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Abstract—Omnidirectional cameras have a wide field of view,
which makes them specially suitable for Simultaneous Local-
ization and Mapping (SLAM) tasks. In this paper, we present
a proposal for SLAM based on the well-known FastSLAM
algorithm [1]. Our approach uses omnivision to detect the lights
placed on the ceiling of indoor environments. As the sensor is
bearing-only and the landmarks are indistinguishable among
each other, the proposal includes a hierarchical data association
method based on maximum likelihood and a delayed initialization
of the landmarks. The proposal has been tested on a real
environment with a Pioneer 3-DX robot

Index Terms—Simultaneous Localization and Mapping; Fast-
SLAM; Omnidirectional camera; Omnivision;

I. I NTRODUCTION

T Wo fundamental aspects in mobile robotics are the loca-
tion of the robot and the construction of the map of the

environment. The two tasks are mutually dependent on each
other, i.e., mapping an environment requires a correct local-
ization of the robot but, also, a precise positioning requires
the existence of a map. In the field of robotics, the resolution
of the two tasks simultaneously is known as the Simultaneous
Localization and Mapping (SLAM) problem.

In the last decade the problem of SLAM has attracted the
attention of many researchers in the field. The first proposals
were based on Extended Kalman Filters (EKFs) using range
sensors like laser range scanners [2], [3] or ultrasound sensors
[4], [5], and they were prepared to run in static environments.
The use of cameras to solve the SLAM problem, known as
visual SLAM, is a more recent line of research. The first
work was presented by Davison in 1998 [6]. The use of
cameras is interesting as they are low-cost, light and compact
sensors and, also, because they provide richer informationof
the environment, as colour and texture. In the last years, an
increasing attention has been paid to visual SLAM systems.

One of the main areas of research in visual SLAM has been
stereo vision [7], [8], [9]. The stereo cameras can provide
3D information into a single measurement, so the traditional
SLAM algorithms can applied without modifications. The
main drawback of this type of sensor is the limited 3D range.
On the other hand, the use of monocular cameras lets the
detection of very far objects. However, they are bearing-only
sensors, that is, they do not provide information about distance
or depth. Therefore, a mechanism to estimate the 3D position
of the landmarks needs to be introduced.
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In this paper, we present a SLAM algorithm for omnivision.
The omnidirectional camera has a fish-eye lens with a very
wide field of view (FOV). The landmarks of the environment
are the ceiling lights and, therefore, the camera is equipped
with a band-pass IR filter. This makes features extraction
easier, as the filter only detects those objects that emit in
the IR spectrum. The proposal is based on the FastSLAM [1]
algorithm, but modified for bearing-only sensors. The main
contributions of the paper are: i) the data association, which
is hierarchical and based on maximum likekihood, to deal with
the bearing-only sensor and, also, because the landmarks are
indistinguishable among each other; ii) the initialization of the
landmarks, that takes into account a bunch of measurements
associated to the candidate landmark.

The paper is structured as follows. First, a short introduction
to bearing-only SLAM is presented. Then, Sec. III describes
the proposed algorithm and Sec. IV presents the experimental
results. Finally, Sec. V points out the conclusions and future
work.

II. B EARING-ONLY SLAM

Monocular cameras are sensors that only provide informa-
tion on the orientation of the objects detected in the image.
As depth information is not avaliable, 3D positions of objects
cannot be known with a single capture (image). This problem
is known as landmark initialization in bearing-only SLAM,
and the approaches to the problem can be grouped in delayed
an undelayed solutions [10]. For example, in [11] an undelayed
solution was proposed. The initial state of the landmarks
was approximated with a sum of Gaussians that augment the
state of the EKF. Most of the approaches present a delayed
initialization mechanism, which requires the use of several
images to estimate the 3D positionning of the landmark. [12]
present a landmark initialization algorithm based also in asum
of Gaussians but without including this information in the state
vector. Finally, in [13] a particle filter to estimate the initial
position of the landmarks was used.

Omnivision cameras have also been used on visual SLAM.
This kind of cameras have a very wide FOV, so they can
track all the detected features over long distances. Therefore,
the initialization estimation process is very well conditioned
by the numerous observations of the same landmarks. [14]
is the first work, as far as we know, that used this type of
camera. The proposal is based on the relations between the
beacons to estimate the pose of the robot and the odometry.
The landmarks were initialized using a delayed mode for two
poses: the triangulation of the measurements was compared
to existing relationships of the tags already in the map. In
[15], the true location of the landmark is approximated by
intersection point of two lines. [16] present a minimalist
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Algorithm 1 FasSLAM algorithm for Omnivision.
SLAM (zt, ut, Yt−1)

1: for k = 1 to M do
2: Get particlek from Yt−1:

xkt−1, {Bk1,t−1, . . . , B
k

Nkt−1,t−1
}, {Ck1,t−1, . . . , C

k

ηkt−1,t−1
}

3: x̂t = g
(
xkt−1, ut

)

4: MeasurementsLikelihood()
5: Ψkt = dataAssociation

(
Φkt

)

6: RobotPoseUpdate()
7: LandmarksUpdate()
8: end for
9: Yt = lowVarianceSampling

(
Ŷt, wk

)

approach based on a topological map for environments of
medium to large size.

Althoug most of the visual SLAM approaches are based
on EKFs [13], [15], [17], there are also approaches based on
FastSLAM [18], on decoupling the pose error from the map
error [14], etc.

.

III. SLAM A LGORITHM

The solution to the SLAM problem presented in this work
is an extension of the FastSLAM 2.0 algorithm [1]. The
novelties of the proposal are the data association process,
and the initialization of the landmarks. This modificationsare
necessary as the sensor is bearing-only, and the landmarks
are indistinguishable among each other. FastSLAM algorithms
use a Rao-Blackwellized particle filter [19], i.e., a filter that
represents the posterior with a combination of particles and
Gaussians. For FastSLAM, the particles estimate the robot
path, while the landmarks are filtered with EKFs. The main
contributions of our approach are:

• Hierarchical data association based on maximum
likelihood. As the sensor is bearing-only, and the land-
marks are indistinguishable, it is necessary to implement
a data association method. Our algorithm classifies the
landmarks in two categories: regular landmarks (named
landmarks in what follows) and candidate landmarks.
The landmarks compose the map, while the candidate
landmarks are those for which initialization was not
possible yet. The data association has to take into account
that the candidate landmarks are not reliable, i.e., most
of the candidate landmarks will disappear, and only few
of them will be transformed to landmarks. Therefore,
priority is given to the association of the measurements
to the current landmarks, while only those measurements
that were not associated in the first stage will be included
for the association with the candidate landmarks. This
hierarchical data association is based on a maximum
likelihood approach.

• Initialization of the landmarks . We propose a ini-
tialization mechanism for the landmarks in which the
3D position of each landmark will be obtained through
several consecutive detections from different positions.
Moreover, the process requires to approximate the inverse

model of the camera with a look-up table, in order to
obtain the angles of each feature from the pixels in the
image.

Our proposal is shown in Alg. 1. It receives the set of
measurements (zt) at the current timet, the control (ut) and
the previous set of particles (Yt−1). Each particlek contains an
estimated robot pose denoted as(xkt−1), a map ofNk

t−1 land-
marks{Bk1,t−1, . . . , B

k

Nkt−1,t−1
}, and the set ofηkt−1 candidate

landmarks{Ck1,t−1, . . . , C
k

ηkt−1,t−1
}. A landmark j is defined

as Gaussian with meanµkj,t−1, covarianceΣkj,t−1 and number
of times detected (ikj,t−1). Each candidate landmark is a set
of measurements{zkt−n, . . . , zkt−1} that could be transformed
into a landmark if the initialization conditions are fulfilled.
The steps of the algorithm can be grouped in the following
blocks:

• A main loop that iterates for each of theM particles
(Alg. 1 lines 1 to 8) to obtain the particle weights (wk).

– Measurements likelihood.For each combination of
landmarks and measurements, calculate the likeli-
hood of the association (φl,j) (Alg.2).

– Data association.Solve the data association (Alg. 1
lines 5).

– Robot pose update.The mean and covariance of
the proposal distribution will be calculated through
the contribution of each of the associated landmarks.
Finally, the pose of the robot will be sampled from
that distribution (Alg. 3).

– Landmarks update. Update each landmark with an
EKF and calculate the importance weight (wk) for
each particle (Alg. 4).

• Resampling. The new set of particles (Yt) is generated
by sampling the updated particle set (Ŷt) with probabil-
ities proportional to the particle weights (wk) using low
variance sampling (Alg. 1 line 9).

In the following subsections, the measurement model, the
data association, the robot pose update, the landmarks update,
and the landmarks initialization will be described in more
detail.

A. Measurement model

The sensor model that has been used is a feature-based
model, where the features are the lights placed on the ceiling of
the environment. These features are extracted from the images
obtained by an omnidirectional camera following a detection
process that was widely described in [20]. The output of the
feature extraction process is a list of pixel coordinates(ul, vl),
that represent the centroid of each featurel. This list must
be transformed into a measurements list (zl,t), where each
measurement is given by( ϕl,t, θl,t)

The used camera follows a projection model developed by
Pajdla and Bakstein [21] that indicates how a 3D point can be
transformed to a pixel in a 2D image. The model is described
as a function of two angles the azimuth (ϕ) and the elevation
(θ):
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r = a ∗ tan θ
b
+ c ∗ sin θ

d

ul = u0 + r ∗ cos ϕ
vl = β ∗ (v0 + r ∗ sin ϕ)





(1)

wherea, b, c,dare parameters of the model,(u0, v0) are the
coordinates of the center pixel of the image, andβ is the ratio
between the width and the height of a pixel.

The transformation of the measurements requires the inverse
camera model, i.e., given a pixel the inverse model returns
the coordinates of the 3D point in the world. However, the
camera model equations are not invertible. This has been
solved through a look-up table: given the coordinates of a
pixel, the look-up table provides the values ofϕ andθ. Fig. 1
shows a graphical representation of the look-up table. The
table only needs to be generated once, and this can be done
off-line. The process is as follows:

1) Sample the values ofϕ andθ with precisionsδϕ andδθ.
Equations 1 are used to obtain the corresponding pixel
coordinates.

2) Store, for each pixel, the maximum and minimum values
of ϕ andθ, as a range of values could correspond to the
same pixel.

(a) ϕ (white= π, black=−π) (b) θ (white= π/2, black= 0)

Fig. 1. Graphical representation of the values ofϕ and θ provided by the
look-up table for each image pixel.

B. Measurements likelihood and data association

The set of data associations (Ψkt ) between the measurements
and the landmarks will be establish based on the probability
that featurel corresponds to landmarkj (φl,j) (Alg. 2). The
loop from lines 1 to 13 iterates for all landmarks in order to
estimate all theφl,j values (Alg. 2 line 11). Each probability
depends on the measurement (zl,j), the predicted measurement
(ẑl,j , Alg. 2 line 10) and the measurement innovation covari-
ance matrix (Ql,j) (Alg. 2 line 11).

The measurement innovation covariance matrix (Ql,j) is
calculated taking into account the noise in the measurement
(Qt), the previous covariance of the landmark (Σkj,t−1), and
the Jacobian ofh (measurement model) with respect to the
measurement model variables. Moreover, the predicted co-
variance of the robot pose taking into account landmarkj

(Σx,j) depends on two terms: the motion noise (Rt), and the
measurement innovation covariance matrix (Ql,j).

Algorithm 2 Measurements likelihood algorithm
MeasurementsLikelihood()

1: for j = 1 to Nk
t−1 do

2: zj = h
(
µkj,t−1, x̂t

)

3: Hx,j = ∇xth
(
µkj,t−1, x̂t

)

4: Hm,j = ∇mjh
(
µkj,t−1, x̂t

)

5: for l = 1 to Nzt do
6: Ql,j = Ql,t +Hm,jΣ

k
j,t−1Hm,j

T

7: Σx,j = [Hx,j
TQ−1

l,j Hx,j +R−1
t ]−1

8:

9: µxt,l,j = Σx,jHx,j
TQ−1

l,j

(
zl,t − zj

)
+ x̂t

10: ẑl,j = h
(
µj,t−1, µ

k
l,j,t

)

11:

φl,j = (2π)−
Dim

(
Ql,j

)

2 |Qj |−
1
2

exp

{
−1

2

(
zl,t − ẑl,j

)T
Q−1
j

(
zl,t − ẑl,j

)}

12: end for
13: end for

The predicted measurement for landmarkj (ẑl,j) is esti-
mated fromµxt,l,j , which corresponds to the estimated robot
pose (using the motion model) plus a correction due to the
assignment of measurementl to landmarkj. This correction
is proportional to two terms. The first one can be interpreted
as the gain (in the same sense as the Kalman gain), and is in-
versely proportional to the measurement innovation covariance
matrix Ql,j , i.e. the higher the confidence in the measurement
innovation (lower covariance), the higher the gain. Moreover,
the gain is directly proportional to the proposal distribution
covarianceΣx,j , which means that the lower the confidence on
the motion prediction (high covariance) the higher the gain(the
correction due to the measurement has a high influence). On
the other hand, the second term is the difference between the
measurement and the prediction in the position of the landmark
zt (Alg. 2 line 2).

The data association is carried out hierarchically following a
maximum likelihood approach. In the first level, measurements
are assigned to the landmarks. Those measurements that have
not been associated in the first level are associated to the
candidate landmarks in the second stage. In this way, priority
in the association is given to the landmarks, as the candidate
landmarks are not reliable (many of them are created, but only
a few will be initialized).

C. Robot pose update

The robot pose (Alg. 3 line 14) is sampled from a proposal
distribution that considers both the motion and the observa-
tions. This proposal distribution is modelled as a Gaussian
with mean µxt and covarianceΣxt . The parameters of the
Gaussian are estimated starting from the sampled posex̂t and
Rt, and iteratively adding the corrections due to the assignment
of measurementzψj,t to landmarkj (Alg. 3 lines 6 to 11).

It is important to take care of the order in which the
landmarks are processed to generate the proposal distribution
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Algorithm 3 Robot pose update algorithm
RobotPoseUpdate()

1: if
Nkt−1∑
j=1

ψj == 0 then

2: xkt ∼ p
(
xt|xkt−1, ut

)

3: else
4: Σx,0 = Rt

5: µxt,0 = x̂t

6: for j = 1 to Nk
t−1 do

7: if ψj > 0 & type (j) == 1 then
8: Σx,j = [Hx,j

TQ−1
l,j Hx,j +Σ−1

x,j−1]
−1

9: µxt,j = µxt,j−1 +Σx,jHx,j
TQ−1

l,j

(
zψj,t − zj

)

10: end if
11: end for
12: Σxt = Σx,j

13: µxt = µxt,j

14: xkt ∼ N
(
µxt , Σxt

)

15: end if

as, in each iteration, the covariance of the proposal becomes
smaller and the influence of the landmark in the mean of the
proposal is lower. Therefore, landmarks with lower covariance
(higher confidence) are processed in first place and, in case of
having the same covariance, that with a lowerϕ of Ql,t will
be selected.

Finally, if none of the measurements have been assigned
to previous landmarks, then the pose is generated sampling
from the probability distribution given by the motion model
p
(
xt|xkt−1, ut

)
(Alg. 3 line 2).

D. Landmarks update

The update of the landmarks and the estimation ofŵ (the
contribution of each landmark to the weight of the particle)are
defined in different ways depending on the type of landmark
and measurement associations (Alg. 4 loop from line 2 to 27).
Two different situations are possible:

• Landmarks with assigned measurements (Alg. 4 lines 3
to 18).

• Landmarks not seen in the current iteration (Alg. 4 lines
18 to 25). There are two possibilities:

– The landmark is outside the perceptual range of the
sensor.

– The landmark is inside the perceptual range of the
sensor.

For the first situation,ikj,t is incremented as the landmark
has been detected. The update of the landmarks follows the
standard update process of an EKF: first the Kalman gain
K is obtained (Alg. 4 lines 8) using the previous landmark
covarianceΣkj,t−1 and the measurement innovation covariance
matrix Q̃j . Although the measurement innovation covariance
matrix Q̃j was estimated previously, we have to estimated it
again because the Jacobian of the measurement model with
respect to the measurement model variablesH̃m,j depends
of the robot pose and, now, the estimated pose (xkt ) is more
reliable than the predicted posêxt. The same applies to the
prediction of the measurementz̃j (Alg. 4 line 5).

Algorithm 4 Landmarks update algorithm
LandmarksUpdate()

1: wk = 1

2: for j = 1 to Nk
t−1 do

3: if ψj > 0 then
4: ikj,t = ikj,t−1 + 1

5: z̃j = h
(
µkj, t−1, x

k
t

)

6: H̃m,j = ∇mjh
(
µkj,t−1, x

k
t

)

7: Q̃j = Qψj,t + H̃m,jΣ
k
j,t−1H̃

T
m,j

8: K = Σkj,t−1H̃
T
m,jQ̃

−1
j

9: µkj,t = µkj,t−1 +K
(
zψj,t − z̃j

)

10: Σkj,t =
(
I −KH̃m,j

)
Σkj,t−1

11: if Υj == 1 then
12: H̃x,j = ∇xth

(
µkj,t−1, x

k
t

)

13: L = H̃x,jRtH̃
T
x,j + Q̃j

14:

ŵ = (2π)−
Dim(L)

2 |L|− 1
2

exp

{
−1

2

(
zψj,t − z̃j

)T
L−1

(
zψj,t − z̃j

)}

15: else
16: ŵ = 1

17: end if
18: else
19: µkj,t = µkj,t−1

20: Σkj,t = Σkj,t−1

21: ŵ = 1− pin

22: if µkj,t−1 is inside perceptual range ofxkt then
23: ikj,t = ikj,t−1 − 1

24: end if
25: end if
26: wk = wk · ŵ
27: end for
28:

{Ck1,t, . . . , Ckηkt ,t
} =

updateCandidateLandmarks
(
zt,Ψkt , {Ck1,t−1, . . . , C

k

ηkt−1,t−1
},
)

29: (
{Bk1,t, . . . , BkNkt ,t

}, {Ck1,t, . . . , Ckηkt ,t
}
)

=

updateLandmarksType
(
{Bk1,t−1, . . . , B

k

Nkt−1,t−1
}, {Ck1,t, . . . , Ckηkt ,t

}
)

Then, the meanµkj,t is updated proportionally to the gain and
the difference between the measurement and its prediction.A
high Kalman gain means that the confidence in the update
is high. This can occur if the previous covariance of the
landmark was high, so we will pay more attention to the
current measurement. Also, if the measurement innovation
covariance is low (high confidence in the innovation), the gain
is high.

The contribution of the landmark to the weight of the
particle (̂w) represents the probability of the assignment of
the data associationψj for the landmark. It is calculated from
a Gaussian distribution with meañzj (predicted measurement)
and covarianceL for the valuezψj,t (measurement assigned
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to the landmark). This covariance is proportional to the noise
motion (Rt) and Q̃j . When the landmark has not been associ-
ated to any measurement, its mean and covariance remains
unchanged. Moreover, if the landmark is in the perceptual
range, then the counterikj,t is decremented (Alg. 4 line 22).
The weightŵ is estimated based of the probability of visibility
of the landmark (pin). Finally, the weight of each particle
wk is calculated as the product over all the weights for
each landmark in the map (Alg. 4 line 26), as we assume
independence among the landmarks.

E. Landmarks types and initialization

The generation of new landmarks from candidate land-
marks, and the modification of the type of each landmark
takes place at the end of the algorithm, with functions
updateCandidateLandmarks() andupdateLandmarksType():

1) updateCandidateLandmarks():The candidate landmarks
are updated with the measurements that were not associated
to the landmarks of the map. The correspondences of each
candidate landmark with the features is decided on the second
level of the data association process (see Sec. III-B), based on
the probability p(zl,t|xt, Cj,t−1). This probability is obtained
from a Gaussian distribution with mean̂zl,t and covariance
Qj,l.

Given the correspondences obtained in the data association,
the following situations may occur:

• Candidate landmark (Ckj ) with an assigned measurement.
The measurement is added to the candidate landmark,ikj
is increased, and the algorithm checks if initialization of
Ckj as a landmark is possible.

• The measurement belongs to a new candidate landmark.
The measurement is added toCkj and ikj is set to1.

• Candidate landmarks (Ckj ) has no assigned measurements.
Update the value ofikj = ikj,t−1 − Inot, where Inot is the
number of consecutive iterations in which the candidate
landmark was not observed. Ifikj is not over 0, then delete
the candidate landmark.

Z
t-2,C1

Z
t-1,C1

Z
t,C1Z

t-2,C2

Z
t-1,C2

Z
t,C2

C1 C2

Xt-2 Xt-1 Xt

Fig. 2. Candidate landmarks.

Our sensor is bearing-only and, thus, from a single measure-
ment only anglesϕ and θ can be obtained for each feature.
However, in order to estimate the 3D position of a landmark
the distance to it (ρ) is also necessary. Therefore, at leastNZMin

measurements of the landmark taken from poses of the robot
that are far enough from each other are needed (Fig. 2). A

candidate landmark (Ckj ) will become a landmark if it fulfills
the following requirements:

1) NZkj ≥ NZMin, whereNZkj is the number of measurements
associated along time to candidate landmarkCkj , and
NZMin is a threshold.

2) Of all the calculated cross-points at leastNCROSSVALID

of them are valid. A cross-point is valid if it fulfills the
following properties:

a) The measurements used to obtain the cross-point
were taken from robot poses that are separated by
a minimum angleANGMin.

b) The height of the cross-point is over the height of
the camera.

c) The probability of all the measurements (associated
to the candidate landmark) and the cross-point is
over PNew.

3) One of the valid cross-points has been generated from
the current measurementzt .

If the candidate landmark is initialized, its mean is set to
the pose of the valid cross-point with the highest probability
over all measurements, and its covariance is set to the default
initial covarianceΣ0.

2) updateLandmarksType():To add more reliability to the
system, landmarks in the map are classified into types I and
II. A landmark will be type I if has been initialized with
measurements taken from robot poses whose distances in the
XY plane from the valid cross-point are lower thanDMin. Those
landmarks that do not meet this condition will be type II,
but they have the same priority as type I landmarks for data
association.

The reliability of type II landmarks is lower that type I
landmarks, as the were initialized from measurements in which
the pose of the robot and the pose of the landmark were far
away, and this can cause erroneous initial positions. Thus,they
are not taken into account to estimate the pose of the robot
(Alg. 4, lines 6 to 11) or the weights of the particles.

At each iteration,updateLandmarksType() checks if the
landmarks of type II fulfill the requirements of type I land-
marks. Moreover, all landmarks whose value ofikj is negative
will be deleted from the map.

IV. EXPERIMENTAL RESULTS

The SLAM algorithm has been tested with aPioneer 3-
DX robot equipped with an omnidirectional camera placed at
1.8m over the floor, in order to minimize the occlusions due to
people. The test environment was a sports hall (Fig. IV) witha
size of45x 25m2. The landmarks used in the experiments were
the lights placed at a height of6.5m. In order to make features
extraction easier (Fig. IV), a passband infra-red filter wasused.
As can be seen, the environment also has big windows that
modify the lightning conditions, occluding the artificial lights
that were situated near them.

All the experiments have been executed with the follow-
ing values for the parameters of the algorithm:NZMin =

3, NCROSSVALID = 5, ANGMin = 7, DMin = 8.0m., Σ0 =

[0.0025 0.0; 0.0 0.0025] and PNew = 1
2π

∣∣Ql,t
∣∣− 1

2 exp{− 64
2
}. Also,

images were captured at a frequency of1.0Hz, and the linear
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(a) Original image. (b) Detected features.

Fig. 4. Features detection.

Fig. 3. Test environment.

and angular velocities of the robot were limited to0.30m/s and
0.52 rad/s respectively. Finally, the number of particles was set
to 10, after evaluating the performance of the algorithm with
several sizes. This particles set size is sufficient to warranty
the stability of the system and to achieve accurate results.

Fig. 5 shows one of the experiments1, with a trajectory of
40m long and a total of149 captured images. Fig. 5(a) shows
the estimated trajectory and the obtained map, together with
the real trajectory (GT robot) and the real map (GT map).
Also, the errors in the pose of the robot (position and angle)
along the experiment are also represented in Fig. 5(b). Table
I shows the map obtained by the SLAM algorithm, the real
map, and the errors in the position of the landmarks (for each
dimension, and the total error).

As can be seen, the error in the angle of the robot is really
small in most of the time steps of the experiment. Regarding
the position of the robot, at the beginning the error increases
as the landmarks have a high covariance due to a recent
initialization. As the landmark positions are stabilized,the

1The associated video can be downloaded from
http://www.gsi.dec.usc.es/mucientes/videos/WAF12SLAM.mp4

SLAM map (m) GT map (m) Error (m)
ID x y z x y z |x| |y| |z| ||xyz||
5 13.91 -5.16 5.82 13.5 -5.5 6.5 0.41 0.34 0.68 0.86
6 13.53 -0.87 6.33 13.5 -1.0 6.5 0.03 0.84 0.17 0.85
7 14.05 3.38 6.22 13.5 3.5 6.5 0.45 0.12 0.28 0.54

9 22.48 -5.98 7.12 22.5 -5.5 6.5 0.02 0.48 0.62 0.78
10 22.19 -1.02 6.69 22.5 -1.0 6.5 0.31 0.02 0.29 0.42
11 21.81 3.70 6.85 22.5 3.5 6.5 0.31 0.20 0.35 0.50

13 31.59 -5.01 6.17 31.5 -5.5 6.5 0.09 0.49 0.33 0.60
14 31.21 -0.36 6.25 31.5 -1.0 6.5 0.29 0.64 0.25 0.74

TABLE I
MAP ERROR

error in the position of the robot is reduced (central part ofthe
experiment). When the robot arrives to the top right corner,
due to the absence of a landmark, it looses the references to
its left side and the error starts to grow. As a consequence,
the landmarks on the right of the environment are poorly
initialized, and the robot is not able to correct the position.
Finally, when the robot starts to see previous well placed
landmarks, the error goes down near zero. The mean error
in the position of the landmarks is0.66m and the maximum
is 0.86m (table I). This values reflect the performance of the
SLAM algorithm as, although the sensor is bearing-only, and
the landmarks are detected far away from the camera (always
with a distance over4.5m, as they are placed close to the
ceiling), their positions are quite accurate.

In order to evaluate the robustness of the algorithm, we
have executed the same experiment 10 times, each one with a
different seed. This test evaluates the algorithm independently
of the randomness due to the sampling of the pose of the robot
(Alg. 3 line 14). The results for each seed are shown in Fig. 6.
Both the average and the maximum errors in position and
orientation for each run are shown. The graph also displays the
mean and standard deviation for all the executions, both forthe
average and maximum errors. The mean of the average errors
is 0.30m in position and0.03 rad in orientation, while the mean
of the maximum errors is0.67m and0.16 rad respectively. With
these values, we can conclude that proposed SLAM algorithm
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Fig. 5. Trajectory, map and errors of one of the experiments.
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Fig. 6. Mean and maximum errors for 10 runs with different seeds.

is able to reliably estimate the pose of the robot and the map.

V. CONCLUSIONS

A SLAM algorithm, based on FastSLAM, using omnivision
has been presented. Our system uses a bearing-only sensor,
and the landmarks are indistinguishable. The main novelties
of our proposal are the hierarchical data association basedon
maximum likelihood and the way the landmarks are initialized.

Experiments have shown a great accuracy, both in the pose
of the robot and in the map, although the limitations of the
bearing-only sensor and the distance between the robot and the
landmarks. Moreover, we have also evaluated the robustness
of the algorithm through several runs with different seeds,
obtaining in all the experiments good results. As future work,
we plan to improve the data association, as this stage is
fundamental for a good performance of our proposal.
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