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Abstract— This work presents a localization system for a
robot guide on a crowded environment based on omnidirec-
tional vision and a map of ceiling landmarks. The developed ap-
proach uses a Monte Carlo particle filter to manage uncertainty,
both on observations and control, in order to track the position
of the robot. We describe how landmarks are detected on each
image and how the problem of landmark association is posed.
To demonstrate the robustness and reliability of our system,
we present experiments carried out in a real environment, the
Domus Museum in A Coruña (Spain). Results show that the
proposed localization system can run on real time and along
middle-long trajectories.

I. INTRODUCTION

Robot localization is one of the most important tasks in

autonomous mobile robotic. Most of the action a robot has to

perform require the knowledge of its position. Determining

the location of a mobile robot is estimating the Cartesian

coordinates and angular orientation relative to an external

reference frame. It requires to be reliable, robust and exe-

cutable on real time.

Our system has been developed for a guide robot (Fig. 1)

at the Domus Museum (Fig. 2 and 3) located in A Coruña

(Spain). This environment is highly populated and, therefore,

typical range sensors like laser o ultrasonic devices do not

work accurately in normal conditions, we are not allowed to

modify the environment introducing artificial landmarks to

facilitate localization. Thus we have decided to use artificial

vision and natural landmarks of the environment to estimate

the position of the robot.

A landmark can be any distinctive and recognizable object

on the environment. This work uses the lights placed on the

ceiling of the museum (Fig. 2) which are easily detectable,

repetitive and usually visible along large trajectories. On the

other hand, any building has lights, so there is no need for

prior preparation of the environment in order to use our

localization method. The main problem is the difficulty to

distinguish among different landmarks, as they are usually

equal.

The camera is pointing to the ceiling and fixed on the robot

over 1.5 m above it (Fig. 1), so that their movements are

restricted by the degrees of freedom of the robot (a Pioneer

IIAT) and the noise or occlusions generated by moving

people is minimized. As our camera is an omnidirectional
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Fig. 1. The vision system in the Guide Mobile Robot, based on Pioneer
IIAT, used at the Domus Museum in A Coruña (Spain). The omnivision
camera is marked with a circle.

(a) (b)

Fig. 2. Examples of landmarks in the Domus Museum: (a) Some lights
labeled with E and A on Fig. 3; (b) Lights labeled with B on Fig. 3.

camera (Fig. 4), it means a very wide field of vision (FOV

around 185o) which covers the half space of the environment

and obtains a lot of information about it in each acquisition.

It is noteworthy that the floor of the environment is very

irregular and produces swinging in the camera support. This

increases the noise both in the observations (images) and

in the estimation of the robot’s position with the odometry

system.

A Monte Carlo localization algorithm [15] has been used

to solve the tracking position problem. The key-point of the
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Fig. 3. Map and landmarks (lights) used to localize the guide robot in the Domus Museum. Lights (circles) with the same height (shown in parenthesis)
are classified in three regions.

(a) (b)

Fig. 4. (a) Omnidirectional lens (185o FOV). (b) Omnidirectional image
acquired with our omnidirectional camera.

algorithm is to manage the uncertainly in robot perception

and action by means of Probability Density Functions (PDF).

In the case of Monte Carlo localization, the PDF is estimated

with a particle filter.

Section II exposes an overview of related works. The

next three sections describe the vision system and landmark

detection on the images, the omnidirectional camera and the

Monte Carlo localization process. Section VI presents the

experimental results in a real environment, and finally, the

last section points out conclusions and future work.

II. RELATED WORK

There has been extensive research in the literature to

solve the localization problem using vision. Most of them

use landmarks in the environment as a reference to obtain

the robot positions. The works that use artificial landmarks

were not addressed here since they can not be applied in

our environment because of its peculiarities, that we have

described in the last section.

Concerning omnidirectional vision to locate a mobile

robot, the first work was published in 1986 by Cao et at

[4]. Although few related studies were published before the

end of the nineties. Nowadays such systems, for example

[13], [3], [10], [1], [9] and [12], have become popular due

to their low cost in addition to the benefit of having a very

wide field of vision.

The probabilistic approach is the most used in recent

publications. One example is [14]. In which, a Monte Carlo

localization algorithm is suggested to solve global localiza-

tion problem using a camera. They used a visual map of

the ceiling, obtained by mosaicing, and localized the robot

using a simple scalar brightness measurement as the sensor

input. The camera pointed to the ceil just the same settings

our system has. But unlike the present work, this system is

sensitivity to bumps and as a result of the small FOV of the

camera, there are instants that hardly any lights can be seen.

This causes more uncertainly in the system. Another similar

approach is [12], which use an omnivision camera oriented

to the ceiling too, but it is based on information theory to

get the global trajectory. The main problem of this work is

the hight cost of computing.

[1] and [10] use Monte Carlo filtered too but they create a

database with images of every route and their positions. The

robot can be localized by correlation between the captured

images and the database images in real time. These systems

have the drawback that they can not work in other routes on

the environment.

Menegatti et at. [9] have developed a system which uses

a chromatic map of the floor to compute the robot pose.

They obtained similar results but their system is limited a

environments with natural color transitions and it is also

light-sensitive.

Another popular probabilistic algorithm is the Kalman

filter and it was considered in [7], [6], [8] and [11] to

implement SLAM using a single camera. A limitation of this

system is it need a large number of distinguishable features to

perform accurately. On the other hand the number of features
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it can handle to process on real-time are restricted. Moreover

t Kalman filter is not scalable. So that it is limited to small

rooms. In contrast our work can operate in a large hall using

only 31 landmarks.

III. VISION SYSTEM

The vision system (Fig.4) consists on a color digital

camera MDCS2, equipped with an omnidirectional lens (fish-

eye) FE185CO46HA-1 and an infrared baseband filter (IRP),

model HOYA IR85. The camera is mounted on the robot with

its optical axis perpendicular to the plane of the ground and

pointing to the ceiling (Fig. 1).

(a) (b)

Fig. 5. Optical filtering effect: (a) original image, (b) filtered image (only
IR light is detected).

The use of a high resolution omnidirectional lens, with

a very wide field of vision (FOV), reduces the number of

landmarks needed, as they can be seen from more different

points of the environment 4.

The infrared filter baseband (IRP) attenuates the com-

ponents of visible light and only lets the close range pass

IR(Fig. 5).

A. Landmark detection

The process of detecting landmarks consists of 5 phases:

acquisition, preprocess, segmentation, recognition and fea-

tures extraction. The output of the system is an array of

features for each landmark. The first four stages are imple-

mented using the OpenCV library. The images are grayscale

and size 640x480 (Fig. ).

In the preprocess phase the image (Fig. 6(a)) is trans-

formed to facilitate the processing in the next stages. The

techniques that have been used are binary thresholding (Fig.

6(b)) and morphological filtering (’closure operator’) (Fig.

6(c)).

As segmentation techniques a Canny filter (Fig. 6(d)) and

contour extraction (Fig. 6(e)). The next step is to extract the

characteristics of each region:

• Ratio: number of pixels around the perimeter.

• Centroid: coordinates of the center of gravity

• Radio: centroid distance to the center of the image.

• Azimuth: orientation of an object in the image with

respect to axis X, ϕ on Fig. 8

If a ceiling light points directly to the camera, then the

acquired image will be saturated. In such cases, one big blob

can be detected and the image have to be preprocessed again

using a higher threshold. This situation is very frequent in

(a)

(b) (c)

(d) (e)

Fig. 6. Detecting landmarks in the omnidirectional filtered image: (a)
original image, (b) binary thresholded, (c) close, (d) edges and (e) contours.

the region labelled as B (Fig. 3) because lights can be very

close to the camera.

IV. MAP PROJECTIONS BASED ON OMNIVISON

CAMERA MODEL

In this section we present the model of our omnivision

camera and how it can be used to project the objects of the

environment to form an image.
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Fig. 7. The Pin-Hole camera model based on a flat retina (left) compared
with the omnidirectional camera model based on a spherical retina (right).

A. Camera Model

The camera model describes how a 3D scene is trans-

formed into a 2D image (Fig. 8). The standard model is the

Pin-Hole, which projects the scene on a flat retina (Fig. 7),

but it is limited to cameras with FOV << 1800.

The model that best fits our system was developed by

Pajdla and Bakstein [2] based on a spherical retina (Fig. 7)

where the image is formed on a curved surface. In our case

the radial symmetric function is:

r = a· tan
θ

b
+ c· sin

θ

d
, (1)

where a, b, c, and d are the adjustment parameters of the

model, r is the distance in the image between the projection

point of B ((uB , vB)) and the image center ((u0, v0)), and

θ is the elevation of B with respect to the optical axis of

camera (see Fig. 8).

This function makes it possible to calculate the coordinates

of the image (u,v) depending on the azimuth (ϕ) and the

elevation (θ) (Fig. 8):

u = u0 + r· cosϕ

v = β· (v0 + r· sinϕ)

}

(2)

where β is the relationship between the width and height of

a pixel.

B. A Beacon Projection

If we have the coordinates of landmark i (BW
i

) and

the coordinates of the camera P, both with respect to the

environment reference system (W), we can calculate the

projection line of the landmark BP
i

(B in Fig. 8) relative

to the camera:

BP
i
= TransfP(B

W

i
) = RP ∗ BW

i
− P (3)

where RP is the rotation matrix of P relative to W , i.e., the

position and orientation of the camera in the environment.

To get the projection of a landmark BW
i

, Proj(BP i), in

image coordinates (uB , vB in Fig. 8), we apply Eqs. 1 and

2:

Fig. 8. Theoretic omnidirectional camera model and projection of a point
B. Its projection ray is defined by the elevation (θ) and the azimuth (ϕ) with
respect to the camera coordinate system. r y ϕ are the polar coordinates
of the projected point (uB , vB). (u0, v0) are the coordinates of the image
center.

Proj(BP i) = (uBP i , vBP i) (4)

where Euclidean transformations were used to obtain the

elevation (θ) and the azimuth (ϕ) angles of BP
i

(Fig. 8).

C. Ceiling Map Projection

We have named ceiling map projection, Map(P ), to the

set of theoretical positions that each mapped landmark in the

environment (BW i) would have in the image (u, v), i.e. the

pixel where it would be if the robot was at the position P .

Map(P ) =
{

Proj(BP i)
}

(5)

The algorithm is summarized in Alg. 1. A graphical

example is shown in Fig. 9.

V. MONTE CARLO LOCALIZATION

Monte Carlo Localization (MCL) algorithm [15], [5]

is a particle filter algorithm combined with probabilistic

models of robot perception and motion. The current pose
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(a) (b)

Fig. 9. Example of Ceiling Map Projection, Map(P ): (a) Original image; (b) Beacons projected when camera is at position P (gray enumeration) and
landmarks detected on the image (black enumeration). Beacons in the shaded region are not considered because they are in the horizon.

Algorithm 1 Calculate Map(P ) for one position P.

for all Beacons Bi
W on the map (environment reference

system, W ) do

BP
i = TransfP(B

W
i ) applying Eq.3

Proj(BP
i) = (uBP

i
, vBP

i
) applying Eqs. 1 and 2

end for

Algorithm 2 MCL Algorithm

for all m do

xmt = motion model(ut, x
m
t−1)

wm
t = measurement model(zt, x

m
t ,Map)

Xt = Xt + 〈zt, x
m
t ,Map〉

end for

Xt = resample model(Xt)
return Xt

of the robot, also called belief, which model a probabil-

ity density function over the space of all locations. The

belief about the pose space is represented with a set of

discrete points in the robots’s environment called particles

Xt = {x1t , .., x
m
t , ..., x

M
t }. This type of algorithms proceeds

recursively:

• A temporary particle set Xt is computed from the last

particle set Xt−1 and the last control action ut (motion

model).

• A weight factor wm
t is assigned to each particle. It is

computed based on the new sensor data at time t (last

observation zt). w
m
t is proportional to the probability

that the robot is, located in xmt (measurement model).

• Then a new sample set Xt is calculated (resample

model).

A. Motion Model

The motion model computes the probability that the robot

is in state xt, if it was previously in state xt−1 and control

action ut is xmt = p(xt|ut, xt−1).

We have applied the odometry motion model [15], where

the odometry measurements are used for calculating the

robot’s motion over time. As we need to sample form xmt =
p(xt|ut, xt−1), the algorithm accepts as input the previous

sate, xt−1, an the control ut = (xt−1, xt) and returns a state

xt according to p(xt|xt−1, ut) as output.

xt = (x
′, y′, θ′)

x′ = x+∆x+N(x)
y′ = y +∆y +N(y)

θ′ = θ +∆theta+N(theta)

(6)

where ∆x, ∆y,∆theta are the differences between the

two odometry values (xt−1, xt) and N(x), N(y) and

N(theta) are the random noise term. In this paper we

modeled it with Gaussian zero-centered random variables

with standard deviations σx = 25 cm, σy = 25 cm, σθ = 20
0

respectively.

B. Measurement Model

The measurement model describes the probability of hav-

ing a certain sensor measurement in given pose. Normally the

measurements model is defined as a conditional probability

distribution p(zt|xt,Map) where xt is the robot pose, zt is

the measurement (observation) at time t andMap is the map

of the environment.

The model depends on the sensor and data used. In our

case we have a omnivision camera and a map of landmarks

(lights). So that we use a Feature Based Measurement Model.

In this model zt is the set of features extracted from the

sensor measurement:

zt = f(Map(P )t) = {f1t , ..., f
n
t , ..., f

N
t } (7)

where fn
t = (pun, pvn) is the position on the image (in

pixels) for each identified feature (associated landmark). The

number of identified features can be different at each image

(Fig. 9 and 11).
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Fig. 10. General scheme of Monte Carlo localization algorithm based on omnivision and a map of landmarks. X0 is the initial belief and x0m represent
each initial particle (xm

0
in the text). ftn represent the lights detected in the image (fn

t
in the text). Each beacon in the Map (BW

i
) are represented as Bi

and their projections for one particle (Proj(BP i)) as PBi.

Algorithm 3 Calculate NP and εP

Map(P ) (Alg. 1)

for all BMi in the map do

fn
t
↔ Proj(BP i) (Fig. 11)

ε(BP i) = ‖Proj(B
P
i)− f

n

t
‖

if ε(BP i) < THRESHOLD then

εP = εP + ε(B
P
i)

NP = NP + 1 (Number of associated landmarks)

else

εP = εP + THRESHOLD
end if

end for

To calculate wm
t

we need to know the expected landmarks

(Map(xm
t
)) for each particle xm

t
and their likelihood with

the detected landmarks (zt)). In order to do that we define

a Merit function M(xm
t
) defined as (to let a clarity reading

of the next equations xm
t

is denoted as P ):

M(P ) = 1

NP
∗ εP (8)

where NP is the number of identified landmarks or

’matched’ landmarks and εP is the accumulated error (dis-

tance in pixels between detected landmarks and projected

landmarks on position P , Map(P ) in Fig. 9). Both are

calculated using Alg. 3. A graphical example of the matching

process is illustrated in Fig. 11.

The best data association for each particle is the one that

has the largest number of identified landmarks NP and the

smallest error εP in matching process

.

VI. EXPERIMENTAL VALIDATION

The experimental validation of our system has been carried

out in a exposition hall at the Domus Museum located in A

Fig. 11. Matching between detected landmarks fn
t

on the image and the

ceiling map projection Proj(BP i) (labeled with PBi). N(P ) = 3 and
εP = r13 + r24 + r32 + THRESHOLD.

Coruña (Spain). It has about 24×7m2. The experiments were

performed as off-line validation tests on different sequences

of images acquired in the museum. All images were labeled

with the corresponding position obtained from a laser sensor.

One image per second was acquired.

The results of one of this experiments can be seen on

Fig. 12. The two trajectories executed by the robot are

displayed on Fig. 12(a); only 2D positions (X,Y ) are shown.

The distance travelled in this experiment is more than 48

meters and 120 images were acquired and processed. Two

consecutive images were separated at 0.40 meters on average

but angular displacements can be very large. As reference,

at the end of the first trajectory the robot uses only 3 steps

(images from 60 to 63) to turn 180 degrees.

We use as reference the position calculated by the laser
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sensor when there is no people in the environment (that is

an unusual situation in the museum). The maximum position

error is 1.07 m but the average position error has been 0.41

m (Fig 12(b)). The maximum orientation error is 20 degrees,

but only 3 degrees on average (Fig 12(c)). This angular

precision is one of the main advantages of using an omni-

directional camera for localization.The irregular floor of the

museum affects negatively to the position error. On the other

hand, the positions of the mapped landmarks on the museum

were very difficult to obtain and the errors are not negligible.

Nevertheless, our system calculates correctly the position of

a mobile robot on a very complex environment and over long

trajectories. Its precision is enough for navigation tasks.

The time for running the algorithm can be seen in

Fig. 12(d). We have used a laptop Intel Pentium 4 CPU

3.06GHz. The time for processing each image (vision time)

is almost constant, except when an image is saturated. In

such cases, a second landmark detection process is launched

with a higher threshold (see Sect. III-A). On the other hand,

localization time depends on the number of particles checked

in the Monte Carlo filter. In this experiments 200 particles

were checked in each step. The time required for processing

each image is only 40 ms on average, so our algorithm can

be executed in real time.

The proposed localization system is very robust. For

example, only 10 landmarks of the 29 mapped ligths are

identified on each image on average. In several steps, only

4 or 5 landmarks can be used for localization. The reasons

are that many elements in the environment can occlude the

lights to the camera and that lights are oriented (i.e. can not

be detected on any position, see Fig. 2). In this sense, using

an omnidirectional camera minimizes all these problems.

One final problem arises when there are positions in the

environment from which the views of the ceiling are similar.

This symmetries can mislead the system. Nevertheless, as

the robot moves more information is obtained from the

environment and the ambiguity can be reduced, or even

eliminated, applying the Monte Carlo filter.

VII. CONCLUSIONS AND FUTURE WORK

The solution adopted in this paper to locate a guide robot

on a museum is based on particle filters and a map of lights

(landmarks) in the environment. The main difficulties for

the localization of the robot are that the Domus museum

is highly populated, the irregularity of the ground floor

(swinging movement of the camera, increased odometry

errors), and the height of the ceiling (measurement errors

are proportional to that height).

The results of the experiments confirm the accuracy and

robustness of our omnivision localization system. The posi-

tion and angular errors are 0.4 m and 3 degrees on average,

respectively. In spite of the irregular floor of the museum

and the imprecision on the mapped landmarks.

The proposed algorithm can be executed very efficiently.

On one hand, using a IR filter simplifies the process of

landmark detection on the images. On the other hand,

the Monte Carlo filter reduces the computations needed to

integrate observations and control information over time.

We want to highlight that our system was designed to

cope with occlusions. The very wide visual field guarantees

that enough landmarks will be viewed to estimate a good

localization. In our experiments only 31 lights are considered

and the robot can be located in a space of 168 m2.

Currently our studies are focussed on the implementation

of an omnivision SLAM.
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Fig. 12. Experiments on the Domus Museum: (a) Omnivision localization (gray) plotted on the grid map created with laser data (real trajectory is marked
with dark circles). Position (b) and orientation error (c) between laser pose estimation and the omnivision localization. (d) Time for processing each image.
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