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Abstract—This paper describes the solution adopted to localize
a guide robot at the Domus Museum based on omnidirectional
vision and a known map of the beacons in the environment. We
propose a merit function that ranked different proposed position
for each acquired image and an iterative process based on
particle filter for minimizing this function. Finally, experiments
in the Domus Museum are shown which demonstrate that our
system localizes a mobile robot in a very complex and crowed
environment with accuracy and robustness and it can be executed
in real time.

Index Terms—Global localization, omnivision, robot guide.

I. INTRODUCTION

ROBOT localization is one of the most important problems

in autonomous mobile robotics. Determining the location

of a mobile robot is finding the Cartesian coordinates and

angular orientation relative to an external frame. It requires to

be reliable, robust and executable in real time.

There are several possibilities to find out a solution using

different types of sensors: laser, ultrasonic, or infrared sensors

and vision. Nowadays vision sensors are preferred to the other

ones, because for a low cost they can reflect accurately more

details of the environment and they can run and be processed

in real time due to the improvements made in computers in

the last years.

Our work consists of a positioning system that uses artificial

vision to estimate the position of the camera (i.e. robot Fig. 1)

from a map of beacons. The camera is pointing to the ceiling

and elevated 1.5 m above the robot (1.8 m above the ground),

so that its movements are restricted to the xy plane and the

noise or occlusion generated by moving people is minimized.

We use the omnidirectional camera shown in Fig. 2. It

provides a very wide field of vision (FOV of about 185o)

which covers half the space of the environment and so it can

obtain a lot of information about it in one acquisition.

A beacon can be any distinctive and recognizable object on

the environment. This work uses the own environment lights.

These are easily detectable, repetitive and usually visible along

large trajectories. On the other hand, any building has lights

(Fig. 3), so there is no need for prior preparation of the

environment in order to use our localization method. The main
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Fig. 1. The vision system in the Guide Mobile Robot, based on Pioneer 2AT,
used at the Domus Museum in A Coruña (Spain). The omnivision camera is
marked with a circle.

(a) (b)

Fig. 2. (a) Omnidirectional lens (185o FOV). (b) Omnidirectional image
acquired with our omnidirectional camera.

problem is their individual identification, because they usually

are identical.

Section II expounds an overview of related work. The next

two sections describe deeply our omnivision and localization

system. Section V presents the experimental results in a real

environment. And finally, last section is devoted to conclusions

and future work.
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Fig. 3. Beacons used to localize the guide robot in the Domus Museum: (a) 2D environment map with glares (circles), the position of each glare can be
seen in table I; (b) Some glares labeled with E and A in the map; (c) Glares labeled with A in the map. The position of each beacon are shown in Table I

II. RELATED WORK

The first work that considered omnidirectional vision to

locate a mobile robot was published in 1986 by Cao et at

[3]. But few related studies were published before the end of

the nineties. Nowadays, such systems have become popular

due to their low cost in addition to the benefit of having a

very wide field of vision.

There are two types of possible omnidirectional vision

configurations: catadioptric as [2], [5], [10], [9] (where the

camera images are obtained through a conic mirror) and

dioptric (where images are captured through a lens).

Some works as [5], [11], [8] are limited to the routes that

the agent has previously learnt. These approaches create a

database with images of every route and their positions, and

the robot can be localized by correlation between the captured

images and the database images in real time. These systems

have the drawback that they can not work in other routes on

the environment.

Other implementations use landmarks (beacons) of the

environment to get the position of the robot. For instance,

in [10] the goals of a field of RoboCup are used as marks

and [2], [12] is based on features of the environment (corners,

walls, lights . . . ) which were previously mapped.

Our model is similar to these ones but, in addition, we

do not have the occluded beacons problem and our process

to discover beacons is simple, fast and efficient. A similar

approach to using an omnivision camera oriented to the ceiling

is used on [9], but it is based on an information theory to get

the global trajectory.

III. PROJECTIONS IN AN OMNIVISION SYSTEM

A. Camera Model

The camera model describes how a 3D scene is transformed

into a 2D image (Fig. 5). The standard model is the Pin-Hole,

which projects the scene on a flat retina (Fig. 4), but it is

limited to cameras with FOV << 1800.

The model that best fits our system was developed by Pajdla

and Bakstein [1] based on a spherical retina (Fig. 4) where the

image is formed on a curved surface. In our case the radial

symmetric function is:

r = a ∗ tan
θ

b
+ c ∗ sin

θ

d
, (1)
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TABLE I
POSITION IN METRES OF THE BEACONS IN THE ENVIRONMENT LABELED

IN FIG. 3(A).

LABEL X Y Z

Glares Type E

E1 -3.45 -2.26 11.39

E2 1.34 -2.15 11.24

E3 5.9 -2.04 11.29

E4 10.56 -2.25 11.43

E5 15.8 -2.50 11.48

E6 21.1 -2.80 11.60

Glares Type A

A1 -6.45 -10.00 11.39

A2 0.34 -9.15 10.50

A3 5.9 -10.24 10.50

A4 10.56 -11.25 10.50

A5 15.8 -10.50 10.50

A6 21.1 -5.70 10.50

Glares Type B

B11 14.98 2.86 3.25

B12 14.98 2.00 3.25

B13 14.99 1.69 3.29

B21 17.71 3.51 3.24

B22 17.5 2.28 3.24

B31 20.16 3.21 3.16

B41 22.13 3.08 3.16

B42 22.13 2.08 3.16

B43 22.13 0.3 3.16

B51 24.34 2.47 3.14

B52 24.34 2.07 3.14

B53 24.54 1.77 3.14

B54 24.34 -0.97 3.24

B61 27.50 1.97 3.24

B62 27.50 1.67 3.24

B63 27.50 1.37 3.24

B64 27.50 0.17 3.24

R65 27.50 -1.27 3.24

Fig. 4. The Pin-Hole camera model based on a flat retina (left) compared
with the omnidirectional camera model based on spherical retina (right).

Fig. 5. Theoretic omnidirectional camera model and projection of a point
B. Its projection ray is defined by the elevation (θ) and the azimuth (ϕ) with
respect to the camera coordinate system. r y ϕ are the polar coordinates of the
projected point (uB , vB). (u0, v0) are the coordinates of the image center.

where a, b, c, and d are the adjustment parameters of the

model, r is the distance in the image between the projection

point of B ((uB , vB)) and the image center ((u0, v0)), and θ

is the elevation of B regard to the optical axis of camera (see

Fig. 5).

This function makes it possible to calculate the coordinates

of the image (u,v) depending on the azimuth (ϕ) and the

elevation (θ) (Fig. 5):

u = u0 + r ∗ cosϕ

v = β ∗ (v0 + r ∗ sinϕ)

}
(2)

where β is the relationship between the width and height

of a pixel.

B. A Beacon Projection

If we have the coordinates of beacon i (BW
i ) and the coor-

dinates of the camera CW , both in respect to the environment

reference system (W), we can calculate the projection line of

the beacon BC
i (B in 5) relative to the camera (C).

BC
i = RC ∗ BW

m − CW (3)
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Algorithm 1 Calculate Map(P ) for one position P.

for all Beacons Bi
W on the map (in world cartesian

reference system) do

BC
i = RC ∗ BW

m − CW

Proj(BP
i) = (uBP

i
, vBP

i
) applying 1 and 2

end for

where RC is the rotation matrix of CW relative to W .

The traditional Euclidean transformations apply to obtain

the elevation (θ) and the azimuth (ϕ) angles from BC
i .

To get the projection of the beacons BW
i , Proj(BC

i), as

image coordinates (uBandvB in Fig. 5), we apply the Eq. 1

and 2:

Proj(BC
i) = (uBC

i
, vBC

i
) (4)

C. Ceiling Map Projection

We have named ceiling map projection, Map(P ), to the set

of theoretical positions that each beacon in the environment

(BW
i) would have in the image (u, v), the pixel where it

would be (Sec. III-A), if the robot was at the position P . The

algorithm used is detailed in Alg. 1. A graphical example is

showed in Fig. 7.

IV. GLOBAL LOCALIZATION

To localize a guide robot at the Domus Museum based

on omnidirectional vision and a known map of the beacons

in the environment (Fig. 3) we propose a merit function

that evaluates each proposed position and an iterative process

(based on a particle filter) for minimizing that function. Our

process follows the same idea as particle filter but it does not

use any motion model. For each position (particle) we build its

ceiling map projection, Map(P ) using Alg. 1, and compare it

with the detected beacons in the image. The general scheme

of our method can be seen on Fig. 6. The image processing

was explained in a previous work [7]. The other parts of the

system will be described here, but first we are going to explain

the merit function and then the minimization process.

A. Merit Function

The Merit Function is presented in Eq. 5. It estimates the

similarity between the image acquired with the camera and

one ceiling map projection Map(P ) (artificial image built for

one position based on the theoretical model, see Sec. III-C).

M(P ) = 1

NP
∗ εP (5)

where NP , is the number of matchings between beacons

detected in the image and Map(P ), and εP is the accumulated

error for this associations, the sum of the errors between

detected landmarks (beacons) on the image and Map(P ) at

one position (see Fig. 7). This calculation is detailed in Alg.

2. A graphical example and the matching process is illustrated

in Fig. 8

Fig. 6. General scheme of our global localization system from an omnivision
image and the map of beacons.

Fig. 8. Matching between detected landmarks (beacons) Bj on the image

and the ceiling map projection Proj(BP
i) (labeled with PBi). N(P ) = 3

and εP = r13 + r24 + r32 + THRESHOLD.

B. Minimizing Process

The minimizing process consists of searching a position

in the environment that has the minimum value of the merit

function. To explore all possible positions we use a particle

filter, defining a particle as a position in the environment. The

filtering mechanism has two stages for each position (it is

explained in detail in Alg. 3): initialized sample and resample.

1) Initialized sample: At the start we generate a set of par-

ticles ζ uniformly distributed around the whole environment.

In our experiment represented in Fig. 9 they are distributed

every 2 metres and 10 degrees.

For each position P , we estimate its merit function value

M(P ) applying Alg. 2 to compute the number of ’matched’

beacons (NP ) and its ’quality’ (εP ). The best particles of the

set ζ are selected to pass to the next stage and the others are

discarded. In our experiments (Fig. 9) we selected the particles

64 IX Workshop en Agentes Físicos, Vigo 2008



(a) (b)

Fig. 7. Comparison of the projection Map of Ceiling, Map(P ), with detected beacons: (a) Original image; (b) Graphical representation of the projection
map (gray enumeration) in the processed image with beacons detected (black enumeration). All beacons detected and projected in shaded region are in the
horizont and they will be discared to calculate the M(P ).

Algorithm 2 Calculate the Merit Function (NP and εP )

Map(P )
for all Beacons j in the image do

for all Beacons i in Map(P) do

ε(BP
ij) = ‖Proj(BP

i)−Detected(Bj)‖
if ε(BP

ij) < THRESHOLD then

εP = εP + ε(BP
ij)

NP = NP + 1
else

εP = εP + THRESHOLD

end if

end for

end for

Algorithm 3 Minimization of the Merit Function.

Initialized set of particles ζ

repeat

for all P in ζ do

Calculate Map(P ) (Alg. 1)

Calculate NP and εP (Alg. 2)

Calculate M(P) (Eq. 5)

Resample ζ

end for

until Niter < 0

that have the best value of the merit function.

2) Resample: The stage of resample is a routine that

generate new particles adding noise to the positions in ζ

according to a Gaussian distribution. This stage is executed

iteratively until our set is stabilized.

In our experiment we generate 5 new positions, from each

position which belongs to the 15% best of the set ζ adding

noise generated randomly in the range [−0.50m, 0.50m] and

[−5o, 5o]. From the best 25% of the rest of positions another

one position is generated. We have tested another resample

models, but there was not significative differences in the final

results.

Only the top positions of ζ according to M(P ) are selected

to execute the next iteration.

Figure 9 shows the evolution of the set of particles for the

images captured from two different positions at the Domus

Museum. In the last row of images in Fig. 9(i) and 9(j) the

positions with best values of the merit function can be seen for

each position. Noted that in Fig.9(j) the particles are grouped

in two sets which means that there is a symmetry in the

positions of the beacons and then in the merit function M(P ).
The second row shows the initialized stage of the filtering

process, only the positions with the best values of M(P ) are

selected.

The 3D position of the camera is those that reach the

minimum value according to our merit function. It happens

when the number of beacons identified NP is the largest and

the error εP estimated is smallest:

CW = P̂ \M(P̂ ) = min
P∈ζ

(M(P )) (6)

V. EXPERIMENTAL VALIDATION

The experiments were carried out at the Domus Museum

in A Coruña (Spain) in a section of about 27m x 7m (Fig.

3(a)). The experiments were performed off-line on different

sequences of images acquired in the museum. All images were

labeled with the corresponding laser position, and 1 image per

second was acquired on average.

The experiments have a length of 60 images, which corre-

sponds to a path of about 24 meters long. Between all images

the distance is about 0.40 metres on average. The trajectory

travelled in the map taking into account the positions of laser

sensor and the positions computed in our system is showed in

Fig. 10(a).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 9. Results for global localization in the Domus Museum for 2 different positions (left and rights columns, respectively), positions 8 and 50 in Fig 10.
(a,b) Captured omnivision images. (c,d) Top 200 positions in the initialization stage. Real positions are marked with a square and calculated positions (Eq.
6) are marked with a circle. (e,f) First iteration of the resampling process. (g,h) Third Iteration. (i,j) Last iteration.
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After several experiments, the best results (precision and

processing time) were achieved using 6 iterations with 200

particles.

Figure 10(b) shows the localization error. It was calculated

as the Euclidean distance between the position of the robot

given by the laser and the position obtained through the

minimization of our merit function. The maximum error is

2.42 metres and the average error is 0.53 metres.

The error in orientation (Fig. 10(c)) was estimated from

the absolute error in degrees between the orientation of the

laser and the orientation obtained by using our merit function.

Although the maximum error achieved 15 degrees, on average

the error is only 3 degrees.

The time required for the computation of the algorithm (Fig.

10(d)) depends on the total number of positions checked and

the number of iterations. In our experiment, the total number

of particles checked in our system is 702 in the initial phase

and 200 for each of the other 6 iterations, which makes a

total of 2502 particles checked. In an desktop computer Intel

Pentium 4 CPU 3.06GHz the full process for this particles

require an average of about 300 ms. Note that the time for

processing each image (vision time) its insignificant in our

system. Therefore, our localization system can be executed in

real time.

VI. CONCLUSIONS AND FUTURE WORK

The solution adopted in this study to locate a guide robot

at the Domus museum is based on searching the ceiling

map projections from the images acquired each time that the

robot needs to know its position. Our omnivision system is

composed of an IR filter that reduces the image process to

find the lights. The localization system is based on the search

of the position that minimizes the merit function. The only

previous information needed is a map of the glares in the

environment.

It is noticeable that the Domus museum is a crowded

environment, so that another distance sensor like laser or

ultrasonic could not work. The management of the museum

imposes the restriction of not to modify the environment

because the image and design of the exhibition halls can not

be broken. Indicate also that the environment has an irregular

floor, it produces swinging in the camera support that may

increase the error.

The most important problem of the system is the symmetry

problem. It can produce error because there are some positions

in the environment from which the views of the ceiling are

similar, this can mislead the system.

We want to highlight that our system was designed to cope

with occlusions, since our beacons are located in the ceiling

and only other objects in the environment can caused the

problem. Moreover the very wide visual field guarantees that

enough beacons will be viewed from our sensor to estimate a

good localization. In our experiments we considered only 31

glares and we can localize the robot in a space of 216m2.

In spite of the mean of around 0.6 metres we conclud from

the results of our experiments that the system can localize

the robot in a robust and accurate manner. Besides, this error

could be reduced adding the robot action model used in the

probabilistic algorithms ([13], [4]) the Extended Kalman Filter,

Monte Carlo methods or Bayesian filtering and the fusion of

information from other sensors like laser or odometry. The

implementation of these models in our guide robot will be

made in future work. The final objective of our work is to

produce a SLAM ([6]) system for omnivision that allows

the localization in any environment without the restriction of

having a previous map.
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Fig. 10. Experiments on the Domus Museum: (a) Omnivision localization (gray) plotted on the grid map created with laser data (real trajectory is marked
with dark circles). (b) Position error between laser pose estimation and the omnivision localization.(c) Orientation error between laser pose estimation and
omnivision localization. (d) Time for procedessing each images.
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