interesting due to its
completeness property, these methods are very dependent of
the configuration space and they need very high computational
resources in the presence of a complex environment with
many obstacles. An important consideration about them is the
impossibility of working with dynamic environments: each
time the environment changes, it is necessary to recalculate
the set of all paths that traverse the free space, and there is no
way to represent moving obstacles.

Sample based algorithms are global planning methods that
avoid the explicit representation of free and occupied zones.
The space representation is minimized using a discretization
scheme, and uses a global planning strategy to build a path that
can be tracked by the vehicle [12], [13], [2]. This approxima-
tion is independent of the collision detection problem and the
vehicle geometric representation, making a difference with the
rest of methods introduced before. This is the most successful
approximation of the state of the art, and it is widely used
in motion planning problems. The feasibility of the problem
depends on the discretization scheme used. Moreover, these
type of algorithms are probabilistic complete: if the number
of points to represent the planning problem is high enough,
the probability of finding an existing solution tends to 1.

There are two main approximations for sample based al-
gorithms: i) probabilistic roadmap methods [3], that takes
random samples from the robot space configuration and tests
if they occur in free space, using a local planner to connect the
generated configurations to other nearby ones; ii) state lattice
based methods [1], that use a regular discretization scheme
to optimize the search space representation and set up the
problem as a directed graph.

III. MOTION PLANNING IN STATE LATTICES

The proposed planning algorithm is based on a state lat-
tice discretization scheme. The state lattice [1] is a regular
sampling of the state space that considers by construction the
motion differential constraints. Different type of lattices exist,
depending on the spatial arrangements of the states (triangular,

diamond, rectangular, etc.). In this work a rectangular lattice
has been used.

The state space forms a directed graph, where the nodes are
the discrete robot states, and the arcs are sequences of control
commands that connect them. The arcs are generated through
the robot motion model and, therefore, fulfill the kinematic
constraints. In this manner, a discrete search algorithm can be
executed over the lattice to obtain the optimal path between
any pair of states. As the connections between states are
feasible motions of the robot, it is guaranteed that the obtained
path will be a feasible plan as well.

For this type of algorithms, the robot state is defined as a
vector of variables that are sampled with a given resolution. In
order to consider the vehicle motion constraints, a state must
contain information about the pose, and the linear and angular
velocities:

s = [x, y, θ, v, ω] (1)

The regularity of the lattice introduces important benefits
such as the translational invariance: a connection between
states is replicated for all pairs of states equally arranged. This
allows to use a precomputed set of motion primitives, called
primitive trajectories (or canonical control set), to replicate
the connectivity for any node in the lattice, regardless of its
position, as depicted in Fig. 1.

Fig. 1. A typical rectangular lattice. The primitive trajectories (in black) are
replicated in all the equivalent nodes.

To improve the effectiveness of the planner and the quality
of the solutions found, the construction of the state lattice was
designed such as it meets the following properties:
• Optimality of the motions between states, considering

only those with a minimal transition time.
• Completeness of the canonical control set to represent all

feasible motions of the robot model.
• Minimum complexity of the state lattice connectivity, by

removing all redundant transitions.

IV. SEARCH ALGORITHM

The problem of finding a path in the state lattice was solved
using a discrete search algorithm. These type of algorithms
executes a informed search over a directed graph to find
the optimal solution between a pair of nodes. Its efficiency
depends on two aspects: the quality of the heuristic, that
estimates the transition cost between every node in the graph

218

and the goal, and the connectivity of the state lattice, that is
determined by the canonical control set

There are in the literature search algorithms that have
interesting properties to use in motion planning problems: one
of them is centred in replanning in dynamic environments, and
others in obtaining fast sub-optimal solutions that are improved
in several iterations to, finally, get the optimal one.

Anytime Dynamic A* (AD*) [2] combines a replanning
mechanism and anytime search. It makes it specially interest-
ing for real time problems located in dynamic environments.
It is possible to calculate a sub-optimal solution, adjusting the
upper bound of sub-optimality depending on the time available
for the calculation; and it is also possible to repair iteratively
a previously calculated solution introducing changes in the
transition cost of arcs in the graph.

Another benefit of AD* is the backward exploration of the
graph. The solution is obtained beginning the search process
from the objectives to reach. This allows to change the starting
node between iterations, obtaining a solution that varies with
the changes in the present position of the vehicle.

The cost function gives a value for each one of the arcs
that connects the nodes in the search space. This cost is a
combination between the time that takes the robot to execute
a motion, and the information about the obstacles in the
occupancy grid map.

Depending on the occupancy probability, each cell of the
grid map can be in one of these states: “free”, “occupied” or
“unknown”. To calculate the cost of a trajectory, it is necessary
to consider the occupancy information of cells passing through
the robot. Taking into consideration only the cells traversed by
the centre of the vehicle may result in obtaining solutions that
could be unfeasible due to the robot shape.

To avoid this, the cost function considers the information
given by all the cells traversed by the shape of the robot. The
value assigned to each motion is calculated as the convolution
cost of all cells affected by it, and its execution time:

c(s, s′) =

(∑
α∈cells t(α) · w(α)∑

α∈cells t(α)

)
· t(s, s′) (2)

where w(α) is the weight of cell α in the occupancy map
(proportional to the occupancy probability of α), t(α) is the
time spent in a cell during the execution of a trajectory,
and t(s, s′) is the transition time between states. Given this
transition cost function, the planner minimizes the time spent
by the vehicle reaching the objective state from the initial one,
while avoiding the obstacles in the map.

Depending on the size of the cells in the map, calculating
the convolutions for all transitions can become expensive. In
many cases convolutions calculation can be avoided: when the
complete path traverses only free space, or when it passes
through an obstacle, the value of the convolution is the
minimum and maximum weight of the cells, respectively.

This optimization can be performed generating two addi-
tional maps of the environment: the optimistic and pessimistic
maps [14].
• The optimistic map expands all obstacles and unknown

cells in the environment to a distance equal to the inner
radius of the robot shape (Fig. 2). Assuming a point robot,

when the trajectory goes through at least one occupied
cell in the optimistic map, the robot is guaranteed to
collide when performing the same action in the real map.

• In the same way, the pessimistic map expands all obsta-
cles and unknown zones to the outer radius of the robot
(Fig. 2). When all the cells crossed by the punctual robot
when performing an action in the pessimistic configura-
tion space are free, the path is guaranteed to be collision
free in the real map.

Fig. 2. The robot shape is represented by a rectangle. Its inner and outer
radius (ir and or) are used to define a pair of circles that represent optimistic
and pessimistic shapes of the vehicle.

Only in those cases when this first analysis does not produce
a clear conclusion, it is neccesary to calculate the convolution
in the occupancy map to get the transition cost of an action.
As this situation is rarely produced, it performs an important
saving on computation time that allows having a better real
time response of the planner.

A. Heuristic

AD* is an informed discrete search algorithm. It assigns an
exploration priority to each node depending on its heuristic
value. A good heuristic allows finding the optimal solution
of a query very efficiently, minimizing the number of nodes
expanded and the computation time required.

A valid heuristic function must be always optimistic: the
estimation of the traverse cost between a node and the goal
must be lower than (or equal to) the real cost itself. A typical
heuristic value in 2D problems is based on the euclidean
distance between positions. When introducing the motion
differential constraints in the search process, this value loses
much of its information, as it does not consider the heading
or the robot speed.

To estimate the traverse cost from a robot state to the goal,
a heuristic value that considers both the differential constraints
and the information about obstacles positions was used. This
heuristic is the maximum of two values already introduced
by Likhachev et al. in [15]: the cost from traversing between
the states with the kinematic constraints and considering a
free obstacle environment (FSH), and the cost to execute the
same path regardless the vehicle motion model, but with the
obstacles information (H2D):

h(s, s′) = max(hH2D(s, s′), hFSH(s, s′)) (3)

219

1) H2D: This value is calculated as the cost of the path be-
tween two positions, taking into consideration the environment
cost map, but not the kinematic constraints of the vehicle [15].
The most efficient form to calculate H2D is executing an A*
search over a 8-connected 2D grid where the positions match
with the robot states in the lattice. As only (x, y) positions are
considered, it is necessary to define the traverse cost between
them, and a heuristic value to solve the A* queries faster.

The cost of a motion between two positions for H2D is
the time required to move along the straight line that connects
them at the maximum linear velocity of the vehicle, multiplied
by the convolution of the cost of all cells affected by the
trajectory, approximating the shape of the robot with the inner
circle.

As the efficiency of the planner depends largely on the
efficient calculation of the heuristic values for the candidate
nodes to expand, it is important to minimize the time spent in
solving this A* queries. To do this, a heuristic value for H2D
is defined, as the time spent traversing the straight line that
connects two positions at the maximum linear velocity.

2) FSH: This value is calculated as the cost of the path
fulfilling the vehicle kinematic constraints, and regardless the
environment cost map i.e., assuming free space [15]. In this
case, the transition cost between states is the time of executing
a motion between them, given the connectivity of the canonical
control set.

Calculating the FSH heuristic value has a high computa-
tional cost, because it is a problem of the same dimensionality
of the motion planning. As it only depends on the construction
of the state lattice and the connectivity of the canonical
control set, it can be precomputed offline and stored in a
Heuristic Look-Up Table [16] (HLUT). In this manner the
search algorithm performance is not penalized.

To do an efficient construction of the HLUT, the number
of nodes included must be minimized, at the same time that
the relevance of the information in the table is kept. The
information level of a FSH heuristic value for a node can
be measured as the ratio between this value and a simpler
heuristic, called backup heuristic, that is the same used to
guide the H2D search process. This quotient is called trim
ratio.

Another important optimization to keep the HLUT size as
small as possible is to use the regularity of the state lattice
to identify the equivalences between nodes. This provides a
double benefit: not to explore the equivalent areas, saving
computation time, and to reduce the number of entries in the
table, saving memory.

To construct the HLUT table, all states in the lattice that
match with the initial position are considered as initial state.
After identifying the equivalences, for each one an exploration
process in two steps is performed: Dijkstra search and HORI-
ZON search.

First, a Dijkstra search for every starting node is performed
in order to populate the HLUT in a very fast way. This
step leaves gaps in the table due to high cost non explored
zones surrounded by previously explored ones. The FSH value
for a node not included in the table is calculated by the
backup heuristic, and it underestimates the real cost of nodes

in the HLUT gaps. This may affect the performance of the
planner due to false leads in the search algorithm, that spends
unnecessary search time dismissing them and resulting in a
less predictable search time.

The second step to populate the HLUT is the HORIZON
method. This algorithm executes A* queries to obtain the
path cost between the initial node and the one for which the
heuristic value is needed. The list of queries is sorted by trim
level, similarly as the A* OPEN list. The initial seed of this
algorithm is the list of HORIZON neighbours for all nodes
explored in the previous step that do not reach the threshold
trim level. The HORIZON neighbourhood of a state is formed
by the adjacent states in a 8-connected (x, y) grid, with the
same heading, linear and angular velocity.

In each iteration, the lowest priority query is popped and it
is solved by A*; if its trim ratio is lower that the threshold
trim, its neighbourhood is added to the query list. The process
stops when there are not more queries below the threshold
trim level in the HORIZON list.

V. MOTION PRIMITIVES

The primitive trajectories that determine the lattice connec-
tivity are calculated exploring the reachability of all the states
in the lattice into a given levels of neighbourhood [1].

Efficient representation of the trajectories allows to improve
the flexibility while minimizing the number of parameters. A
reduced number of parameters makes simpler the generation
of the primitives. A trajectory can be defined with its linear
and angular velocity profiles.

1) Linear Profiles: for most cases, defining the linear
velocity with a trapezoidal shape is enough to ensure a good
connectivity between states. Each profile is defined by a set
of parameters:

pv = [v0, a0, vt, vf , af , t] (4)

Fig. 3. Trapezoidal control profile.

where v0 and a0 are the initial speed and acceleration, vt the
traverse velocity, vf and af the final speed and acceleration,
and t the duration. As the initial and final accelerations are free
parameters, sharper or smoother controls can be represented
(Fig. 3).

2) Angular Profiles: The shape of the motion primitives
depends largely on the flexibility allowed on angular velocity.
The more the flexibility in the profiles, the greater the connec-
tivity between states. As the number of parameters influences
in the complexity of the construction of the canonical control

220

set, it is desirable to minimize the number of parameters,
keeping the flexibility in the shape of the motion primitives. A
highly efficient representation of the angular velocity control
is a polynomial function (figure 4).

Fig. 4. Example of angular profile

This function can also be substituted by a spline, where the
known parameters are the knot points (ω1, ω2, ω3, ...), and
the unknown values are obtained by spline interpolation. One
of the benefits of using a spline function instead polynomials
is that the knot points have roughly equal scale, unlike the
polynomial coefficients, which is more desirable to execute
numerical optimization methods over the parameters that rep-
resents the profile. The knot points are equally spaced, so the
only additional parameter is the duration of the profile (t):

pω = [ω0, ω1, ..., ωf , t] (5)

A. Motion primitives generation

The motion primitives generator was implemented with an
architecture that allows to separate the trajectory construction,
the motion prediction and the simulation of the robot motion
model (figure 5). Given the initial and final robot states to be
connected, and the parametrization of the control profiles, the
algorithm finds the set of optimal control orders that connects
them, if it exists.

Fig. 5. The method to generate the motion primitives separates the numerical
method used to optimize the trajectories, the motion equations of the vehicle
and the motion model. This allows to use the same algorithm to generate
motions for different vehicles.

The generation of the trajectories is based on the Newton-
Raphson numerical optimization method [17]. The algorithm
modifies iteratively a vector with the parameters of the control
profiles, p = [pv, pω], until the final state of the simulated
trajectory, s(tf), satisfies the constraint equations, C(s).

A pair of vectors is formed with the information of the
initial and final states of the trajectory to find:

s0 = [x0, y0, θ0, v0, ω0] (6)

sf = [xf , yf , θf , vv, ωf] (7)

As the stop condition of the algorithm is that the final state
of the simulated trajectory and the desired final state are equal,
the following constraint equations are used:

C(s(tf)) =




xf − x(tf)
yf − y(tf)
θf − θ(tf)
vf − v(tf)
ωf − ω(tf)




= 0 (8)

To apply the Newton-Raphson method it is necessary to
define the Jacobian matrix that contains the information of how
the variables included in the robot state change with respect
to every parameter used as input.

In many cases, as this, it is not possible to obtain the
Jacobian matrix (J) in analytic form from the equations of
motion, and it is necessary to estimate it numerically. The
partial derivatives were obtained using the central difference
linearization.

Ji,j =
∂∆si(p)

∂pj
=
si(pj + e, p)− si(pj − e, p)

2e
(9)

Following the Newton-Raphson method, the Jacobian is
inverted in order to find a correction in the parameter vector,
p, that minimizes the constraint error, ∆sf (p).

∆p = −
[
∂∆sf (p)

∂p

]−1

∆sf (p) (10)

The correction magnitude of the parameter vector is lin-
early dependent with the error magnitude. It assures a fast
convergence of the method in the first iterations, and a finer
correction of the parameters when they are closer to the
solution.

B. Motion model

The equations that define the motion model are not com-
pletely accurate, since they do not take into consideration
physical events as the inertia. When estimating future states of
the vehicle in a real problem, inertia plays an important role
in the difference between the theoretical path and the real one.

Improving the ability to predict future states produces
important benefits in motion planning. Using the acceleration
model of the vehicle [18] gets a more realistic state transition
cost when the vehicle must operate with control orders formed
by different velocity profiles.

The acceleration in consecutive time steps can be expressed
as:

av,t = β1vt + β2uv,t + β3 (11)

aω,t = γ1ωt + γ2uω,t + γ3 (12)

where β and γ are parameters of the vehicle acceleration
model and uv,t and uω,t are the control order at time t.
Finding the parameters that minimize the squared difference

221

between the two sides of Eqs. 11 and 12 minimizes the one
step prediction error.

Extending the expressions in Eqs. 11 and 12 to the h
previous time steps, the acceleration model considers the in-
formation about the robot state between t−h and t to calculate
its prediction. As the intermediate states used by the model to
have a prediction depends on the model parameter themselves,
the update equations become non linear. An approximation is
done in this point obviating this dependence to have a linear
model.

The algorithm used to find the parameters of the motion
model is an iterative process that uses the one step simulation
to generate the intermediate accelerations between t and
t + h, followed by a least squares solving step to update
the parameters values. The complete process is detailed in
Algorithm 1.

Algorithm 1 Acceleration model learning
1: obtain initial B and Γ minimizing with least squares the

one-step acceleration prediction error
2: while |Bi+1 −Bi| > ε or |Γi+1 − Γi| > ε do
3: for all actual states in t = 1...T obtain with the current

model the simulated ones v̂t+h|t in h = 1...H
4: minimize by least squares the h-step acceleration pre-

diction error to obtain B̄ and Γ̄:

arg minB

T−H∑

t=1

H∑

h=1

‖
h−1∑

τ=0

(av,t+τ−(β1v̂t+τ|t+β2uv,t+τ)+β3)‖2

arg minΓ

T−H∑

t=1

H∑

h=1

‖
h−1∑

τ=0

(aω,t+τ−(γ1v̂t+τ|t+γ2uω,t+τ)+γ3)‖2

5: update the model parameters:
Bi+1 = (1− α)Bi + αB̄

Γi+1 = (1− α)Γi + αΓ̄

6: end while

B and Γ vectors of the parameters β and γ, while α defines
the update rate of the parameters between iterations.

VI. EXPERIMENTAL RESULTS

The motion planner has been tested in indoor environments
with several space configurations of different complexity on a
Pioneer P3-DX robot. The planner begins its exploration from
the selected goal poses and generates the optimal solution that
consists in the set of control orders to drive it to the goal.

The lattice was built with the following resolution criteria:
robot states are arranged in a rectangular grid with resolution
of 0.5 m in both x and y coordinates. The vehicle heading
is discretized with the orientation values of the neighbours
of a 16-connected grid. Three values for linear velocity were
selected: 0 m/s, to allow spin motions, 0.2 m/s for complex
maneuvers in a complex obstacle configuration, and 0.5 m/s
as the maximum traverse velocity.

The map is updated several times per second, introducing
new information received by the sensors into the existing one.
When the occupancy grid map changes, the new information
is used to update the relations affected, and the planner is able
to replan the solution iteratively. The backwards exploration
minimizes the number of nodes affected by a change in the

surrounding environment of the vehicle, avoiding updating the
cost for nodes closer to the goal.

The canonical control set was built using the neighbourhood
distances 0, 1, 4 and 8. This allows the vehicle to turn on the
spot and, also long motions up to 4 m long. To minimize the
number of trajectories included in the canonical control set, the
turning angle between neighbours was limited to ±π/2 rad for
states with neighbourhood level greater than 0. In all cases the
angular speed at the beginning and the ending of the trajectory
is limited to be 0 rad/s. A graphical representation of the
motion primitives used in the experiments is shown in Fig. 6.

As the size of the primitive motion set directly influences
the real-time response of the planner, it is necessary to reduce
the number of motions by eliminating the redundant ones. To
achieve this, the canonical control set is filtered by removing
all the trajectories that can be obtained as a combination
of other simpler ones. In complex motion models with a
large neighbourhood, the reduction can be quite significant,
while keeping all representative motions between states. In
the motion primitives in the experiments, this process saves
up to the 9.5% of its size, as shown in table I.

TABLE I
MOTION PRIMITIVES SET SIZE

Level Generated After filtering
0 160 160
1 224 208
4 144 144
8 144 96
Total 672 608

After the obtention of the motion primitives set, the HLUT
is generated to store the representative FSH values. The Dijk-
stra construction step is limited by cost. For this motion model,
it is reasonable to initially populate the HLUT with only those
states reachable at a maximum cost of 25. The HORIZON step
continues filling the HLUT with nodes whose trim ratio is
lower than 0.8. This ensures a smooth transition between the
FSH between HLUT and the backup heuristic. The obtained
HLUT is populated with 1,136,997 entries. Symmetries of the

Fig. 6. Lattice control set used in the experiments for the states in the
neighbourhood levels: 0, 1, 4 and 8.

222

Fig. 7. Spatial representation of the information in the HLUT (gray), and
subset really stored (black) for a trim ratio of 0.8.

motion model of the vehicle (Fig. 8) are considered to avoid
filling the table with redundant information. This optimization
is important to save computation time in the construction of
the HLUT, and to reduce the number of entries stored. The
information included in the HLUT is visually depicted in Fig.
7. The black dots are the entries stored in HLUT, and the
gray ones represent all the states that are really represented
in the HLUT through transformations of the HLUT entries
(symmetric transformations, Fig. 8).

Fig. 8. Symmetries taken into account in the motion model.

The planner is typically able to update the solution fast
enough to guarantee that the solution executed by the con-
troller is updated considering the last information of the
map. As the vehicle is moving the environment information
is updated, and the planner changes the solution previously
calculated adapting it to the new situation. The execution time
for the calculation of the first solution depends on the sub-
optimality level chosen, the complexity of the configuration
space, and the length of the path. Fig. 9 shows two motion
planning examples for different suboptimal bound values (ε).

The results of each of them are described in table II. We
include the level of suboptimality (ε = 1 means optimal
path), the time spent for planning, the number of nodes that
were expanded, the time to traverse the corresponding path
(cost), and the obtained path length. For the first example,
the planning time is quite short, and it can be seen that
refinement of the trajectory (for decreasing values of ε) slightly
improves the obtained path. Also, the final path is longer
than the previous one, but the cost (time to traverse it) was
slightly better. The second example is a really complex motion
planning problem. However, the algorithm obtained a first
solution in 1.7 s. At that time the robot could start to move

(a) Different suboptimal bounded paths: optimal path
(black), 1.25 (grey), 1.5 (light grey) and 2 (dashed)

(b) A complex and optimal path (ε = 1).

Fig. 9. Examples of initial solutions obtained by the planner.

(a) Initial path.

(b) Path replan (dashed) when a closed door locks
the initial path (black).

Fig. 10. Replanning ability when a new obstacle appears on the planned
trajectory.

223

TABLE II
EXECUTION DETAILS OF THE EXPERIMENTS

Problem Execution details Solution
ε Time (ms) Expansions Time (s) Length (m)

Fig. 9(a)

1.00 1,538 372 29.88 14.96
1.25 628 110 30.38 14.50
1.50 480 46 31.23 14.39
2.00 271 21 32.35 15.67

Fig. 9(b)

1.00 11,071 33,463 126.64 59.59
1.25 6,185 9,439 132.95 62.85
1.50 2,714 2,870 140.61 64.41
2.00 1,705 760 153.43 69.60

and, also, continues to improve the solution. The optimal path
required the expansion of many nodes, but it was obtained
in a reasonable time. The resulting trajectory has a length of
around 60 m and the robot needed around 127 s to traverse
it.

The time spent for replanning depends on the number of
changes in the environment and, also, if they are important
for the current trajectory. Fig. 10 shows how the algorithm
replans when a new obstacle suddenly appears in the trajectory.
The time for replanning in this example is also shown in Fig.
11. This Fig. represents the relevancy of the changes in the
map and the corresponding replanning times. Relevancy is
calculated summing the proximity of all changed relations to
the solution and normalizing the obtained values. The algo-
rithm needs approximately 0.5 s to get the new optimal path
(suboptimal paths are obtained faster). The other replanning
actions are due to discrepancies between the previous map and
the new sensor readings, and are solved very fast.

Fig. 11. Replanning times depending on the relevancy of the environment
changes for situation in Fig. 10(b).

VII. CONCLUSIONS

An approach to solve the motion planning problem using a
discrete and regular representation of the search space (state
lattice) has been presented. The AD* algorithm was selected
to implement the search, in order to exploit its anytime and
replanning characteristics. Moreover, the planning algorithm
takes into account the kinematic restrictions of the robot, as
the motion primitives are the arcs of the graph. These motion
primitives were obtained through a learning process of the

motion model and the optimization of the control profiles.
Results on a Pioneer P3-DX have shown the ability of the
planner to get trajectories in very complex environments,
obtaining a first solution very fast and, then, refining the path
until the optimal solution is returned. Moreover, the replanning
times let the robot to obtain new collision-free trajectories
in real time when new obstacles appeared in the original
trajectory.

VIII. ACKNOWLEDGEMENTS

This work was supported by the Spanish Ministry of Econ-
omy and Competitiveness under grants TIN2011-22935 and
TIN2011-29827-C02-02. Adrian González-Sieira is partially
supported by the Provincial Council of A Coruña. Manuel
Mucientes is supported by the Ramón y Cajal program of the
Spanish Ministry of Economy and Competitiveness.

REFERENCES

[1] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially Constrained
Mobile Robot Motion Planning in State Lattices,” Journal of Field
Robotics, vol. 26, no. 3, pp. 308–333, 2009.

[2] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun, “Any-
time dynamic A*: An anytime, replanning algorithm,” in Proceedings
of the International Conference on Automated Planning and Scheduling
(ICAPS), 2005, pp. 262–271.

[3] S. LaValle, Planning algorithms. Cambridge Univ Pr, 2006.
[4] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile

robots,” The international journal of robotics research, vol. 5, no. 1, pp.
90–98, 1986.

[5] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential
field techniques for robot path planning,” IEEE Transactions on Systems,
Man and Cybernetics, vol. 22, no. 2, pp. 224 –241, 1992.

[6] R. Simmons, “The curvature-velocity method for local obstacle avoid-
ance,” in IEEE International Conference on Robotics and Automation.
Proceedings., vol. 4, 1996, pp. 3375 –3382 vol.4.

[7] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics Automation Magazine, vol. 4, no. 1,
pp. 23 –33, 1997.

[8] O. Brock and O. Khatib, “High-speed navigation using the global dy-
namic window approach,” in IEEE International Conference on Robotics
and Automation. Proceedings., vol. 1, 1999, pp. 341 –346 vol.1.

[9] R. Philippsen and R. Siegwart, “Smooth and efficient obstacle avoidance
for a tour guide robot,” in IEEE international conference on robotics and
automation, vol. 1. Citeseer, 2003, pp. 446–451.

[10] C. Stachniss and W. Burgard, “An integrated approach to goal-directed
obstacle avoidance under dynamic constraints for dynamic environ-
ments,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems, vol. 1, 2002, pp. 508 – 513 vol.1.

[11] C. Urmson, C. Ragusa, D. Ray, J. Anhalt, D. Bartz, T. Galatali,
A. Gutierrez, J. Johnston, S. Harbaugh, W. Messner et al., “A robust
approach to high-speed navigation for unrehearsed desert terrain,” Jour-
nal of Field Robotics, vol. 23, no. 8, pp. 467–508, 2006.

[12] S. LaValle and J. Kuffner, “Rapidly-exploring random trees: Progress
and prospects,” 2000.

[13] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* with
provable bounds on sub-optimality,” Advances in Neural Information
Processing Systems (NIPS), vol. 16, 2003.

[14] D. Ferguson and M. Likhachev, “Efficiently using cost maps for planning
complex maneuvers,” Lab Papers (GRASP), p. 20, 2008.

[15] M. Likhachev and D. Ferguson, “Planning Long Dynamically Feasible
Maneuvers for Autonomous Vehicles,” The International Journal of
Robotics Research, vol. 28, no. 8, pp. 933–945, 2009.

[16] R. Knepper and A. Kelly, “High Performance State Lattice Planning
Using Heuristic Look-Up Tables,” IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 3375–3380, 2006.

[17] T. M. Howard and a. Kelly, “Optimal Rough Terrain Trajectory Genera-
tion for Wheeled Mobile Robots,” The International Journal of Robotics
Research, vol. 26, no. 2, pp. 141–166, 2007.

[18] P. Abbeel, “Apprenticeship Learning and Reinforcement Learning with
Application to Robotic Control,” Ph.D. dissertation, 2008.

224

