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A FastSLAM-based Algorithm for Omnidirectional
Cameras

Cristina Gamallo, Manuel Mucientes and Carlos V. Regueiro

Abstract—Environments with a low density of landmarks are
difficult for vision-based Simultaneous Localization and Mapping
(SLAM) algorithms. The use of omnidirectional cameras, whch
have a wide field of view, is specially interesting in these
environments as several landmarks are usually detected inagh
image. A typical example of this kind of situation happens in
indoor environments when the lights placed on the ceiling &
the landmarks. The use of omnivision combined with this type
of landmarks presents two challenges: the data associatioand
the initialization of the landmarks with a bearing-only sensor.
In this paper we present a SLAM algorithm based on the well-
known FastSLAM approach [1]. The proposal includes a novel
hierarchical data association method based on the Hungaria
algorithm, and a delayed initialization of the landmarks. The
approach has been tested on a real environment with &ioneer
3-DX robot.

Index Terms—Simultaneous Localization and Mapping; Fast-
SLAM; Omnidirectional camera; Hungarian Association;

|. INTRODUCTION

landmarks. The most simple technique for data association
is Maximum Likelihood (ML) [10], which assigns the mea-
surement to the nearest landmark that has not been assbciate
yet. This approach is the most widely used for SLAMI[11],
[7], [22]. However, this technique is brittle if there arevegal
equally likely hypotheses (Fifj. I{a)). This ambiguity isiak
in robotics when landmarks are indistinguishable amond eac
other, and it comes from two sources: i) pose uncertainty. (Fi
[I{®)) and ii) because landmarks can be quite close to each
other and have uncertainty.

If a wrong data association is picked, this decision can have
a catastrophic result on the accuracy of the resulting map.
Several strategie$ [113] have been developed in order to deal
with ambiguity in noisy environments. For example, Monte
Carlo Data Association [14] assigns the correspondenads pr
abilistically in accordance to their likelihoods. Howevers
happens with ML, it is a local method and it considers each
measurement independently to establish the correspoasienc
and not the set of measurements as global methods do.

Simultaneous Localization and Mapping (SLAM) has at- G|opal methods make the joint data association between

tracted the attention of many researchers in the last decage measurements and landmarks based on a global score.

The first proposals were basgd on Extended Kalman Filtelrﬁis type of methods are better to cope with the ambiguity
(EKFs) using range sensors like laser range scanners_ 2], {&roduced by the noise of the sensors and the pose un-

or ultrasound sensorsI[4LI[5]. The use of cameras for SLAMgrtainty. A typical representative of global methods ie th

known as visual SLAM, is a more recent line of research ang,ngarian algorithm [[15], which solves linear assignment
has received an increasing attention in the last years. Téte fbroblems in polynomial time for several measurements and
work for visual SLAM was presented by Davison in 1988 [6]angmarks. Another approach is presentedin [1€], [5], wher
The use of cameras is interesting as they are low-cost, lighty process multiple observations jointly, and consider t
and compact sensors and, also, because they provide richeimetric relationships between a set of landmarks to test
information of the environment, as colour and texture. the correspondence vector. This method can only be applied

One of the most widely used configurations in visual SLAMyy approximations that use features of the environment with
has been stereo visionl [7].|[8]./[9]. Stereo cameras Ca”imovgeometric relationships.
3D information into a single measurement, so traditional |, this paper, we present a SLAM algorithm for omnivision.
SLAM algorithms can be applied without modifications. Thgne omnidirectional camera has a fish-eye lens with a very
main drawback of this type of sensor is the limited 3D ranggjide field of view (FOV). The landmarks of the environment
On the other hand, the use of monocular cameras allows 1@ the ceiling lights and, therefore, the camera is equippe
detection of very far objects. However, they are beariny-onyjith 3 pand-pass IR filter. This makes features extraction
sensors, i.e., they do not provide information about d#aneasier, as the filter only detects those objects that emit in
or depth. Therefore, a mechan_lsm to estimate the 3D positig |R spectrum. The proposal is based on the FastSLUAM [1]
of the landmarks needs to be incorporated. ~algorithm, but modified for bearing-only sensors. The main

An important issue in visual SLAM is data associationgontriputions of the paper are: i) the data associationchhi
which solves the correspondence between measurements j@ngierarchical and based on the Hungarian algorithm [15],
to deal with the bearing-only sensor and, also, because the
fandmarks are indistinguishable among each other; ii) the
initialization of the landmarks, that takes into accounuadh
of measurements associated to the candidate landmark.

The paper is structured as follows. First, we briefly review
the related work for bearing only visual SLAM. Sed11lI
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(a) Measurements ambiguity. (b) Different data association hypotheses for differefttotoposes.

Fig. 1. Typical problems for data association in SLAM. Laraiks are represented by triangles, and the measurementsosa

describes the proposed algorithm and §et. IV presents the mecessary as the sensor is bearing-only, and the landmarks
perimental results. Finally, SEc] V points out the conduosi are indistinguishable among each other. FastSLAM algmisth
use a Rao-Blackwellized particle filter [10], i.e., a filtdnat
I1. RELATED WORK IN BEARING-ONLY VISUAL SLAM represents the posterior with a combination of particled an
%“aussians. For FastSLAM, the particles estimate the robot

Monocular cameras are bearing-only sensors, as they Ope¥[h, while the landmarks are filtered with EKFs. The main

provide information on the orientation of the objects dtdc I )
in the image. As depth information is not available, Sﬁontnb_utlons_of our approac_h gre. )
positions of objects cannot be obtained with a single image.® Hierarchical data association based on the Hungarian
The approaches to solve this problem, known as landmark @/gorithm. As the sensor is bearing-only, and the land-
initialization in bearing-only SLAM, can be grouped in two marks are |nd.|st.|ngU|shabIe, it is necessary to |mp!ement
categories: delayed an undelayed solutions [17]. A represe & data asspuauon metho_d. Our algorithm classifies the
tative approach to undelayed initialization fis [18]. Théia landmarks in two categories: regular landmarks (named
state of the landmarks was approximated with a sum of landmarks in what follows) and candu_jate Iandma_rks.
Gaussians that augment the state of the EKF. However, the 1N€ landmarks compose the map, while the candidate
most usual approach is the delayed initialization mechanis ~ 'andmarks are those for which initialization was not
which requires the use of several images to estimate the possible yet. The data association has to tgke |nt.o account
3D positioning of the landmark[ 19] presents a landmark that the capdldate Iandmarks.are. not reliable, i.e., most
initialization algorithm based also in a sum of Gaussiars bu  ©f the candidate landmarks will disappear, and only few
without including this information in the state vector. 8Js of them will be transformed to landmarks. Therefore,

in [20] a particle filter to estimate the initial position dfet priority is given to the association of the measurements
landmarks was described. to the current landmarks, while only those measurements

The use of omnivision cameras in SLAM allows to track  thatwere not associated in the first stage will be included

the detected features over long distances, as these cameras©f the association with the candidate landmarks. This
have a very wide FOV. Therefore, the initialization procisss hierarchical data association is based on the Hungarian
well conditioned by the numerous observations of the same &lgorithm for each of the levels of the hierarchy. The
landmarks. The first paper, as far as we know, that used this Hungarian method is able to obtain the best association
type of camera was_[21]. In that proposal, the landmarks petween th(_e sgt of measurements and the set of landmarks
were initialized using a delayed mode for two poses: the N Polynomial time. o
triangulation of the measurements was compared to existing -@ndmarks initialization . We propose an initialization
relationships of the tags already in the map[Id [22], the tod mechanism for the landmarks in which the 3D position
cation of the landmarks was approximated by the intersectio  ©f €ach landmark is obtained through several consecutive
point of two lines. Finally,[[I1L] presents a minimalist apach dete<_:t|0ns from dlﬁerent p03|.t|ons. Moreover, the praces
based on a topological map for environments of medium to "€duires to approximate the inverse model of the camera
large size. with a look-up tablg, in qrder t(_) obtain the angles of each
Although most of the visual SLAM approaches are based feature from the pixels in the image.
on EKFs [20], [22], [28], there are also approaches based orfour proposal is shown in Ald.l 1. It receives the set\df
FastSLAM [12], on decoupling the pose error from the majeasurementsz() at the current time, the control ;) and

error [21], etc. the previous set of particle’(_,). Each particlek contains
an estimated robot pose denoted(a§ ), a map of N},
1. SLAM A LGORITHM landmarks{Bf, ,, ..., Bf\f{iptfl}' and the set ofpf ,
i k k
The solution to the SLAM problem presented in this workandidate landmark§Cr, . ..., Ci ;). A landmark

is an extension of the FastSLAM 2.0 algorithii [1]. The is defined with a Gaussian of mear), , and covariance
novelties of the proposal are the data association process, ;, and with the number of times it has been detected
and the initialization of the landmarks. This modificatiare (i, ;). Each candidate landmark has a set of measurements
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Algorithm 1 FasSLAM algorithm for Omnivision. as a function of two angles, the azimuth) (and the elevation
SLAM (Zt, U, }/tfl) (9)
1: for k=1to M do
2. Get particlek from Y;_1: r=axtan +cxsinf
‘Tffh {Blt 1> M) B]Ii[tk 1ot— 1}7 n (1)
k k U} = Ug + 7 * cos
{le—lv e Cnfil,t—l} v :ﬁ*(vo—i-r*si?fnp)
3: Ty =4 (xfﬁl, ut)
4: measurementsLikelihood() wherea, b, ¢, dare parameters of the modély, vy) are the
5: U = dataAssociatio®) coordinates of the pixel at the center of the image, &nd
6: robotPoseUpdate() the ratio between the width and the height of a pixel.
7 landmarksUpdate() The transformation of the measurements requires the iavers
8: end for ~ camera model, i.e., given a pixel the inverse model returns
9: Y; = samplindY;) the coordinates of the 3D point in the world. However, the
camera model equations are not invertible. This has been
solved through a look-up table: given the coordinates of a
{zF ..., 2% |} that could be transformed into a landmariPixel, the look-up table provides the valueswandf. Fig.[2

shows a graphical representation of the look-up table. The
table only needs to be generated once, and this can be done
off-line. The process is as follows:

if the initialization conditions are fulfilled. The steps tife
algorithm can be grouped in the following blocks:

o A main loop that iterates for each of th&/ particles
(Alg. [ lines[1-[8) to obtain the particle weightsX).

Measurements likelihood.For each combination of
landmarks and measurements, calculate the likeli-
hood of the associationy( ;) (Alg.2).

— Data associationSolve the data association (Ald. 1
line [B).

— Robot pose update.The mean and covariance of
the proposal distribution will be calculated with the
contribution of each of the associated landmarks.
Finally, the pose of the robot will be sampled from
that distribution (Alg[B).

— Landmarks update. Update each landmark using an
EKF and calculate the importance weight”( for
each particle (Algl}4).

« Resampling The new set of particlesYf) is generated
by sampling the updated particle séf) with probabil-
ities proportional to the particle weights/{) using low (@) ¢ (white= 7, black= —7) (b) 6 (white= 7/2, black= 0)
variance sampling (Ald.]1 lingl 9).

2. Graphical representatlon of the valuesgofind 6 provided by the

In the following subsections, the measurement model, tl’(})@k -up table for each image pixel.

data association, the robot pose update, the landmarkseypda
and the landmarks initialization will be described in more
detail.

1) Sample the values of and§ with precisionsy,, andd.
Equationd1l are used to obtain the corresponding pixel
coordinates.

2) Store, for each pixel, the maximum and minimum values
of o and#, as a range of values could correspond to the
same pixel.

B. Measurements likelihood

The set of data associationg)(between the measurements
and the landmarks is decided based on the probability that

The sensor model is a feature-based model, where fleaturel corresponds to landmark(¢; ;) (Alg. 2). The loop
features are the lights placed on the ceiling of the envimm from lines1 td_IB iterates for all landmarks in order to estien
These features are extracted from the images obtained byadirthe ¢, ; values (Alg[2 lindIll). Each probability depends
omnidirectional camera following a detection process te on the measurement,(;), the predicted measuremerd {,
widely described in[[24]. The output of the feature extracti Alg. 2 line [I0) and the measurement innovation covariance
process is a list of pixel coordinatés;, v;), that represent the matrix (Q;,;) (Alg. 2 line[8).
centroid of each featurk This list must be transformed into  The measurement innovation covariance matax; ) is
a measurements listy(;), where each measurement is giveralculated taking into account the noise in the measurement
by the azimuth and elevation angleg; ¢+, 0;¢). (Qq), the previous covariance of the IandmaER’“Q 1), and

The camera follows a projection model developed by Pajdiae Jacobian of. (measurement model) with respect to the
and Bakstein [[25] that indicates how a 3D point can bmeasurement model variables. Moreover, the predicted co-
transformed to a pixel in a 2D image. The model is describedriance of the robot pose taking into account landmark

A. Measurement model
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Algorithm 2 Measurements likelihood algorithm Given the cost matrix, the Hungarian method returns a
MeasurementsLikelihood) hypothesis or ambiguity matrix where each element)(takes
1. for j =1to Nf | do a value of 1 or 0, indicating whether or not measurenidat
2: zZj=h (ujt,l, :’Et) associated to landmark The ambiguity matrix fulfills the
3 Huj=Vah(uh, |, %) following conditions:
4: Hpyj = Vi, h (M§,t—1’ Ty)
5. forl=1to N, do > @, =1, Vland dase{0,1}, v (2
6: Qj.,l = Ql,t + Hm,jzitlem,jT J l
7 Soji = [He " Q5 ) Hej + Ry _ L
g: ’ The first condition indicates that each measurement must
o Pargd = Sagitle; Q) (200 — %) + T be assigned either to a landmark or to a new landmark. The
10: 21 =h (i1, pay i) second condition reflects that a landmark can have an askigne
11: measurement or not.
B Dim(ijl) .
bu,5 = (2m) Qi
1 T R D. Robot pose update
exp {_E(zt,l —215) Q; (20— Zl,j)} _ _
The robot pose (Ald.]3 line_14) is sampled from a proposal
12: end for distribution that considers both the motion and the observa
13: end for tions. This proposal distribution is modelled as a Gaussiém

meany,;, and covarianc&,,. The parameters of the Gaussian
are estimated starting from the sampled p@send R;, and
(X.,;,1) depends on two terms: the motion noigg ), and the iteratively adding the corrections due to the assignment of
measurement innovation covariance matix; (). measurement, . to landmark; (Alg. B lines[6 to[11).
The predicted measurement for landmarKz; ;) is esti-

mated frc.)mu%j,l, which corresponds to the es_timated rObUAIgorithm 3 Robot pose update algorithm
pose (using the motion model) plus a correction due to the R

) _ . . obotPoseUpdaté
assignment of measuremento landmark;. This correction NE
is proportional to two terms. The first one can be interpreted. jf ¥; == 0 then
as the gain (in the same sense as the Kalman gain), and is in-  j=1
versely proportional to the measurement innovation cavae  2: zy ~p ($t|$f—1a Ut)
matrix Q;, i.e. the higher the confidence in the measuremeng: else

innovation (lower covariance), the higher the gain. Moerpv 4 Yz =R
the gain is directly proportional to the proposal distribot  5: a0 = Tt
covariancey, ;;, which means that the lower the confidenceé: ~ for j=1to N{, do
on the motion prediction (high covariance) the higher thia ga 7: if ;> 0&type(j) ==1 then
(the correction due to the measurement has a high influence. Y= [Hz,jTQ;i,j H, ; + E;,.lj_l]’l
On the other hand, the second term is the difference betweén Hay,j = My, j—1 +
the measurement and the prediction in the position of the Em,sz,jTQ;ij (Zt,wj —Zj)
landmarkz, (Alg. @ line[2). 10: end if
11 end for

C. Data association 12: Yo, = Ve j

Data association is carried out hierarchically followin 13_ “,ff :J\’;”’j >
the Hungarian method. In the first level, measurements arg endxitf ~ N (pz,> Xar)

assigned to the landmarks. Those measurements that hae

not been associated in the first level are associated to the

candidate landmarks in the second stage. In this way, fyriori It is important to be careful with the order in which the

in the association is given to the landmarks, as the carelidi@ndmarks are processed to generate the proposal digiribut

landmarks are not reliable (many of them are created, byt o@s, in each iteration, the covariance of the proposal besome

a few will be initialized). smaller and the influence of the landmark in the mean of the
The Hungarian method is a combinatorial optimization aproposal is lower. Therefore, landmarks with lower covace

gorithm that solves the correspondence problem in polinbm(higher confidence) are processed in first place and, in case

time. The method requires the construction of a cost mat®t having the same covariance, that with a lowewill be

(®) with size N, x (NF_, + N.,). Each elementy, ; with ~selected.

j < Nf_, represents the probability that measuremkeig Finally, if none of the measurements have been assigned

assigned to landmark (Line [11, Alg.[2). The elements with to previous landmarks, then the pose is generated sam-

j > NF_, represent the probability that a measureméntpling from the probability distribution of the motion model

comes from a new landmark(..,). p(z]xf 1, ui) (Alg. Bline[2).
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E. Landmarks update

Algorithm 4 Landmarks update algorithm

The update of the landmarks and the estimationvafthe
contribution of each landmark to the weight of the particle)
defined in different ways depending on the type of landmark
and measurement association (Aly. 4). Two different sibnat
are possible:

« Landmarks with assigned measurements (Blg. 4 lides 32:
19). '

« Landmarks not seen in the current iteration (Alp. 4 lines’:
[I8-[28). There are two possibilities: 8:
— The landmark is outside the perceptual range of thé"
sensor. 10:

— The landmark is inside the perceptual range of the;.
sensor. 12:

For the first situatiom';?_’t is incremented as the landmarkys
has been detected. The update of the landmarks follows
the standard EKF update process: first the Kalman ddin
is obtained (Alg.[} lined]8) using the previous landmark
covarianc@:;?_’t,1 and the measurement innovation covariance
matrix Qj. Although the measurement innovation covariance
matrix ) ; was estimated previously, it must be estimated agaif.

because the Jacobian of the measurement model with respggct

to the measurement model variablés, ; depends of the robot 4.

LandmarksUpdate()

:for j=1to N}, do
if 1; > 0 then

E _ .k
zjﬂf—Z»t_l—i—l

Z = (e 1)

if type(j) ==1 then
H, ; = vmth~(ﬂ-ﬁt—1~’ :Cf)
L=H,;RH;+Q;

_ Dim(L) 1

@=(2m) T |L

1 - _

else
w=1
end if

5.7‘)}

pose and, now, the estimated pos¢)(is more reliable than 5. glse

the predicted pose;. The same applies to the prediction ofyq. pk =k,
the measurement; (Alg. @ line3). 20: Ejlét _ Ejkt_l
Then, the mean®, is updated proportionally to the gain »;. =1 _'};m

and the difference between the measurement and its pi@dicti,. if 45, , is inside perceptual range af then
’ Jit—
ik ik
Yit = V-1 1

A high Kalman gain means that the confidence in the updajg.
is high. This can occur if the previous landmark covariancs. end Ji'f
was high and also, if the measurement innovation covariangg end if

is low (high confidence). 26: wh = wk o
The contribution of the landmark to the weight of the pary,. and for
ticle (w) represents the probability of association between thg.
measurement; ;. and the landmark. It is calculated from a {CTs, ..., Cj;f’t} =
Gaussian distribution with mea#y (predicted measurement) updateCandidateLandmarK&t,\I/f, {Cfins oo Ol 1},)
’ M1t

and covariancd.. This covariance is proportional to the noise

motion (R;) and Q. 29: . . . .
When the landmark has not been associated to any measure- ({Blm ) BN;v,t}v {CTes s Cnf,t}) =
ment, its mean and covariance remains unchanged. MoreovarpdateLandmarksTy;(e{B{“_t,1, o B b ACT. -, C‘jk t})
’ t—1° ’ Mt

if the landmark is in the perceptual range, the coumjgris
decremented (Ald]4 line22). The weightis estimated based
of the probability of visibility of the landmarkyX,). Finally,
the weight of each particle” is calculated as the product
over all the weights for each landmark in the map (Alg. 4 lin
[28), as we assume independence among the landmarks.

level of the data association process (see [11-C) chase
%pe probabilityp(z; ;|z., C;,—1). This probability is obtained
rom a Gaussian distribution with meaf, and covariance
Qj,l-

Given the correspondences obtained in the data assogiation
F. Landmarks types and initialization the following situations may occur:

The generation of new landmarks from candidate land- Candidate landmark((}) has an assigned measurement.
marks, and the modification of the type of each land- The measurement is added to the candidate Iandrﬂﬁark,
mark takes place at the end of the algorithm, in functions is increased, and the algorithm checks if initialization of
updateCandidateLandmarksand updateLandmarksType CJ’»C as a landmark is possible.

1) updateCandidateLandmarks(The candidate landmarks « The measurement belongs to a new candidate landmark.
are updated with the measurements that were not associated The measurement is added @) andi/ is set tol.
to the landmarks of the map. The correspondences of eackh Candidate IandmarlC(J’?) has no assigned measurements.
candidate landmark with the features is decided on the secon Update the value oﬁ = if,t—1 — I,0t, Wherel,; is the
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Fig. 3. Landmarks initialization.

number of consecutive iterations in which the candidate although they have the same priority as type | landmarks

landmark was not observed.z';‘f is not over 0, then delete for data association.

the candidate landmark. The reliability of type Il landmarks is lower that type |

Our sensor is bearing-only and, thus, from a single measul@ddmarks, as they were initialized from measurements in

ment only anglesp and @ can be obtained for each featurewhich the pose of the robot and the pose of the landmark
However, in order to estimate the 3D position of a landmakere far away, and this can cause erroneous initial position
the distance to itf) is also necessary. Therefore, at |edg;, Thus, they are not taken into account to estimate the pose of
measurements of the landmark must be taken from posedl robot (Alg[3, line§l6 tb 11) or the weights of the particle
the robot that are far enough from each other (Fig. 3). @Alg. @, lines[11 td 1Ir).

candidate landmark({(;) will become a landmark if it fulfills At each iteration,updateLandmarksType checks if the
the following requirements: landmarks of type Il fulfill the requirements of type | land-

1) NZ¥ > NZyin, whereNZ* is the number of measure-marks. Moreover, all landmarks whose valueibis negative

ments associated along time to candidate landnigrk will be deleted from the map.
and N2y, is a threshold.

2) Of all the calculated cross-points at leASEROSSy p IV. EXPERIMENTAL RESULTS
of them are valid. A cross-point is valid if it fulfills the
following properties:

a) The measurements used to obtain the cross-poi
were taken from robot poses that are separated b
an angleANG > ANGyin.

b) The height of the cross-point is over the height of
the camera. o

c) The probability of all the measurements (associated, —
to the candidate landmark) and the cross-point is
over Pyew

3) One of the valid cross-points has been generated fro
the current measurement

If the candidate landmark is initialized, its mean is set to

the pose of the valid cross-point with the highest probghili
over all measurements, and its covariance is set to the Itlefa
initial covarianceX.

2) updateLandmarksType(Ylo add more reliability to the Fig. 4. Test environment.

system, landmarks in the map are classified into types | and

II. A landmark will be type | if has been initialized with The proposed SLAM algorithm has been validated in a
measurements taken from robot poses whose distances ingperts hall (Fig.[IV) with aPioneer 3-DXrobot, and the
XY plane from the valid cross-point are lower thdnv,. landmarks (lights on the ceiling) were placed at a height of
Those landmarks that do not meet this condition will be typ&5m. The test environment has big windows that modify
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(a) Original image. (b) Detected features.
Fig. 5. Features detection.
. . " . SLAM map (m) GT map (m) Error (m
the lightning conditions, occluding the landmarks that evver‘ D H x| oyl ozl x|yl 2zl Iel] Wl | el

situated near them. The onboard omnidirectional camera Was [ 1353 561 680 135 55 65 0.03] -0.113] 0299] 0.32
placed atl.8 m over the floor, in order to minimize the oc-| 6| 1361|0731 680 ) 135] -1 |65 01102723 03] 042

: ) . L 7| 1359 | 401|683 | 135| 35|65 009| 0508| 0325| 061
clusions due to people a_nd a pgssband infrared fllter_v_vas used || 1360! 8921 698 | 135! 80|65 01| 092! 0as| 105
to make features extraction easier (fFigl 1V). The configorat [ | 2256] 543 654 || 225] 55| 65 0.06] 007] 0.039] 0.0
parameters of the algorithm took the following values in all 1(1) gggé (3)38 22’3 ggg 3'15 gg 8% %0535 8%2 8(3’3
the experimentsNZyin = 3, NCROS$p = 5, ANGuin = | 12 || 2273 | 858 | 685 || 225| 80| 65| 0.23| 0579| 0353| 072
1.22rad (7°), Dmin = 8.0m, Xy = [0.0025 0.0; 0.0 0.0025] ‘ 3 H 30.87‘ -5.92‘ 6.39 H 31.5‘ 55 ‘ 65 H —0.63‘ -0.424‘ -0.114‘ 0.77‘

_1 . - - N R N
and Puow = o] Q1| 2 exp{—84}. The number of particles 14 || 31.18| -1.28 | 648 || 31.5| -1 |65 | -0.32| -0.278| -0.025| 042
was set to 10, as this size is sufficient to warrant the stgbili TABLE |
. MAP ERROR
of the system and to achieve accurate results.
Fig.[8 shows the result of one of the t@st¥he distance

travelled by the robot was ove5m and the area of the

environment wag4 x 24 m?. The camera captureX20 images  |n this test, the robot returned 3 times to the same position
at 1 Hz, and the linear and angular velocities of the robgkteps 205, 298, 318) and, in all the cases, the robot rezegni
were limited t00.30m/s and 0.52rad/s respectively. Fig. the landmarks and closed the loop. The final map and its
shows the estimated trajectory and the obtained map agghparison with the real map is detailed in Table I. The
also, the real trajectory@T robo) and the real map@T mean and maximum errors in the position of the landmarks
map. At the beginning of the trajectory (steps 0-80) the errgjre 0.48 m and1.05m. These values reflect the performance
(Fig. [6(P)) increases as the landmarks have a high covaiagg the SLAM algorithm as, although the sensor is bearing-
due to a recent initialization. Once the landmark pOSitiﬂrE 0n|y, and the landmarks are detected far away from the camera
stabilized (step 100), the error in the position of the roisot (ajways with at a distance overs m), their positions are quite
reduced. From steps 100 to 180 the error remains stablegagyrate.

the SyStem detects landmarks in all the directions. Th@, th This experiment was run 10 timeS' each one with a different
error starts to grow because the robot looses the referénceseed. Fig[17 shows the average and maximum errors for each
its right side, as landmarks 13 and 14 are not initialized y&feed, together with the mean and standard deviation of all
The consequence of the increase in the position error is thigé executions. These values reflect that the proposed SLAM
landmarks 13 and 14 are poorly initialized. The robot is abgqgorithm is able to reliably estimate the pose of the rolmot a

to correct its pose when it sees again previous and well glage map, independently of the randomness due to the sampling

landmarks (steps 230-270), and the error goes down near z&fgps (Alg[B lind 14, and Ald 1 lird 9).

Next, as the covariances of landmarks 13 and 14 reduce, they

get influence in the correction of the pose of the robot, and . . . I

the error increases again as their positions at that morment'§' Compar.|sqn between Hungarian and Maximum Likelihood

still incorrect (steps 270-300). On the other hand, therdrro ata associations

the angle of the robot is und€r087 rad (5°) in most of the ~ The same experiment was executed replacing the Hungarian

time steps of the experiment. algorithm with ML data associatiorl [26]. The results are
shown in Figurd B. The errors in angle are slightly worse in

1The  associated  video  can  be  downloaded  fronML, but the errors in position are much higher for ML in

http://www.gsi.dec.usc.es/mucientes/videos/JOPHAL2M.mp4 comparison with the Hungarian association: the average err



http://www.gsi.dec.usc.es/mucientes/videos/JOPHA13-SLAM.mp4
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Fig. 6. Trajectory, map and errors of one of the experiments.
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Fig. 7. Mean and maximum errors for 10 runs with Hungariara degsociation.
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Fig. 8. Mean and maximum errors for 10 runs with ML data asdimri.

in position is a 13% higher, and the maximum error in positioalgorithm) in comparison with a local data association (Max
is a 61% worse. Also, the standard deviation for positionrerrimum Likelihood), showing that bearing-only visual SLAM
is much higher for ML association. Moreover, the maximurwith this type of landmarks requires a global data assauiati
errors with ML association are at the end of the trajectosy, &0 solve the SLAM problem reliably and accurately.

the algorithm is unable to close the last loop. As a resuit; ne
landmarks are created in the bottom left part of the map Fig.
[9, and the robot cannot recover its true location. Hungarian

ass_ociation con_sis_tently_ closes all the loops for all tgmjse This work was supported by the Spanish Ministry of Econ-

while ML association fails to close the loops the 60% of thgmy and Competitiveness under grants TIN2011-22935 and

executions. TIN2009-07737 and by the Galician Government (Consol-

idation of Competitive Research Groups, Xunta de Galicia

ref. 2010/6). Manuel Mucientes is supported by tRanbn

y Cajal program of the Spanish Ministry of Economy and
A SLAM algorithm, based on FastSLAM, using omnivisionCompetitiveness.

has been presented. Our system uses a bearing-only sensor,

and the landmarks are indistinguishable. The main nogattie

our proposal are the hierarchical data association bas#ukeon

Hungarian algorithm and the way the landmarks are inializ (1) y. montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “RSAM:
Experiments have shown a great accuracy, both in the pose A Factored Solution to the Simultaneous Localization andpieg

of the robot and in the map, although the limitations of the Problem,” inProceedings of the AAAI National Conference on Atrtificial

. T Intelligence Edmonton, Canada, 2002.

bearing-only sensor and the distance between the robot ap§l s Thrun, W. Burgard, and D. Fox, “A Probabilistic Appata to

the landmarks. Also, we have evaluated the robustness of the Concurrent Mapping and Localization for Mobile Robot&fitonomous

algorithm through several runs with different seeds, titaj Robots vol. 5, pp. 253-271, 1998. _ _

. . . [3] J. A. Castellanos and J. D. Tardos, “Mobile Robot Laration and

in all the experiments good results. Moreover, we have studi

) R ] Map Building: A Multisensor Fusion Approach,” iRroceedings of the
the influence of the use of a global data association (Huagari  International Symposium on Experimental Robotlk®99, pp. 173-178.
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