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Abstract

Few-shot object detection involves adapting an existing detector to a set of unseen categories with few annotated examples. This
data limitation makes these methods to underperform those trained on large labeled datasets. In many scenarios, there is a high
amount of unlabeled data that is never exploited. Thus, we propose to xPAND the initial novel set by mining pseudo-labels. From
a raw set of detections, xPAND obtains reliable pseudo-labels suitable for training any detector. To this end, we propose two new
modules: Class and Box confirmation. Class Confirmation aims to remove misclassified pseudo-labels by comparing candidates
with expected class prototypes. Box Confirmation estimates IoU to discard inadequately framed objects. Experimental results
demonstrate that xPAND enhances the performance of multiple detectors up to +5.9 nAP and +16.4 nAP50 points for MS-COCO
and PASCAL VOC, respectively, establishing a new state of the art. Code: https://github.com/PAGF188/xPAND.
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1. Introduction

Object detection involves the process of identifying the class
and position of all objects of interest that might appear in an
image. In the last years, great success has been achieved in
this field by training models with large databases of human-
annotated labels [1, 2, 3]. However, the need to annotate large
amounts of data limits the applicability of such object detectors
in many real scenarios, as their performance drops significantly
when data is limited. In response to this challenge, the emerg-
ing field of few-shot learning has gained prominence.

Few-shot learning techniques aim to extract general knowl-
edge from large collections of base data and adapt quickly to
limited novel data. Image classification with few-shot tech-
niques has been widely studied as the first attempt to apply few-
shot methods in computer vision [4, 5, 6, 7, 8]. Recently, the
problem of few-shot object detection (FSOD) has attracted sig-
nificant attention in order to replicate the success achieved in
the field of image classification.

Nonetheless, the severe scarcity of labeled data for novel
classes hinders the performance compared to approaches
trained on large datasets.

The inclusion of unlabeled data for novel categories, which
tends to be abundant in many scenarios, might mitigate this data
scarcity. This approach has the potential to improve the detec-
tion precision at no additional annotation cost. The integration
of unlabeled data has been extensively studied in the field of
Semi-Supervised Object Detection (SSOD), and has recently
begun to be explored within the few-shot paradigm [9]. While
the objective in both cases is to increase the number of labeled
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Figure 1: xPAND can be combined with any type of detector, either few-shot
or standard, significantly improving the precision of the novel categories (nAP)
in few-shot scenarios by exploiting the unlabeled data. Results show the nAP
of five detectors, and the increase in nAP after applying xPAND with those
detectors on the MS-COCO dataset for 10- and 30-shots.

samples through pseudo-label mining, the availability of abun-
dant annotations for base categories is a key difference. SSOD
methods aim to train an object detector from scratch on par-
tially annotated datasets without any large fully annotated base
training set. In contrast, FSOD approaches seek to adapt gen-
eral knowledge extracted from this base set to new categories.
In this paper, we propose to xPAND the initial novel set by
mining pseudo-labels. Thus we propose a pseudo-label mining
pipeline for FSOD that can be combined both with few-shot
and standard object detectors. Fig. 1 shows that xPAND con-
sistently increases the average precision on the novel categories
(nAP) —those with very few annotations— for several object
detectors on different shot sizes.

The standard pseudo-labeling procedure consists of: (i) using
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Figure 2: nAP for DeFRCN [10] with different pseudo-labeling techniques on
MS-COCO 10-shot dataset. In red oracle results. (i) Base, DeFRCN [10] with-
out pseudo-labeling; (ii) xPAND, DeFRCN+xPAND; (iii) high-confidence or-
acle and (iv) mid-confidence oracle, DeFRCN improved by filtering detections
with confidence thresholds of 0.9 and 0.5, respectively, and removing those with
an IoU less than 0.7 with ground truth. While confidence-based pseudo-labeling
limits dataset diversity, xPAND enhances diversity and effectively filters noisy
pseudo-labels, narrowing the gap to the best oracle results.

a detector, trained on a small labeled dataset, to generate an
initial set of pseudo-labels from the unlabeled data; (ii) filtering
these pseudo-labels; and (iii) retraining the detector with both
the original labeled data and the filtered pseudo-labels.

The mined pseudo-labels are, however, biased by the de-
tector, i.e., those objects similar to the initial labeled data are
typically detected more accurately and with higher confidence,
while those dissimilar have a higher probability of being over-
looked. This could limit the variability of the training set, re-
ducing the improvement of the final detector.

Most methods based on pseudo-label mining heavily rely on
the detection confidence to include high-quality pseudo-labels
in the training set, neglecting the influence of the detector bias.
Fig. 2 shows the effect of this bias when retraining a few-shot
object detector. Selecting with an oracle high-confidence detec-
tions as pseudo-labels causes a performance drop of -0.9 points
in nAP, while selecting the same number of mid-confidence de-
tections with the oracle, improves nAP +4.7 points. This ob-
servation effectively justifies our hypothesis that detection con-
fidence is not a reliable estimator of pseudo-label quality.

Ideally, we would like to set the confidence threshold as low
as possible to increase diversity. However, this introduces more
noisy pseudo-labels to the initial set, requiring a strong filter-
ing pipeline to remove them. Following this idea, xPAND starts
with a set of unreliable pseudo-labels and enhances them by au-
tomatically filtering out those with incorrect class labels and/or
inaccurately framed bounding boxes. The high diversity of the
pseudo-labels selected by xPAND, together with its ability to
filter noisy pseudo-labels, boosts the performance of the detec-
tor —+2.3 points in nAP for the example shown in Fig. 2.

To summarize, our contributions are as follows:

• We propose xPAND, a pseudo-label mining pipeline for
FSOD that allows the extraction of high-quality and di-
verse pseudo-labels from a set of raw candidates obtained
with any detector. The diversity of the mined pseudo-
labels, and the robust filtering capabilities of our pipeline,
enhances the performance of the detector, effectively ad-

dressing the inherent limitations of few-shot scenarios.

• A Class Confirmation module, built as a few-shot classifier
on the meta-learning approach through contrastive learn-
ing. It eliminates misclassified pseudo-labels by compar-
ing them with the prototype of their expected class.

• A Box Confirmation module, constructed as an Intersec-
tion over Union (IoU) estimator, which filters out incor-
rectly framed pseudo-labels.

• An extensive experimentation on MS-COCO and PAS-
CAL VOC datasets using five different baseline detectors.
Results show that xPAND sets a new state of the art for
both MS-COCO and PASCAL VOC.

2. Related Work

Two popular approaches to learn an object detector with few
annotated instances are FSOD and SSOD. In FSOD, abundant
annotations for a set of base categories are available, while an-
notated data for novel categories is scarce. The objective of
FSOD is to detect objects of novel categories by leveraging
knowledge extracted from base categories. A related problem
is Generalized FSOD, in which the performance of the final de-
tector in base categories is also relevant. SSOD aims to exploit
large amounts of unlabeled data without defining a base fully
annotated training set. Our proposal is framed into FSOD, al-
though it takes inspiration from SSOD.

Most common SSOD strategies to improve the performance
are consistency regularization and pseudo-labeling. Consis-
tency regularization forces the method to generate the same
prediction under different transformations, like data augmen-
tation, while pseudo-labeling exploits the unlabeled data to
automatically generate new pseudo-labels. Most SSOD are
based on a teacher-student architecture for knowledge distilla-
tion. Unbiased Teacher [11] focuses on solving class imbalance
for exploiting pseudo-labeling. This is improved in Unbiased
Teacher v2 [12] by introducing a regression loss for the pseudo-
labels. In [13] they also follow a teacher-student framework but
adapted to one-stage detectors. Finally, [14] adapts the teacher-
student architecture to the DETR-based framework [15].

FSOD is usually solved following two paradigms: meta-
learning and fine-tuning. Meta-learning approaches [16, 17, 18,
19, 20, 21] focus on learning a distance metric in which classifi-
cation is performed by comparing an annotated support set with
a query image. Fine-tuning-based methods [10, 22, 23, 24, 25],
approach the problem as a transfer learning scenario, where
a model is learned from base categories and adapted to novel
categories by fine-tuning. TFA [22] pioneered the two-phase
fine-tuning approach by adapting the final layers of the base
model on few examples of novel classes. DeFRCN [10] modi-
fies the Faster R-CNN framework by introducing two key com-
ponents: a Gradient Decoupled Layer, which adjusts gradient
scaling during the backward process, and a Prototypical Cali-
bration Block, aimed at tuning the confidence scores for classi-
fication. D&R [26] refines DeFRCN via knowledge distillation.
Leveraging CLIP [27] —–a multi-modal large-scale pre-trained
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Figure 3: Main stages of xPAND. The resulting set of pseudo-labels P f inal (green boxes) expands the initial training set, boosting the detector performance.
Discarded pseudo-labels Pdisc (red boxes) are ignored in the retraining of the detector. The total number of pseudo-labels and the good pseudo-labels (TP) —
according to ground truth, correctly classified and with IoU > 0.5— are shown for each stage. The box plots show the IOU between pseudo-labels and ground truth.
Data from imTED+xPAND on MS-COCO 10-shot.

model—–, it introduces a new branch in the FSOD approach to
extract text embedding representations of the categories. These
text embeddings are aligned with the original visual features to
guide the learning process towards a general and valuable se-
mantic knowledge.

Self-supervised learning has improved object detection by
pretraining with large unlabeled datasets. This is the case of
imTED [23], which leverages a fully pretrained feature extrac-
tion path. MAE [28] is a masked autoencoder that learns to re-
construct the original image given its partial observation. DINO
[29] uses a self-distillation process in which a teacher-student
architecture learns to relate two slightly modified views of the
same image. Both our Class and Box Confirmation modules
are built on vision transformers (ViT) [30] pre-trained through
self-supervision, trained on the base set, and fine-tuned on the
novel set.

Another way to exploit unlabeled data in a few-shot frame-
work is pseudo-labeling, which is inspired by semi-supervised
learning. The idea is to expand the initial novel training set
by adding pseudo-labels from unlabeled objects of novel cat-
egories to boost the performance of the detector. LVC [9] is
the most representative work in this line. It defines a new cus-
tomized detector to acquire candidate pseudo-labels. Then, the
candidates with incorrect class labels are filtered out with a kNN
classifier that uses features from a self-supervised ViT model.
Finally, the bounding boxes are refined with a cascade of three
class-agnostic regressors.

xPAND differs significantly from previous pseudo-labeling
methods for FSOD and SSOD in two key ways. First, xPAND
features plug-and-play adaptability, meaning it can be seam-
lessly integrated with any detector, whether standard or few-
shot, whereas state-of-the-art methods often require specific de-
tectors. Second, xPAND operates with a more diverse yet noisy
pseudo-label set due to its reduced threshold for initial filter-
ing. The Class and Box Confirmation modules effectively filter
out noisy pseudo-labels, resulting in a final set of high-quality,
diverse labels. This approach contrasts with traditional Semi-
Supervised Object Detection (SSOD) methods, which typically
rely on higher filtering thresholds and have less flexibility in
detector choice.

3. FSOD with pseudo-label mining

3.1. Problem Definition
The standard configuration of the few-shot object detection

problem [22, 20] consists of an image dataset, D, with two
sets of annotations, Ybase and YK

novel, where each annotation
yi = (ci, bi) ∈ Ybase ∪ Ynovel is defined by its category ci and
its bounding box bi. Ybase is composed of exhaustively anno-
tated instances of base classes, Cbase, while YK

novel consist of
only K annotated instances per category, being Cnovel the set
of novel classes. Cbase and Cnovel are non-overlapping groups,
i.e. Cbase ∩ Cnovel = ∅, and K must be a small number —usually
between 1 and 30. Objects of novel categories are not exhaus-
tively annotated, so it is usual that in D there is a set of unla-
beled objects belonging to ci ∈ Cnovel. xPAND exploits this set
of unlabeled objects with a pseudo-label mining pipeline to ex-
pand the novel dataset with high-quality pseudo-labels, so that
the final detector can be trained on the novel categories with a
larger amount of instances, boosting its performance.

3.2. xPAND
Fig. 3 shows the xPAND pipeline. First, a detector —xPAND

is not tied to any particular detector— trained on Ybase ∪Ynovel

is executed onD to generate the initial pseudo-label set. Many
of these initial pseudo-labels have wrong categories and/or
are poorly framed, especially those with mid-confidence val-
ues which are the ones that most improve the diversity of the
pseudo-label set. Therefore, including those pseudo-labels di-
rectly in the training set of the final detector would hinder the
learning process.

In the first stage, Initial Filtering applies Non-maximum
Suppression (NMS) and a confidence threshold τ to remove
very low-quality pseudo-labels. Previous pseudo-labeling
methods rely on the detection score as the primary filtering cri-
teria to discard most of the initial pseudo-labels. Although this
ensures that only high-quality detections are considered after
a simple initial filtering step, this metric might be heavily in-
fluenced by the detector bias. xPAND minimizes that by im-
posing a mid-confidence threshold τ, allowing a wide range of
detections to be selected as pseudo-label candidates, thus sig-
nificantly increasing the diversity of the pseudo-label set and
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improving the accuracy of the detector once the noisy pseudo-
labels are filtered out in the next stages.

The second stage is Class Confirmation (Section 3.2.1),
which consists of a meta-classifier with a DINO-pre-trained
[29] ViT [30] as a feature extractor. It aims to exclude misclas-
sified pseudo-labels by comparing the detection with the proto-
type of the predicted class. If both match, the pseudo-label is
preserved. To ensure optimal discrimination performance, the
training process follows a two-stage contrastive learning strat-
egy. First, we leverage general knowledge from base categories,
and then the model is fine-tuned on novel categories.

The next stage consists of a Box Confirmation module (Sec-
tion 3.2.2), that aims to remove localization errors in the
pseudo-label set. This component evaluates the localization ac-
curacy by estimating the overlap between the pseudo-label can-
didate and the actual object. It also follows a two-stage fine-
tuning learning approach leveraging a MAE-pre-trained [28]
feature extractor. Pseudo-labels with a low estimated over-
lap are discarded. Fig. 3 shows how, after Box Confirmation,
the distribution of pseudo-labels shifts towards higher overlaps
with the ground truth, caused by the elimination of many poorly
framed boxes.

The pseudo-label set resulting from the previous filtering
stages is prone to a high class imbalance, mainly due to the ini-
tial detector bias. To address this, we set a maximum imbalance
factor. Let |Pci | be the number of pseudo-labels for category ci,
then the maximum number of pseudo-labels that are randomly
selected for each category is λ |Pcmin |, being cmin the category
with the lowest number of pseudo-labels.

The output of the pipeline is a set of final pseudo-labels
P f inal, and a set of discarded object annotations Pdisc. Pdisc

includes all the annotations discarded by xPAND throughout
its different stages. During the final end-to-end training, the
detector is provided with Ybase ∪ Y

K
novel ∪ P f inal, but also with

Pdisc. Pdisc allows the detector to ignore image regions that
may potentially contain objects. These ignored regions are
neither background nor high-quality pseudo-labels, i.e., RPN-
generated proposals that overlap with them are not taken into
account for loss computation.

To capitalize that the detector obtained through xPAND
surpasses the base-detector performance, xPAND executes its
pipeline iteratively. The pseudo-label set of the iteration j is
generated with the detector obtained at the end of iteration j−1.
The stopping criterion is:

median
ci∈Cnovel

P j+1
f inal(ci)

P
j
f inal(ci)

 < χ, (1)

so that xPAND stops in a given iteration j when the median
increment in the number of pseudo-labels for each category is
lower than a threshold χ.

3.2.1. Class Confirmation
The Class Confirmation module determines whether to dis-

card or retain pseudo-labels based on their similarity to their
corresponding class prototypes. It is designed as a few-shot
classifier built on the meta-learning approach, which learns a

Figure 4: Class Confirmation architecture. The upper branch receives the ob-
ject query to be confirmed (q). The middle and lower branches receive sets
of positive (Mpos) and negative (Mneg) ground-truth objects. Triplet loss Ltri
forces highly discriminative representations between the objects embeddings,
eq, epos, eneg. Lce is cross entropy. Numbers represent the size of the tensors

distance metric that can accurately determine the similarity be-
tween objects.

Fig. 4 shows the proposed architecture. Following a con-
trastive learning setting, it is composed of three branches. The
upper branch receives as input an object query (q) whose label
has to be confirmed. The middle and lower branches are given
the sets of ground-truth objects (Mpos) and (Mneg), respectively,
expected to belong to and not to belong to the query class (c).

The backbone ϕ processes q, mpos ∈ Mpos and mneg ∈ Mneg

to extract their corresponding feature maps. To build it, we
leverage recent advancements in self-supervised learning. Self-
supervised models, trained on extensive unlabeled data, can
learn general features that are useful for a variety of tasks.
DINO [29] has proven effective for pre-training visual trans-
formers and extracting classification-ready features. Conse-
quently, we adopt the output CLS token of a DINO-pre-trained
ViT [30] as the object embedding.

As Mpos and Mneg contain multiple support objects of the pos-
itive and negative categories, the prototype feature map is cre-
ated by averaging the features for each object in the support
set:

ψ(M) =
1
|M|

∑
m∈M

ϕ(m), (2)

where M ∈ {Mpos,Mneg}. The feature maps ϕ(q), ψ(Mpos) and
ψ(Mneg) are fed into a shared fully connected layer to obtain eq,
epos and eneg. Finally, eq is concatenated with epos and eneg gen-
erating positive and negative feature vectors that are passed to
two fully connected layers. The final layer determines whether
both elements belong to the same category.
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The training of the Class Confirmation module follows a
two-stage fine-tuning strategy. In the initial phase, the model
is trained with samples of base classes, where the query and
support samples come from Ybase. In the second phase, a fine-
tuning on Ynovel is performed to boost the performance on the
novel classes. In both phases, training uses triplets (q, Mpos and
Mneg).

To optimize the model, we define a multi-task loss function
composed of a cross-entropy loss and a triplet loss. The cross-
entropy loss is computed with the logits of each of the two
classes. For a batch, it is formulated as follows:

Lce(X,Y) =
1
n

n∑
i=1

2∑
t=1

−Yi,t log
exp(Xi,t)∑2

j=1 exp(Xi, j)
, (3)

where n is the number of examples in the batch, X are the log-
its, and Y follows a one-hot encoding —indicates whether the
query and the support belong to the same category.

Although cross-entropy is well-suited for classification tasks,
we aim to construct a discriminative feature space enabling the
differentiation of object pairs based on their similarity. To im-
prove learning, we integrate a triplet loss [31] into our frame-
work, encouraging the model to generate highly discriminative
feature representations:

Ltri(Q, P,N) =
1
n

n∑
i=1

max{d(ei
q, e

i
pos) − d(ei

q, e
i
neg) + δ, 0} (4)

where n is the number of examples in the batch, (ei
q ∈ Q, ei

pos ∈

P, ei
neg ∈ N) is the triplet formed by the query, positive and

negative feature vectors, δ is the margin, and d is the Euclidean
distance.

The final loss function is Lclass = Lce(X,Y) + Ltri(Q, P,N),
which is crucial not only for constructing an effective classi-
fier but also for creating a feature space that enhances intra-
class similarities while accentuating inter-class dissimilarities.
During inference, the negative branch is deleted, and the Class
Confirmation module receives a pseudo-label to be confirmed
and a set of support objects of the expected category. Those
pseudo-labels that are not confirmed are filtered out.

3.2.2. Box Confirmation
The Box Confirmation module is an IoU estimator. It aims

to predict the expected IoU between a pseudo-label bounding
box and the ground truth. Fig. 5 shows the proposed architec-
ture. It receives as input an image containing a pseudo-label.
Similar to the Class Confirmation module, we also harness the
benefits of unsupervised pretraining on pretext tasks to establish
the backbone. MAE [28] pretraining method involves masking
random patches of an input image, and training the model to
reconstruct the missing pixels. This task aligns with our objec-
tive of estimating the IoU for objects. Specifically, pixel recon-
struction helps the model in learning not only to identify object
locations within an image, but also to discern the presence —or
absence— of parts of objects. Therefore, the Box Confirma-
tion backbone is implemented as a MAE-pretrained ViT [28],
generating high-quality features for object localization.

Figure 5: Box Confirmation architecture. The input is an image with a pseudo-
label. After multi-scale feature extraction, ROI Align object features are passed
through a regression header with a sigmoid function to estimate the expected
IoU. Numbers represent the size of the tensors.

As in previous work on object detection with plain non-
hierarchical vision transformers [2], we apply a set of decon-
volution layers to generate a multiple-level feature map that
enables multi-scale object localization. Then, the specific fea-
tures of the candidate pseudo-label are obtained through the
ROI Align method [32]. These features are fed to a regres-
sion header, comprising four convolutional layers and two fully
connected layers. The final fully connected layer has a single
output neuron with a sigmoid activation function. This config-
uration yields a continuous value within the range of 0 to 1,
serving as an estimator for the IoU. Pseudo-labels can be dis-
carded based on this value.

The training of the Box Confirmation module follows a two-
stage fine-tuning strategy. In the initial phase, the model is
trained with abundant samples of base classes. To generate the
training examples we use the base initial detector, performing
inference on Ybase and selecting a balanced set of detections
at different IoU thresholds. In the fine-tuning stage, due to the
scarcity of annotated data for novel classes, the training exam-
ples are generated from Ynovel by randomly applying offsets to
the few annotated objects in each of the four primary direc-
tions. From this set of randomly generated proposals we select,
as in the previous stage, an IoU-balanced set. In both stages,
the optimization is performed using a binary cross-entropy loss
function to measure the dissimilarity between the predicted IoU
and the actual value. The formulation of this loss function for a
batch is as follows:

L(U,V) =
1
n

n∑
i=1

−{Vi logUi + (1 − Vi) log(1 − Ui)}. (5)

where n is the batch size, U contains the predicted IoU for each
element in the batch, and V the actual IoU between the input
bounding box and the ground truth.

In inference, the Box Confirmation module receives both the
image and the pseudo-label bounding box. The pseudo-label is
discarded if the predicted IoU is lower than a specified thresh-
old (β).
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4. Experiments

4.1. Experimental Setup
We evaluate xPAND on both MS-COCO [33] and PASCAL

VOC 2007/12 [34] benchmark datasets. For a fair comparison
with previous works, we follow the two main evaluation pro-
tocols and data splits for FSOD: FSRW-like [20], i.e., a single
support set, and TFA-like [22] with 10 support sets for MS-
COCO and 5 supports sets for PASCAL VOC.

MS-COCO [33] has a total of 80 categories. In a few-shot
scenario [22, 10, 9], the 60 categories disjoint with PASCAL
VOC are the base classes, while the remaining 20 classes are the
novel classes. The number of instances per novel class —shot
size— is K ∈ {10, 30}. Following previous work in few-shot
object detection, we report the standard MS-COCO evaluation
metrics for novel categories: nAP (IoU = 0.5 : 0.95), nAP50
(IoU = 0.5) and nAP75 (IoU = 0.75)

PASCAL VOC 2007/12 [34] includes 20 object categories.
Based on previous papers [10, 35, 19], we use the combination
of trainval VOC07 and trainval VOC12 for training. VOC07
test set is used for evaluation. We use 3 rotating splits, each
containing 15 base classes and 5 novel classes. The shot size is
K ∈ {1, 2, 3, 5, 10}. Following standard experimentation proto-
cols, we report the mean Average Precision (mAP) —setting an
IoU threshold of 0.5.

To demonstrate xPAND’s effectiveness across different de-
tection frameworks, we integrated it with five distinct detec-
tors: TFA [22], DeFRCN [10], VitDet [2], D&R [26], and
imTED [23]. TFA and DeFRCN are CNN-based detectors that
adapt the original Faster R-CNN [1] to the few-shot problem.
D&R [26] extends DeFRCN to incorporate knowledge distilla-
tion from CLIP text category embeddings. VitDet and imTED
are ViT-based detectors, but only imTED has been specifically
designed for FSOD.

4.2. Implementation details
The Class Confirmation module uses as backbone a DINO-

self-supervised ViT-S/8 model pre-trained on ImageNet. We
keep its weights frozen. Input images are resized so that the
smallest dimension is no more than 1, 024, while always pre-
serving the original aspect ratio. We adopt Adam optimization
algorithm with a batch size of 24, β1 = 0.9, and β2 = 0.999.
On both base training and fine-tuning, the learning rate is set to
1 × 10−4 for the initial 5 epochs, and then reduced to 1 × 10−5

for the final 5 epochs, with a triplet loss margin δ = 1. In base
training, the support size is 10, while in fine-tuning, the support
size corresponds to the shot number K. In both phases, im-
ages are augmented with horizontal flipping and color jittering
—brightness 0.4, contrast 0.4, saturation 0.4, hue 0.2.

The Box Confirmation module uses as backbone a MAE-
self-supervised ViT-B model pre-trained on ImageNet. The
network is trained end-to-end using a batch size of 24 and the
AdamW [36] optimization algorithm with standard configura-
tion and weight decay 0.1. In base training, the learning rate is
set to 1×10−4 for 75 epochs. In the fine-tuning stage, the learn-
ing rate is reduced to 1 × 10−5 for 8 epochs. In both phases,
images are randomly resized so that the short edge is between

Configuration TFA DeFRCN VitDet D&R imTED AVG ∆nAP

Baseline 9.6 18.4 13.3 17.1 22.0 -

(1) N 6.5 13.5 8.4 11.7 14.3 -5.2
(2) F+S 10.9 19.4 16.9 17.2 26.3 +2.0
(3) F+C+S 11.3 19.6 18.2 17.5 27.4 +2.7
(4) F+B+S 11.4 20.1 17.2 17.8 26.0 +2.5
(5) F+C+B+S 11.6 20.5 18.7 18.6 27.5 +3.3

Table 1: Ablation study for MS-COCO 10-shot —FSRW-like experimentation
and a single iteration—: base detector trained with no pseudo-labels (baseline),
with all the initial pseudo-labels (N), and with the pseudo-labels from different
components of xPAND pipeline —Initial Filtering (F), Class Confirmation (C),
Box Confirmation (B) and balanced sampling (S). AVG ∆nAP is the average
variation across all detectors compared to the corresponding baseline.

Figure 6: Distribution of pseudo-labels before (left) and after (right) xPAND.
TP are pseudo-labels with correct category.

1,024 and 2,048. Then, a random crop of 1, 024 × 1, 024 pix-
els is performed as data augmentation. The minimum estimated
overlap with the actual object is set to β = 0.8.

We remove from the initial pseudo-label set those detections
with a confidence score lower than τ = 0.5. The maximum
imbalance factor λ for the final pseudo-label set is set to 10,
and the threshold for the stopping criterion is χ = 25%. In the
experiments, xPAND is always executed with the same hyper-
parameters for all the detectors, datasets and shot sizes.

4.3. Ablation Study

Table 1 shows the ablation study for the different components
of xPAND and the five selected base detectors. For (1), all de-
tections are selected as pseudo-labels to retrain the detector. A
significant performance drop can be observed in every detec-
tor, loosing 5.2 nAP points on average. This proves the need
for robust filtering approaches that limit the presence of inaccu-
rate pseudo-labels in the final training set. In (2), we apply the
Initial Filtering and the final sampling to reduce the class im-
balance, overcoming the baseline by 2.0 points on average. The
inclusion of the Class Confirmation (3) and Box Confirmation
(4) modules further improves the nAP with an average differ-
ence with the baseline of 2.7 and 2.5 nAP points respectively.
Finally, the execution of one iteration of all the components
defined in xPAND achieves a total improvement of 3.3 nAP
points. This proves that the Class Confirmation and Box Con-
firmation modules are complementary, and that they are able to
generate a high-quality pseudo-label set by filtering many of the
noisy pseudo-labels.
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CC BC nAP
DINO MAE MAE DINO

✓ ✓ 20.5
✓ ✓ 20.4

✓ ✓ 19.7
✓ ✓ 19.7

Table 2: Impact of DINO/MAE pre-trained ViT backbones on the Class Confir-
mation (CC) and Box Confirmation (BC) stages. DeFRCN [10] 10-shot FSRW-
like experimentation[20] on MS-COCO.
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τ
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P

Figure 7: Influence of confidence threshold τ. DeFRCN [10] 10-shot FSRW-
like [20] on MS-COCO.

Fig. 6 shows the distribution of pseudo-labels before and af-
ter applying xPAND. Those approaches that select only high-
confidence pseudo-labels build a more reliable training set, al-
though due to the bias of the initial detector, the diversity of
pseudo-labels is also low. We strive to recover as many mid-
confidence pseudo-labels as possible to reduce the aforemen-
tioned bias issue, setting a confidence threshold of τ = 0.5. The
counterpart is that mid-confidence detections introduce many
noisy and unreliable pseudo-labels that require a strong filter-
ing pipeline. As we apply xPAND, the number of pseudo-
labels significantly decreases but, also, the proportion of correct
pseudo-labels is notably higher, particularly for the lower confi-
dence cases. This enables our method to consider a wider range
of confidence scores without dramatically reducing the quality
of the training set.

Table 2 analyses the influence of various pre-trained ViT
backbones on the Class Confirmation and Box Confirmation
stages. It is clear that DINO performs slightly better than MAE
at the Class Confirmation stage (nAP 20.5 vs. 19.7), indicating
DINO’s advantage in obtaining classification-ready features. At
the Box Confirmation stage, the choice between DINO and
MAE has minimal effect, as both offer similar performance.

Fig. 7 shows the influence of the confidence threshold τ.
Within the broad range of 0.2 to 0.6, the value of τ has min-
imal impact, highlighting xPAND’s filtering capability. How-
ever, as the threshold increases and label diversity decreases,
performance drops because many good pseudo-labels are fil-
tered out, and those that remain reflect detector biases and fail
to capture more diverse and informative instances. This ob-
servation reinforces our hypothesis that relying exclusively on
high-confidence thresholds for pseudo-labeling is ineffective.
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Figure 8: Influence of stop criterion threshold χ. TFA [22], DeFRCN [10],
VitDet [2] and imTED [23] detectors on both 10-shot and 30-shot FSRW-like
[20] MS-COCO experimentation.

Instead, lowering the confidence threshold and applying a ro-
bust filtering strategy, as implemented in xPAND, can lead to
better results.

Fig. 8 presents a comparative analysis of the stop criterion
χ across four different detectors. The results demonstrate that
χ is not highly sensitive, implying that achieving optimal per-
formance does not necessitate extensive tuning. Furthermore, χ
exhibits even lower sensitivity in the 30-shot setting compared
to the 10-shot setting, suggesting that its influence diminishes
as the shot size increases.

4.4. Comparison Results

Table 3 shows the results of the state-of-the-art FSOD and
SSOD methods on the MS-COCO dataset. xPAND is able to
significantly improve all the detectors. For TFA, DeFRCN, and
D&R, the improvements range between +0.5 and +2.3 nAP
points, but for ViT-based detectors the improvements reach up
to +5.9 nAP points. The less inductive bias of modern ViT-
based object detectors, such as VitDet, makes them suffer from
severe overfitting when training with few examples. Thus, ViT-
Det underperforms other CNN-based detectors, like DeFRCN.
However, when expanding its training set with pseudo-labels,
ViTDet achieves very competitive results with a performance
boost of more than +5 nAP points for both 10 and 30-shot.
Although imTED mitigates the inductive bias issue by inte-
grally pretraining the feature extraction path to perform better in
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nAP
Method 10-shot 30-shot

TFA [22] (ICML 20) 10.0 13.7
DeFRCN [10] (ICCV 21) 18.5 22.6
FSOD-SR [25] (PR 21) 11.6 15.2
DCNet [37] (CVPR 21) 12.8 18.6
LVC∗ [9] (CVPR 22) 19.0 26.8
FCT [38] (CVPR 22) 15.3 21.4
CFA [39] (CVPR 22) 19.1 23.0
ViTDet† [2] (ECCV 22) 13.3 19.2
Meta-DETR [19] (TPAMI 22) 19.0 22.2
DCFS [40] (NIPS 22) 19.5 22.7
σ-ADP [35] (ICCV 23) 20.3 20.8
MLFDA [41] (CVPR 23) 18.8 23.4
Norm-VAE [42] (CVPR 23) 18.7 22.5
NIFF [43] (CVPR 23) 18.8 20.9
D&R† [26] (AAAI 23) 17.1 20.9
imTED [23] (ICCV 23) 22.5 30.2
Consistent-Teacher∗† [44] (CVPR 23) 14.4 20.2
Semi-DETR∗† [45] (CVPR 23) 22.7 29.3

TFA [22] (ICML 20) + xPAND 11.6↑1.6 16.0↑2.3
DeFRCN [10] (ICCV 21) + xPAND 20.5↑2.0 24.1↑1.5
VitDet [2] (ECCV 22) + xPAND 19.2↑5.9 24.4↑5.2
D&R [26] (AAAI 23) + xPAND 18.5↑1.4 21.4↑0.5
imTED [23] (ICCV 23) + xPAND 27.5↑5.0 33.7↑3.5

Table 3: MS-COCO results following the experimental setting from [20]. Red,
blue and green, represent 1st, 2nd and 3rd respectively, and the numbers on
the right of the arrows show the difference with the corresponding baseline. †

indicates our own experiments. ∗ indicates pseudo-labeling methods.

10-shot 30-shot
Method nAP nAP50 nAP75 nAP nAP50 nAP75

TFA [22]
9.7
±0.6

18.1
±1.2

9.3
±0.6

12.7
±0.3

23.6
±0.5

12.2
±0.3

TFA + xPAND‡
11.0
±0.7

19.8
±1.3

11.0
±0.7

14.7
±0.4

26.1
±0.6

14.9
±0.5

TFA + xPAND
12.0
±0.7

21.2
±1.3

12.1
±0.7

15.2
±0.4

26.7
±0.6

15.6
±0.5

DeFRCN [10]
19.0
±0.4

33.9
±0.7

19.0
±0.6

22.7
±0.3

39.8
±0.4

23.0
±0.5

DeFRCN + xPAND‡
21.5
±0.3

36.5
±0.5

22.5
±0.4

24.0
±0.3

40.1
±0.4

25.4
±0.3

DeFRCN + xPAND
21.5
±0.3

36.5
±0.5

22.5
±0.4

24.1
±0.3

40.1
±0.4

25.4
±0.3

ViTDet [2]
12.5
±0.5

21.1
±0.8

12.9
±0.5

17.4
±0.5

28.8
±0.8

18.1
±0.7

ViTDet + xPAND‡
18.7
±0.5

30.2
±0.9

20.1
±0.5

24.2
±0.4

38.1
±0.5

26.2
±0.5

ViTDet + xPAND
20.2
±0.5

32.0
±0.8

22.0
±0.5

25.2
±0.4

39.0
±0.6

27.6
±0.4

D&R [26]
15.5
±0.5

29.0
±1.2

14.6
±0.4

19.4
±0.4

35.5
±0.7

18.9
±0.4

D&R + xPAND‡
17.5
±0.5

31.7
±1.1

17.5
±0.5

20.7
±0.3

37.3
±0.7

20.7
±0.3

D&R + xPAND
17.5
±0.5

31.7
±1.1

17.5
±0.5

20.7
±0.3

37.3
±0.7

20.7
±0.3

imTED [23]
19.1
±0.9

29.7
±1.4

20.6
±1.0

26.2
±1.0

38.8
±2.3

28.7
±1.1

imTED + xPAND‡
26.2
±0.6

38.8
±0.9

29.2
±0.6

31.3
±0.9

45.9
±1.1

35.1
±1.0

imTED + xPAND
26.7
±0.7

39.0
±0.9

29.8
±0.7

30.7
±0.9

44.7
±1.2

34.5
±1.0

Table 4: MS-COCO results following the experimental setting from [22]. In
bold face the best results for each group. ‡ indicates a single iteration of
xPAND. ±x is the confidence interval.

low-data regimes, it still highly benefits from xPAND, improv-
ing nAP +5 and +3.5 points for 10 and 30-shot respectively.
imTED+xPAND sets a new state of the art for both shot sizes
on the MS-COCO dataset, outperforming previous methods, in-
cluding those based on pseudo-labeling like LVC.

Concerning semi-supervised methods, Table 3 includes two
originally SSOD detectors: Consistent-Teacher [44] and Semi-
DETR [45]. Both utilize a teacher-student framework where the
teacher generates pseudo-labels to guide the student’s learning.
Simultaneously, the student updates the teacher’s weights via
EMA. For a fair comparison, we adapted these methods to the
few-shot setting. Specifically, the teacher and student were first
trained on the fully labeled base classes. Afterwards, a pseudo-
labeling online training was performed on novel classes, using
both the teacher-generated pseudo-labels and the 10/30 anno-
tated novel examples. xPAND outperforms the SSOD methods
in both 10-shot and 30-shot scenarios. This highlights the dis-
tinct challenges of SSOD and FSOD tasks, and indicates that
xPAND is more effective at managing the constraints of limited
novel labeled data when abundant base data is available.

We also conducted the experimentation with different sup-
port sets following [22] (Table 4), including the baseline de-
tector, a single iteration of xPAND, and the standard execution
of xPAND with several iterations. Results show that a single
iteration of xPAND suffices to improve base detectors in ev-
ery metric for 10 and 30 shot sizes. The iterative execution
of xPAND even improves the single iteration results for TFA
and ViTDet, for DeFRCN and D&R it has no impact, and for
imTED it is positive for 10-shot and negative for 30-shot. As
in 3, ViT-based detectors —ViTDet and imTED— benefit the
most from the combination with xPAND.

Table 5 shows a comparison with previous methods on PAS-
CAL VOC dataset for five different shot sizes and three differ-
ent splits [20]. xPAND is able to improve all baseline detec-
tors across various shot sizes. The average nAP50 increments
are 4.4, 4.7, 8.4, 8.5, 3.1 points for TFA, DeFRCN, ViTDet,
imTED, and D&R respectively. Furthermore, the combina-
tion of D&R+xPAND yields superior performance compared
to prior approaches, thereby setting a new state of the art across
a majority of shots and splits.

In contrast to COCO, the transformer-based methods VitDet
and imTED —before applying xPAND— do not outstand in
VOC. Considering that the size of VOC is 10 times smaller than
COCO, this highlights the data-hungry nature of transformers
and their tendency to overfit on datasets with significantly fewer
training examples for both base and novel categories. The com-
bination of these methods with xPAND, partially alleviates this
problem for FSOD.

On VOC we also conducted a TFA-like experimentation [22]
with different support sets. The results for both the baseline
detectors and their integration with xPAND are presented in
Table 6. It can be seen how xPAND consistently enhances
the performance of the baseline detectors. The average in-
creases in nAP50 are 3.6, 2.4, 4.6, 6.4, and 3.4 points for TFA,
DeFRCN, ViTDet, imTED, and D&R respectively. This un-
derscores xPAND’s effectiveness as a consistent and impactful
pseudo-label mining pipeline.
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Novel Set 1 Novel Set 2 Novel Set 3
Method 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FSRW [20] (ICCV 19) 13.8 19.6 32.8 41.5 45.6 7.9 15.3 26.2 31.6 39.1 9.8 11.3 19.1 35.0 45.1
TFA† [22] (ICML 20) 21.3 22.8 25.2 28.7 34.3 7.1 16.6 22.0 22.1 19.2 16.1 14.2 19.8 27.9 28.1
FSOD-SR [25] (PR 21) 50.1 54.4 56.2 60.0 62.4 29.5 39.9 43.5 44.6 48.1 43.6 46.6 53.4 53.4 59.5
DeFRCN† [10] (ICCV 21) 51.2 53.1 47.2 64.3 57.8 30.5 39.0 48.8 51.7 47.7 43.6 45.7 53.0 56.4 54.8
LVC [9] (CVPR 22) 54.5 53.2 58.8 63.2 65.7 32.8 29.2 50.7 49.8 50.6 48.4 52.7 55.0 59.6 59.6
ViTDet† (ECCV 22) [2] 27.1 37.2 31.9 43.9 46.2 11.1 29.5 35.7 35.1 35.9 24.4 32.5 34.3 36.7 37.9
DCFS [40] (NIPS 22) 46.2 57.4 59.9 62.9 64.5 32.6 39.9 43.4 47.9 51.3 40.3 50.5 53.8 56.9 60.7
Meta-DETR [19] (TPAMI 22) 35.1 49.0 53.2 57.4 62.0 27.9 32.3 38.4 43.2 51.8 34.9 41.8 47.1 54.1 58.2
Norm-VAE [42] (CVPR 23) 62.1 64.9 67.8 69.2 67.5 39.9 46.8 54.4 54.2 53.6 58.2 60.3 61.0 64.0 65.5
imTED† (ICCV 23) [23] 11.2 12.3 13.6 34.8 44.8 4.4 9.8 22.1 18.4 35.9 9.9 16.9 18.3 35.3 35.8
D&R† (AAAI 23) [26] 60.4 64.0 65.2 64.7 66.3 37.9 46.8 48.1 52.7 53.1 55.7 57.9 57.6 60.6 61.9

TFA (ICML 20) [22] + xPAND
22.8
↑1.5

28.4
↑5.6

28.3
↑3.1

39.1
↑10.4

44.2
↑9.9

6.9
↓0.2

13.0
↓3.6

14.0
↓8.0

20.8
↓1.3

24.3
↑5.1

16.2
↑0.1

14.4
↑0.2

22.8
↑3.0

35.8
↑7.9

34.8
↑6.7

DeFRCN (ICCV 21) [10] + xPAND
60.6
↑9.4

61.6
↑8.5

60.3
↑13.1

64.9
↑0.6

61.1
↑3.3

41.4
↑10.9

42.3
↑3.3

47.9
↓0.9

51.6
↓0.1

50.2
↑2.5

38.8
↓4.8

50.2
↑4.5

56.2
↑3.2

58.4
↑2.0

58.8
↑4.0

ViTDet (ECCV 22) [2] + xPAND
31.4
↑4.3

40.2
↑3.0

47.7
↑15.8

58.6
↑14.7

60.8
↑14.6

14.8
↑3.7

22.9
↓6.6

26.1
↓9.6

36.7
↑1.6

42.0
↑6.1

23.2
↓1.2

27.0
↓5.5

44.7
↑10.4

51.7
↑15.0

52.7
↑14.8

imTED (ICCV 23) [23] + xPAND
11.6
↑0.4

21.9
↑9.6

30.0
↑16.4

45.9
↑11.1

47.0
↑2.2

10.7
↑6.3

18.2
↑8.4

30.2
↑8.1

28.4
↑10.0

34.5
↓1.4

18.0
↑8.1

28.7
↑11.8

35.5
↑17.2

41.3
↑6.0

46.3
↑10.5

D&R (AAAI 23) [26] + xPAND
61.7
↑1.3

69.5
↑5.5

70.0
↑4.8

71.2
↑6.5

70.7
↑4.4

36.4
↓1.5

47.9
↑1.1

49.9
↑1.8

56.0
↑3.3

55.5
↓2.4

56.5
↑0.8

60.0
↑2.1

61.6
↑4.0

64.2
↑3.6

65.7
↑3.8

Table 5: PASCAL VOC results following the experimental setting from [20]. Red, blue and green, represent 1st, 2nd and 3rd. Numbers beside the arrows show the
difference with baseline. † indicates our own experiments.

Novel Set 1 Novel Set 2 Novel Set 3
Method 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

TFA† (ICML 20) [22]
19.4
±3.7

27.2
±3.5

30.2
±4.5

32.0
±3.8

35.5
±1.3

10.5
±4.1

18.6
±2.0

20.5
±2.3

22.7
±2.7

26.4
±3.6

10.4
±4.2

15.6
±2.2

20.4
±2.6

25.3
±2.9

31.7
±2.2

TFA† + xPAND
22.9
±0.9

30.0
±3.2

32.9
±2.5

39.1
±1.6

43.4
±1.7

12.2
±2.5

20.8
±4.6

21.2
±6.0

20.1
±2.2

27.0
±1.4

11.8
±3.5

18.9
±2.5

26.1
±2.3

32.9
±2.1

36.8
±1.3

↑ 3.5 ↑ 2.8 ↑ 2.7 ↑ 7.1 ↑ 7.9 ↑ 1.8 ↑ 2.1 ↑ 0.7 ↓ 2.6 ↑ 0.5 ↑ 1.4 ↑ 3.3 ↑ 5.7 ↑ 7.6 ↑ 5.2

DeFRCN† (ICCV 21) [10]
44.0
±3.6

55.4
±3.5

55.9
±4.9

61.8
±1.9

60.7
±4.5

30.2
±3.2

40.1
±2.6

45.5
±2.3

49.6
±1.7

52.1
±3.1

34.6
±8.3

48.0
±5.5

50.9
±3.6

54.8
±3.2

58.3
±1.7

DeFRCN† + xPAND
49.5
±6.0

57.8
±2.7

59.3
±3.8

66.1
±1.4

62.3
±4.0

34.1
±4.3

41.7
±3.6

45.7
±2.8

48.8
±3.0

51.5
±1.8

39.5
±9.8

52.0
±2.8

55.2
±2.4

57.1
±2.2

58.6
±0.8

↑ 5.5 ↑ 2.4 ↑ 3.4 ↑ 4.3 ↑ 1.7 ↑ 3.9 ↑ 1.6 ↑ 0.2 ↓ 0.8 ↓ 0.6 ↑ 4.9 ↑ 4.0 ↑ 4.3 ↑ 2.3 ↑ 0.3

ViTDet† (ECCV 22) [2]
24.7
±4.6

36.5
±5.3

38.4
±5.2

39.3
±4.9

40.9
±3.9

13.7
±2.4

22.8
±4.4

30.1
±4.9

32.7
±4.2

36.0
±3.0

18.2
±4.5

29.5
±6.8

33.4
±6.4

34.9
±4.0

36.8
±4.2

ViTDet† + xPAND
25.4
±4.2

39.0
±3.9

38.7
±3.7

53.2
±3.3

58.7
±1.8

13.0
±3.8

22.2
±2.3

29.7
±4.2

34.0
±3.8

42.1
±1.8

16.8
±4.9

31.2
±4.4

35.5
±7.0

45.8
±4.2

51.4
±3.6

↑ 0.6 ↑ 2.5 ↑ 0.3 ↑ 13.9 ↑ 17.8 ↓ 0.7 ↓ 0.6 ↓ 0.5 ↑ 1.3 ↑ 6.1 ↓ 1.5 ↑ 1.8 ↑ 2.1 ↑ 11.0 ↑ 14.7

imTED† (ICCV 23) [23]
8.3
±2.7

21.3
±4.6

21.6
±5.6

36.8
±1.7

47.3
±3.6

5.4
±1.6

11.4
±1.8

16.6
±2.5

22.7
±3.1

34.0
±4.0

6.0
±3.3

15.8
±2.5

20.8
±6.7

31.0
±5.9

42.4
±3.3

imTED† + xPAND
10.8
±2.4

29.3
±4.2

36.9
±4.9

36.9
±4.4

44.6
±2.0

10.0
±2.4

17.0
±1.3

23.3
±4.9

28.6
±3.4

36.3
±2.0

9.0
±6.2

28.7
±1.5

34.5
±3.4

37.6
±5.1

47.1
±1.0

↑ 2.5 ↑ 8.0 ↑ 15.3 ↑ 0.1 ↓ 2.6 ↑ 4.7 ↑ 5.6 ↑ 6.6 ↑ 5.9 ↑ 2.3 ↑ 3.0 ↑ 13.0 ↑ 13.6 ↑ 6.6 ↑ 4.6

D&R† (AAAI 23) [26]
42.3
±9.0

57.0
±4.8

55.6
±6.4

62.3
±3.7

64.9
±3.4

34.3
±3.4

42.8
±4.0

46.0
±2.9

49.8
±1.9

53.4
±0.9

35.4
±11.9

49.0
±6.2

54.3
±4.1

59.3
±2.1

60.0
±1.1

D&R† + xPAND
47.0
±7.9

63.2
±4.0

62.4
±5.4

67.3
±3.4

69.0
±3.1

31.9
±4.0

41.9
±3.7

46.8
±2.0

52.3
±2.1

55.6
±2.7

39.1
±11.8

57.3
±2.3

60.6
±1.1

63.1
±1.0

63.8
±1.0

↑ 4.7 ↑ 6.2 ↑ 6.8 ↑ 5.0 ↑ 4.1 ↓ 2.4 ↓ 0.9 ↑ 0.8 ↑ 2.5 ↑ 2.2 ↑ 3.7 ↑ 8.3 ↑ 6.3 ↑ 3.8 ↑ 3.8

Table 6: VOC results following the experimental setting from [22]. Numbers beside the arrows show the difference with the corresponding baseline (blue increase,
red decrease). † indicates our own experiments. ±x is the confidence interval.
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Figure 9: Visualization results on 30-shot MS-COCO dataset. We show the bounding boxes with score over 0.5. Each image pair illustrates the outcomes without
xPAND (left) and with xPAND (right). Each row corresponds to a method, listed from top to bottom as TFA, DeFRCN, ViTDet, imTED, and D&R.

4.5. xPAND meets CLIP

In this section we explore the idea of using state-of-the-art
Vision-Language Models for pseudo-label generation. We con-
duct a comparative analysis of xPAND and CLIP, evaluating
their performance as filtering mechanisms across various shot
sizes. This analysis aims to assess the individual filtering ef-
fectiveness of each method and to explore their complementary
strengths when combined.

Table 7 presents the results. Using the two best-performing
models as baselines for each dataset tested —MS COCO and
PASCAL VOC— we compare xPAND and CLIP both sepa-
rately and in combination. The results for CLIP are obtained
by filtering the detections from the base detector to exclude
instances where the predicted category does not align with
CLIP’s predictions. The combined results of CLIP+xPAND are
achieved by incorporating CLIP’s knowledge into xPAND as
an additional step to recover discarded pseudo-labels. Specif-
ically, the pseudo-labels eliminated by Class Confirmation or
Box Confirmation, but whose class coincides with the class pre-
dicted by CLIP, are recovered.

CLIP outperforms xPAND in small-shot scenarios —COCO
10-shot and VOC 1-10-shot— due to its strong zero-shot capa-
bilities, leveraging its pretrained alignment of visual and textual
representations on vast image-text pairs. However, as the num-
ber of labeled samples increases, xPAND surpasses CLIP by
better utilizing task-specific labeled data, extracting more de-
tailed and specialized knowledge that improves performance in

MS COCO
Method 10 30

imTED 22.5 30.2
imTED + CLIP 28.6 32.4
imTED + xPAND 27.5 33.7
imTED + xPAND + CLIP 31.4 36.5

PASCAL VOC
Method 1 2 3 5 10 20 30

D&R 51.3 56.2 57.0 59.3 60.4 61.5 63.4
D&R + CLIP 56.6 62.7 62.8 65.1 64.1 62.9 64.7
D&R + xPAND 51.5 59.1 60.5 63.8 64.0 63.3 65.2
D&R + xPAND + CLIP 57.2 63.1 63.3 65.2 64.7 63.5 65.1

Table 7: Comparison of results between CLIP alone, xPAND alone, and their
combination. Best results for each dataset are highlighted in bold.

higher shot settings —COCO 30-shot and VOC 20,30-shot.

However, the most significant finding is that the combination
of CLIP and xPAND yields the best performance, highlighting
the complementarity of both methods. CLIP’s strong zero-shot
generalization, and xPAND’s ability to exploit labeled data to
obtain new training samples, demonstrate that integrating these
approaches can enhance the robustness of pseudo-labeling tech-
niques

10



4.6. Qualitative Results

Fig. 9, shows some qualitative visualizations of the detected
novel objects on MS-COCO dataset. Each pair of images em-
phasizes the distinctions between the detector trained with the
starting annotated data and the one trained with the pseudo-
labels obtained through xPAND. We showcase both successful
(green boxes), and failure instances (red boxes). Results show
the improvement of those methods based on xPAND for both
classification and object localization. Furthermore, it is clear
that xPAND contributes to decrease the number of undetected
objects. All of these observations strongly support the reliabil-
ity of xPAND.

5. Conclusion

We have presented xPAND, a pseudo-label mining pipeline
designed to produce diverse and high-quality pseudo-labels for
training detectors within a few-shot framework. Grounded on
Class and Box Confirmation modules, xPAND effectively fil-
ters out numerous low-quality pseudo-labels initially present in
the pseudo-label set. xPAND can be combined with any object
detector, either few-shot or standard, generally improving nAP
across all datasets and shot sizes, and establishing a new state
of the art on both MS COCO and VOC datasets.
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