A FastSLAM Algorithm for Omnivision

Cristina Gamallo, Manuel Mucientes and Carlos V. Regueiro

Abstract—Omnidirectional cameras have a wide field of view,  In this paper, we present a SLAM algorithm for omnivision.
which makes them specially suitable for Simultaneous Local- The omnidirectional camera has a fish-eye lens with a very
ization a”O: '}g?pgsgl\ﬁst’:g"e) dtaosrlfsfhg] wiesll ﬁ?g\?vrr'n V‘I’Zzsﬁf;f;'(‘; wide field of view (FOV). The landmarks of the environment
a proposa - e . )
algr:)ritrr)]m [1]. Our approach uses omnivision to detect the lights ar_e the ceiling lights ar,]d' ther?fore’ the camera is eqd'pPe
placed on the ceiling of indoor environments. As the sensor is With @ band-pass IR filter. This makes features extraction
bearing-only and the landmarks are indistinguishable among easier, as the filter only detects those objects that emit in
each other, the proposal includes a hierarchical data association the IR spectrum. The proposal is based on the FastSLAM [1]
method based on maximum likelihood and a delayed initialization algorithm, but modified for bearing-only sensors. The main
g:wti?fmlna;rﬂn\}ﬁmsé I;gﬁegr%?g;almrg%? been tested on a real _con-tributio.ns of the paper are: i) the d{ita fassociationplwh?

is hierarchical and based on maximum likekihood, to deégh wit
the bearing-only sensor and, also, because the landmagks ar
indistinguishable among each other; ii) the initializatiaf the
landmarks, that takes into account a bunch of measurements
|. INTRODUCTION associated to the candidate landmark.
] ] ] The paper is structured as follows. First, a short introidact

T Wo fundamental aspects in mobile robotics are the 10Cgs hearing-only SLAM is presented. Then, Sec. Il describes

tion of the robot and the construction of the map of thge proposed algorithm and Sec. IV presents the experimenta

environment. The two tasks are mutually dependent on eaglyits. Finally, Sec. V points out the conclusions andrutu
other, i.e., mapping an environment requires a correctldocg,ork.

ization of the robot but, also, a precise positioning reggiir
the existence of a map. In the field of robotics, the resatutio
of the two tasks simultaneously is known as the Simultaneous Il. BEARING-ONLY SLAM

Localization and Mapping (SLAM) problem. Monocular cameras are sensors that only provide informa-

In the last decade the problem of SLAM has attracted thign on the orientation of the objects detected in the image.
attention of many researchers in the field. The first proposals depth information is not avaliable, 3D positions of oltgec
were based on Extended Kalman Filters (EKFs) using ranggnnot be known with a single capture (image). This problem
sensors like laser range scanners [2], [3] or ultrasounsiossn js known as landmark initialization in bearing-only SLAM,
[4], [5], and they were prepared to run in static environreentand the approaches to the problem can be grouped in delayed
The use of cameras to solve the SLAM problem, known @ undelayed solutions [10]. For example, in [11] an undeday
visual SLAM, is a more recent line of research. The firsfolution was proposed. The initial state of the landmarks
work was presented by Davison in 1998 [6]. The use @fas approximated with a sum of Gaussians that augment the
cameras is interesting as they are low-cost, light and compatate of the EKF. Most of the approaches present a delayed
sensors and, also, because they provide richer informafioninitialization mechanism, which requires the use of severa
the environment, as colour and texture. In the last years, jaflages to estimate the 3D positionning of the landmark. [12]
increasing attention has been paid to visual SLAM systemgyresent a landmark initialization algorithm based also $uia

One of the main areas of research in visual SLAM has beenGaussians but without including this information in thate
stereo vision [7], [8], [9]. The stereo cameras can providgctor. Finally, in [13] a particle filter to estimate thetial
3D information into a single measurement, so the traditiongosition of the landmarks was used.
SLAM algorithms can applied without modifications. The Omnivision cameras have also been used on visual SLAM.
main drawback of this type of sensor is the limited 3D rangghis kind of cameras have a very wide FOV, so they can
On the other hand, the use of monocular cameras lets thgck all the detected features over long distances. Theref
detection of very far objects. However, they are bearinly-onthe initialization estimation process is very well conafited
sensors, that is, they do not provide information aboutdist by the numerous observations of the same landmarks. [14]
or depth. Therefore, a mechanism to estimate the 3D positi@nthe first work, as far as we know, that used this type of
of the landmarks needs to be introduced. camera. The proposal is based on the relations between the
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Algorithm 1 FasSLAM algorithm for Omnivision.
SLAM (z, ut, Yi—1)
1: for k=1to m do
2: Get particlex from v;_1:

model of the camera with a look-up table, in order to
obtain the angles of each feature from the pixels in the
image.

Our proposal is shown in Alg. 1. It receives the set of

w1 Bl ""vaf{c_l,t_l}’ i ”"C:f_l,t—l measurementsz{() at the current time, the control () and

3 Te =g (2f_, ur) the previous set of particles:( ;). Each particle: contains an

4. MeasurementsLikelihood() estimated robot pose denoted @$ ,), a map of N} , land-

5 Uf =dataAssociatiorief) marks{Bf,_,, ..., BX, 1}, and the set oh} , candidate

6: RobotPoseUpdate() =1 o :

. LandmarksUpdate() landmarks{ct, ,, ..., Csf,l,t—l}' A landmark; is defined

s end for as Gaussian with meagt, |, covariances®, | and number

9 v, = IowVarianceSampIinQﬁ,M) of times detectedif, ,). Each candidate landmark is a set
of measurementszF . ..., zF ,} that could be transformed
into a landmark if the initialization conditions are fuléd.

. i The steps of the algorithm can be grouped in the following
approach based on a topological map for environments 9 ks

medium to large size.

Althoug most of the visual SLAM approaches are based®
on EKFs [13], [15], [17], there are also approaches based on
FastSLAM [18], on decoupling the pose error from the map
error [14], etc.

IIl. SLAM A LGORITHM

The solution to the SLAM problem presented in this work
is an extension of the FastSLAM 2.0 algorithm [1]. The
novelties of the proposal are the data association process,
and the initialization of the landmarks. This modificatiare
necessary as the sensor is bearing-only, and the landmarks
are indistinguishable among each other. FastSLAM algmsth
use a Rao-Blackwellized particle filter [19], i.e., a filtdrat
represents the posterior with a combination of particled an
Gaussians. For FastSLAM, the particles estimate the robot
path, while the landmarks are filtered with EKFs. The main
contributions of our approach are:

» Hierarchical data association based on maximum

A main loop that iterates for each of the particles
(Alg. 1 lines 1 to 8) to obtain the particle weights*{.

Measurements likelihood.For each combination of
landmarks and measurements, calculate the likeli-
hood of the associations(;) (Alg.2).

Data associationSolve the data association (Alg. 1

lines 5).

— Robot pose update.The mean and covariance of
the proposal distribution will be calculated through
the contribution of each of the associated landmarks.
Finally, the pose of the robot will be sampled from
that distribution (Alg. 3).

— Landmarks update. Update each landmark with an

EKF and calculate the importance weight*} for

each particle (Alg. 4).

Resampling The new set of particlesy{) is generated
by sampling the updated particle sét)(with probabil-
ities proportional to the particle weights) using low
variance sampling (Alg. 1 line 9).

likelihood. As the sensor is bearing-only, and the land- | the following subsections, the measurement model, the
marks are indistinguishable, it is necessary to implemegéta association, the robot pose update, the landmarkseypda

a data association method. Our algorithm classifies thfd the landmarks initialization will be described in more
landmarks in two categories: regular landmarks (namegiail.

landmarks in what follows) and candidate landmarks.

The landmarks compose the map, while the candidate

Iandmarks are those for V\{high initialization_ was Nok  nMeasurement model

possible yet. The data association has to take into account

that the candidate landmarks are not reliable, i.e., mostThe sensor model that has been used is a feature-based
of the candidate landmarks will disappear, and only femodel, where the features are the lights placed on the geifin

of them will be transformed to landmarks. Thereforghe environment. These features are extracted from thedsnag
priority is given to the association of the measuremen@btained by an omnidirectional camera following a detectio
to the current landmarks, while only those measurementtcess that was widely described in [20]. The output of the
that were not associated in the first stage will be includd@ature extraction process is a list of pixel coordinaigsy,),

for the association with the candidate landmarks. Thibat represent the centroid of each featur&his list must
hierarchical data association is based on a maximupe transformed into a measurements list,), where each
likelihood approach. measurement is given hyp; ;, 6.

Initialization of the landmarks. We propose a ini- The used camera follows a projection model developed by
tialization mechanism for the landmarks in which thé&ajdla and Bakstein [21] that indicates how a 3D point can be
3D position of each landmark will be obtained througltransformed to a pixel in a 2D image. The model is described
several consecutive detections from different positionas a function of two angles the azimuth) @nd the elevation
Moreover, the process requires to approximate the inver®g



Algorithm 2 Measurements likelihood algorithm
r=axtan? +cxsin f MeasurementsLikelihood)
@ ¥ for j=1to NF , do

u; = ug + 7 * cos @ 2: Ej:h(#lftflvit)

v = B * (vo + 1 * sin ‘ ~

1= B (vo ) 3 H,;=Vah (uﬁtw zt)
wherea, b, c,dare parameters of the model,,v,) are the 4 Hp, j = Vo h (Mft_p §t>
coordinates of the center pixel of the image, @ang the ratio  s. for i=1to N, do
between the Wldth and the height of a pixel. _ . 6: Qus = Qui + Hun =5, Hy )T

The transformation of the measurements requires the ievers: S = [HeyTQp } Haj + Ry

camera model, i.e., given a pixel the inverse model returng: ’
the coordinates of the 3D point in the world. However, theg: foy1j = gr’ij,].TQ;; (210 — %) +

camera model equations are not invertible. This has begp
solved through a look-up table: given the coordinates of 4.
pixel, the look-up table provides the valuesg@ands. Fig. 1

- . k
zi,;=h (Mg,tfla gt

shows a graphical representation of the look-up table. The b= (%)—M@j‘—%
table only needs to be generated once, and this can be done ’ 1 o R
off-line. The process is as follows: exp {*5(% — %) Q5 (e - Zl,j)}
1) Sample the values of andé with precisionss, andd,. _ end for
Equations 1 are used to obtain the corresponding pixel. onq for

coordinates.

2) Store, for each pixel, the maximum and minimum values
of » ande, as a range of values could correspond to the
same pixel.

The predicted measurement for landmarKz; ;) is esti-
mated fromy.,, ; ;, which corresponds to the estimated robot
pose (using the motion model) plus a correction due to the
assignment of measuremento landmark;. This correction

is proportional to two terms. The first one can be interpreted
as the gain (in the same sense as the Kalman gain), and is in-
versely proportional to the measurement innovation cavae
matrix @, ;, i.e. the higher the confidence in the measurement
innovation (lower covariance), the higher the gain. Moepv
the gain is directly proportional to the proposal distribot
covariancez,, ; , which means that the lower the confidence on
the motion prediction (high covariance) the higher the @tia
correction due to the measurement has a high influence). On
the other hand, the second term is the difference between the
Fig. 1. Graphical representation of the valuesoind @ provided by the measurement and the prediction in the position of the lamkima
look-up table for each image pixel. z (Alg. 2 line 2).

The data association is carried out hierarchically folloyva
maximum likelihood approach. In the first level, measuretsmien
are assigned to the landmarks. Those measurements that have
not been associated in the first level are associated to the

The set of data associations} between the measurementgangidate landmarks in the second stage. In this way, fyiori
and the landmarks will be establish based on the probability the association is given to the landmarks, as the caredidat

that feature: corresponds to landmark (¢, ;) (Alg. 2). The  |andmarks are not reliable (many of them are created, byt onl
loop from lines 1 to 13 iterates for all landmarks in order tg few will be initialized).

estimate all they, ; values (Alg. 2 line 11). Each probability

depends on the measurement), the predicted measurement

G.,, Alg. 2 line 10) and the measurement innovation covarf Robot pose update

ance matrix @; ;) (Alg. 2 line 11). The robot pose (Alg. 3 line 14) is sampled from a proposal
The measurement innovation covariance matix ,;f is distribution that considers both the motion and the observa

calculated taking into account the noise in the measureméions. This proposal distribution is modelled as a Gaussian

(Q+), the previous covariance of the landmark( ), and with mean,, and covariances,,. The parameters of the

the Jacobian of. (measurement model) with respect to th&aussian are estimated starting from the sampled poaad

measurement model variables. Moreover, the predicted ga; and iteratively adding the corrections due to the assignme

variance of the robot pose taking into account landmarkof measurement, ; to landmark; (Alg. 3 lines 6 to 11).

(=.,;) depends on two terms: the motion noigg)( and the It is important to take care of the order in which the

measurement innovation covariance matux ). landmarks are processed to generate the proposal digiribut

(a) ¢ (white= 7, black=—) (b) 6 (white=7/2, black= 0)

B. Measurements likelihood and data association



Algorithm 3 Robot pose update algorithm Algorithm 4 Landmarks update algorithm

RobotPoseUpdat(e) LandmarksUpdate()
t 1wk =1
L if ]21 ¥; == 0 then 2: for j=1to N, do
2: af ~p (weloh |, ur) 3 if ;>0 then
3: else 4 i, =i, g+ 1
4: S0 = Re 5 % =h(uk H,xf)
5: peo =B e 6 By = Vo (- 1,zf>
6: or j=1toNf, do . QJ_Q#) t+ngEt s
7: if  ¢; >0&type(j)==1 then 8 K 5t Q’ R d
8: Yo, = Hog Q[ Hoj + 575 4171 Jt 1A
, _ 9 th u]t 1+K 2y t—zj)

o: Bagi = Bagi—1+ Sei He i T Qp (Zz/)j,t - Zj) . .
10: end if 10: == KHm»J) A
12: Sa; = o) 12 Hyj = Va,h (luj,z—l’ xz)
13: Moy = Haxy,j 13: L:Hx,thH£j+Qj
14: zf ~ N (pzy, Sa,) 14:
15: end if

N _ Dim(L) 1
B=(2m) " 2 |L

1 \T _; ~
exp _5(ij,t_zj> L <z¢j,t—z]~)

as, in each iteration, the covariance of the proposal besome

smaller and the influence of the landmark in the mean of tHé&: else

proposal is lower. Therefore, landmarks with lower covacea 16: 73 =1

(higher confidence) are processed in first place and, in daseld end if

having the same covariance, that with a loweof ¢, , will 18 else

be selected. 19: whe =k g
Finally, if none of the measurements have been assignad S =35,

to previous landmarks, then the pose is generated samplizly W=1-pin

from the probability distribution given by the motion model22: if uj,_, is inside perceptual range of then

p(zelzh_ . ) (Alg. 3 line 2). 23: B = 1 =1

24: end if

D. Landmarks update 25: egd if L

The update of the landmarks and the estimatior dthe 23 endwfo; v

contribution of each landmark to the weight of the partiele
defined in different ways depending on the type of Iandmar%(' {Cck,, ..

L, CF Y=
and measurement associations (Alg. 4 loop from line 2 to 27). "f’t}
Two different situations are possible: updateCandidateLandmar(st,\sz, Gl O 1}7>
« Landmarks with assigned measurements (Alg. 4 lines 3.
to 18). k k k k _
. Landmarks not seen in the current iteration (Alg. 4 lines ({B“’ o B b e C"i"vt}) B
18 to 25). There are two possibilities: updateLandmarksTyp(e{B1 m s B B ACE, - OF i})
— The landmark is outside the perceptual range of the v "
sensor.
— The landmark is inside the perceptual range of the
sensor. Then, the meap?, is updated proportionally to the gain and

For the first situation;*, is incremented as the landmarkthe difference between the measurement and its prediction.
has been detected. The update of the landmarks follows fHgh Kalman gain means that the confidence in the update
standard update process of an EKF: first the Kalman gdfh high. This can occur if the previous covariance of the
K is obtained (Alg. 4 lines 8) using the previous landmar@ndmark was high, so we will pay more attention to the
covariancest, , and the measurement innovation covariand@irrent measurement. Also, if the measurement innovation
matrix Q;. AIthough the measurement innovation covarianceovariance is low (high confidence in the innovation), thenga
matrix Q; was estimated previously, we have to estimated ig high.
again because the Jacobian of the measurement model witfihe contribution of the landmark to the weight of the
respect to the measurement model variables; depends particle () represents the probability of the assignment of
of the robot pose and, now, the estimated pag¢ is more the data associatio; for the landmark. It is calculated from
reliable than the predicted posge. The same applies to thea Gaussian distribution with mean (predicted measurement)
prediction of the measuremetit (Alg. 4 line 5). and covariance. for the valuez, . (measurement assigned
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to the landmark). This covariance is proportional to theseoi candidate landmarkc() will become a landmark if it fulfills
motion (r:) and@;. When the landmark has not been assodhe following requirements:

ated to any measurement, its mean and covariance remain§) NZ;C > NZuin, WhereNZ;_C is the number of measurements
unchanged. Moreover, if the landmark is in the perceptual  associated along time to candidate landmatk and

range, then the countef, is decremented (Alg. 4 line 22). NZu. is a threshold.

The weighta is estimated based of the probability of visibility 2) Of all the calculated cross-points at leASEROSSy 1o

of the landmark #,). Finally, the weight of each particle of them are valid. A cross-point is valid if it fulfills the

wk is calculated as the product over all the weights for following properties:

each landmark in the map (Alg. 4 line 26), as we assume a) The measurements used to obtain the cross-point
independence among the landmarks. were taken from robot poses that are separated by

a minimum angleANGyin.

b) The height of the cross-point is over the height of
the camera.

c) The probability of all the measurements (associated
to the candidate landmark) and the cross-point is
over Pyew.

E. Landmarks types and initialization

The generation of new landmarks from candidate land-
marks, and the modification of the type of each landmark
takes place at the end of the algorithm, with functions
updateCand|dateITandmar(k(sand upqateLanqmarksTyp)e 3) One of the valid cross-points has been generated from

1) updateCandidateLandmarks(Jhe candidate landmarks the current measurement
are updated with the measurements that were not associated ) N . )
to the landmarks of the map. The correspondences of eaci'1f the candidate landmark is initialized, its mean is set to
candidate landmark with the features is decided on the secdfi€ Pose of the valid cross-point with the highest probapbil
level of the data association process (see Sec. I1I-B),chase over all measurements, and its covariance is set to the ltefau

the probability p(z; ¢ |z, C;:—1). This probability is obtained initial covariancex. o

from a Gaussian distribution with mean, and covariance 2) UpdateLandmarksType(Jfo add more reliability to the

0.1 ’ system, landmarks in the map are classified into types | and
Jsb

Given the correspondences obtained in the data assogiatibn® andmark will be type I if has been initialized with

the following situations may occur: measurements taken from robot poses whose distances in the
didate land ith ' ined XY plane from the valid cross-point are lower thag;,. Those

» Candidate landmarkc() with an assigned measurementyygmarys that do not meet this condition will be type 1,

.Th.e measurement is addeq to the cand-id-at.e. andrﬁark ut they have the same priority as type | landmarks for data
is increased, and the algorithm checks if initialization o

X . ssociation.
¢y as a landmark is possible. _ The reliability of type Il landmarks is lower that type |
- The measurement pelongs toa ne"i r_:andldate Iandma}gﬁdmarks, as the were initialized from measurements ichvhi
The measurement is addeddg and. is set to1. the pose of the robot and the pose of the landmark were far

- Candidate landmarke() has no assigned measurements; .o and this can cause erroneous initial positions. They,
Update the value off =¥, | — Io;, Where 1, is the

i ) ” : -~ are not taken into account to estimate the pose of the robot
number of consecutive iterations in which the candldatg\lg. 4, lines 6 to 11) or the weights of the particles.
Iandmark was not observed.iffis not over 0, then delete At each iteration,updateLandmarksType checks if the
the candidate landmark. landmarks of type Il fulfill the requirements of type | land-
marks. Moreover, all landmarks whose valueifofs negative
will be deleted from the map.

IV. EXPERIMENTAL RESULTS

The SLAM algorithm has been tested withPaoneer 3-
DX robot equipped with an omnidirectional camera placed at
1.8m over the floor, in order to minimize the occlusions due to
people. The test environment was a sports hall (Fig. V) &ith
size of45z 25 m2. The landmarks used in the experiments were
the lights placed at a height efs m. In order to make features
extraction easier (Fig. 1V), a passband infra-red filter wsed.

Fig. 2. Candidate landmarks. As can be seen, the environment also has big windows that
modify the lightning conditions, occluding the artificiadts

Our sensor is bearing-only and, thus, from a single measutkat were situated near them.
ment only angles, and ¢ can be obtained for each feature. All the experiments have been executed with the follow-
However, in order to estimate the 3D position of a landmaikg values for the parameters of the algorithiZy, =
the distance to itd) is also necessary. Therefore, at &, 3, NCROSS o = 5, ANGun = 7, Duin, = 8.0m., 3o =
measurements of the landmark taken from poses of the roliodo25 0.0;0.0 0.0025] and Pyew = 5 |Qu.| 2 exp{—5}. Also,
that are far enough from each other are needed (Fig. 2).ilthAages were captured at a frequencyi ofHz, and the linear
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(a) Original image. (b) Detected features.

Fig. 4. Features detection.

SLAM map (m) H GT map (m) H Error (m)
x|yl z x| oy oz ol | Jyl | 2l | lleyz]
5| 1391| -516 | 582 || 135 | -55| 6.5 | 041 | 0.34 | 0.68 0.86
6 || 13.53| -087 | 6.33 || 135 | -1.0 | 6.5 0.03 | 0.84 | 0.17 0.85
7| 1405| 338 6.22 || 135 | 35| 6.5 045| 0.12| 0.28 0.54
9 || 2248 | -5.98 | 7.12 || 225 | -55| 6.5 | 0.02 | 0.48 | 0.62 0.78

10 || 22.19 | -1.02 | 6.69 || 225 | -1.0 | 6.5 | 0.31 | 0.02 | 0.29 0.42

11| 21.81| 3.70 | 6.85 | 225 | 35| 6.5 0.31| 0.20 | 0.35 0.50

3159 | -5.01| 6.17 || 31.5| -55| 6.5 || 0.09 | 0.49 | 0.33 0.60

3121 | -0.36 | 6.25 | 315| -1.0 | 6.5 || 0.29 | 0.64 | 0.25 0.74

TABLE |
MAP ERROR

]

=
w

error in the position of the robot is reduced (central pathef
experiment). When the robot arrives to the top right corner,
Fig. 3. Test environment. due to the absence of a landmark, it looses the references to
its left side and the error starts to grow. As a consequence,
the landmarks on the right of the environment are poorly
and angular velocities of the robot were limitechteom/s and  initialized, and the robot is not able to correct the positio
0.52rad/s respectively. Finally, the number of particles was setinally, when the robot starts to see previous well placed
to 10, after evaluating the performance of the algorithmhwilandmarks, the error goes down near zero. The mean error
several sizes. This particles set size is sufficient to wyra in the position of the landmarks is66m and the maximum
the stability of the system and to achieve accurate results. is 0.s6m (table 1). This values reflect the performance of the
Fig. 5 shows one of the experimehtsvith a trajectory of SLAM algorithm as, although the sensor is bearing-only, and
40m long and a total ofi49 captured images. Fig. 5(a) showshe landmarks are detected far away from the camera (always
the estimated trajectory and the obtained map, togethér witith a distance oven.5m, as they are placed close to the
the real trajectory (GT robot) and the real map (GT mapgeiling), their positions are quite accurate.
Also, the errors in the pose of the robot (position and angle),, o qer to evaluate the robustness of the algorithm, we

along the experiment are also represented in I_:ig. I‘:’(b)'eTaWave executed the same experiment 10 times, each one with a
| shows the map ob.talned by .t.he SLAM algorithm, the regfiterant seed. This test evaluates the algorithm indepethyg
map, ar_1d the errors in the position of the landmarks (for eaSPthe randomness due to the sampling of the pose of the robot
dimension, and the total errqr). ) Alg. 3 line 14). The results for each seed are shown in Fig. 6.
As can be seen, thg error in the angle of t.he robot is 'ea@bth the average and the maximum errors in position and
small n most of the time steps of th_e (_expenment. Regard”&ientation for each run are shown. The graph also displags t
the position of the rabot, at the beglnn!ng the error INCESASmean and standard deviation for all the executions, botthtor
gs__th_e Iandmarks have a high covarlance due F(_) a rec?\%rage and maximum errors. The mean of the average errors
initialization. As the landmark positions are stabilizetie iS 0.30m In position and.o3 rad in orientation, while the mean
1The  associated  video  can  be  downloaded  fron@f th€ maximum errors i8.67 m ando.16 rad respectively. With_
http://www.gsi.dec.usc.es/mucientes/videos/WAFRAM.mp4 these values, we can conclude that proposed SLAM algorithm
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Fig. 5. Trajectory, map and errors of one of the experiments.
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V. CONCLUSIONS
A SLAM algorithm, based on FastSLAM, using omnivision
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