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Real-Time Multiple Object Visual Tracking for
Embedded GPU Systems
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Abstract—Real-time visual object tracking provides every ob-
ject of interest with a unique identity and a trajectory across
video frames. This is a fundamental task of many video analytics
applications like traffic monitoring, or video surveillance in
general. The development of real-time multiple object tracking
systems on low-power edge devices as IoT nodes, without com-
promising accuracy, is a challenge due to the limited computing
capacity of said devices. This might rule out the best in-class
computer vision solutions, which nowadays are based on deep
learning, and thus, they are very hardware demanding. This
paper meets this challenge with a multiple object detection
and tracking system that employs cutting-edge deep learning
architectures on an embedded GPU while operating in real-time.
For this purpose, a system has been designed that extends a
joint architecture of tracking and detection by adding a module
comprised of appearance-based and movement-based trackers
that allow to maintain the identity of the objects of interest for
longer periods of time while alleviating the burden of the detector.
Our system is mapped onto an embedded GPU platform, cutting
down power consumption significantly with respect to a server
GPU. Tracking performance metrics show a 51.1% in Multiple
Object Tracking Accuracy (MOTA) on the MOT16 dataset. This,
in conjunction with a real-time processing speed of 25.2 FPS for
up to 45 simultaneous objects and low power consumption of
15W, make our system an ideal solution for a wide-range of
video analytics applications.

Index Terms—edge computing, deep learning, multiple object
tracking

I. INTRODUCTION

FROM the point of view of the type of information to be
transferred to the end user, computer vision applications

can be divided into two large groups: (i) those that send a
continuous video stream, and (ii) those that only need to send
data calculated from video analysis. The latter are especially
suitable for edge computing. This is the case of video analytics
scenarios, where the computer vision system makes most or
all the computing on the edge, before sending the result —
which usually does not include video, but data— to the end
user [1]–[3]. Some examples of video analytics are: highway
tolls, where only vehicle counting and classification in light
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and heavy classes are of interest; cameras to assess vacancies
in a parking lot; closed-circuit TV systems to provide occu-
pancy levels of public events; or video surveillance searching
for human anomaly detection like the entrance in restricted
areas. This kind of video analytics solutions require lower
bandwidths, putting less hardware constraints on the com-
munication network, thus favoring edge computing. Indeed,
computing at the edge device makes the system more robust
to communication breakdowns and, at the same time, although
the uneasiness caused by deployment of cameras in public
spaces cannot be assuaged, at least privacy issues from attacks
on data can be mitigated —broadcasted data is most of the
time processed data instead of raw video.

Computer vision on the edge poses many scientific and tech-
nical challenges. Modern computer vision algorithms mainly
rely on deep learning, where generally, deeper means more ac-
curacy, but also longer processing times and more underlying
computing capacity to support large memory requirements [4],
[5]. So, state-of-the-art computer vision deep learning algo-
rithms run on high-end server GPUs, which on many occasions
are not an option as edge devices due to their price, size
and power consumption, e.g. on-board of a quadcopter. The
most straightforward solution is the mapping of algorithms
onto embedded GPUs, which feature less computing capacity
than that of server GPUs. This usually comes in with time
and accuracy penalties from a redesign of accurate but deep
models into shorter pipelines to fit on an embedded GPU. The
challenge is to design video analytics algorithms on embedded
GPUs while keeping accuracy and frame rate.

All the examples of video analytics mentioned above fea-
ture object detection and tracking as their main components,
providing the objects of interest with an initial bounding box
around them and a unique ID along their trajectories. This is
a need in most of the video surveillance applications. This
is the case of traffic monitoring, sense and avoid on board
of UAVs, self-driving cars, or video surveillance assessing
of social distance observation [6] —a timely application in
COVID-19 times— just to mention a few examples.

Three main components make up these systems: detection,
tracking and data association. The detection task consists of
identifying the objects of interest in a video frame. Since
the introduction of convolutional neural networks for object
detection [7], these solutions have been dominating the state-
of-the-art. They provide a major improvement in the accu-
racy obtained and generalize much better throughout different
environments. However, their main limitation is computing
time and the hardware resources needed for their proper
functioning. This is why despite the progress that has been
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made in the field for embedded systems, classic detection
solutions are still used in many cases due to the difficulty of
achieving real-time processing speed with limited hardware
resources using the latest developments of the state-of-the-art.

Once the objects of interest are detected in an image, it is
necessary to follow them. This is the task that the tracking
module undertakes. Tracking solutions can be differentiated
between: appearance-based and motion-based. Appearance-
based tracking solutions try, from the initial detection of the
object, to find that same object in the successive frames
by searching for visual features similar to those previously
detected [8]. The two predominant trends in the state-of-the-
art in recent years for this type of trackers are those based
on discriminative correlation filters [9] and those based on
Siamese deep networks [10]. Motion-based trackers try to
determine the pattern of the object’s movement and, through
successive measurements, make a proper prediction of the
object’s position in the successive frames.

The last part of the system is known as data association,
whose mission is to match detections and trackers in order to:
associate detections to tracked objects to refine their positions,
add new objects that appear in the image, and remove those
that have come out. Several methods of data association
populate the state-of-the-art, mainly those based on deep net-
works [11], appearance metrics [12] and distances [13]. In the
ideal case of having detections in all the frames of the video,
the tracking module would not be necessary and an association
between consecutive detections would be enough to solve
the problem. However, for a real-time processing system,
assuming this detection rate is not realistic without severely
compromising the accuracy, especially if the processing is
done on an embedded device and cutting edge deep learning
architectures are to be used. Therefore, making use of the
three parts described above is necessary to provide an optimal
solution for this type of hardware.

Designing a detection and tracking solution for an embed-
ded system, which benefits from the advances produced in
the field of computer vision in the different modules that
form it —detection, tracking and data association— is not a
straightforward process. Some of the complexities it presents
are:

• Many solutions developed for high end hardware do not
work in real-time, therefore, much less will they achieve
that desired speed for an embedded system with limited
capacity.

• Among those solutions that do work in real-time for
a high-end hardware, their computing times increase
dramatically when integrated into an embedded system.

• The times reported by most of the algorithms that make
up the state-of-the-art of the different parts of the system
—detection, tracking or data association— do not take
into account the time of the entire system but only of the
isolated part under study, something that masks the cost
in computation time of the whole system.

• Real-time solutions for embedded systems are commonly
formed by modules that work in isolation, usually a
lightweight single shot detector and a tracker, without

taking advantage of the joint capacity and, therefore,
compromising the accuracy of the system.

The work in this paper addresses the problem of multiple
object tracking with real-time computing speed and limited
hardware resources, while taking advantage of a cutting edge
deep learning joint architecture. We design a multiple object
tracker system on an embedded GPU, that has much more
limited computing capacity than that of high-end server GPUs.
This would enable edge computing. Our pipeline comprises a
convolutional neural network as object detector to start the
tracking of a given object, a visual object tracker, a predictive
filter to handle occlusions, and a data association component to
deal with multiple objects. We retain many of the advantages
in terms of accuracy of a deep learning model designed
for high-end hardware yet on an embedded device, while
dramatically increasing speed with substantially lower power
consumption. These features are very appropriate for their
deployment as end device in internet of things applications.
The main contributions of this paper are:

1) A complete multiple object tracking system that inte-
grates a CNN detector with embedding information and a
tracker. The tracker combines both visual features through
a parallel Discriminative Correlation Filter (DCF), and
motion estimation with a Kalman Filter.

2) The adaptation of the proposed algorithm for its execu-
tion on a low-power embedded system, in this case an
NVIDIA Jetson TX2 [14], achieving an optimal balance
between speed and precision.

3) The system performs at a rate of 25 FPS on average
in the state-of-the-art MOT16 dataset with up to 45
simultaneous objects, thus making the application suitable
for real-time processing.

II. RELATED WORK

The first task of a multiple object tracker system is object
detection. Until the introduction of convolutional neural net-
works, two types of object detection dominated the state-of-
the-art: object detectors of a specific category and background
subtraction algorithms. Object detectors of a specific category
were built based on hand-crafted features to provide an image
representation, and then they detect objects by searching for
those features in the image. Some representatives of these
algorithms are Viola & Jones [15], [16], HOG detectors [17]
and Deformable Part-based Models (DPM) [18]–[20]. On
the other hand, background subtraction algorithms [21]–[23],
use several video frames to differentiate the static part of the
image (background), and the moving objects that appear in
it (foreground). These solutions have the advantage of being
fast and not requiring training for specific categories, however,
their disadvantages are numerous: they are limited to images
taken by static cameras, their accuracy is very dependent on
the environment, many artifacts such as shadows can cause
problems in detection, and they have difficulties segmenting
objects that appear together.

A significant improvement in the accuracy of object de-
tection has been achieved as a result of the introduction of
convolutional neural networks. Deep learning object detectors
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can be divided into two categories: ”two-stage detection”
and ”one-stage detection”. Two-stage detectors use a two-step
approach: features extraction and region proposal.

The first paper following this scheme was R-CNN [7],
which uses selective search to propose regions where the
objects of interest might be, then those regions are fed into a
CNN trained in ImageNet [24] to extract features, and finally
a linear Support Vector Machine (SVM) classifier determines
their presence.

Since this milestone, numerous improvements have been
made in the field. Fast RCNN [25] trains a detector and a
bounding box regressor under the same network. Then Faster
RCNN [26] provided a complete end to end model with
the introduction of the Region Proposal Network (RPN). In
2017, Feature Pyramid Network (FPN) [27] was proposed,
introducing a top-down architecture with lateral connections
for building high-level semantics at all scales. All these
architectures might be used in conjunction with different
backbones for feature extraction, like: VGG [28], ResNet [5]
or ResNeXt [29] among others.

This incremental development of the detector architectures
in two phases has allowed to increase considerably the ac-
curacy of the algorithms. However, their computation time
is still a great limitation for embedded systems since, first,
many of these solutions do not work in real-time and second,
those that do it, are only able to do so in high-end hardware.
For example, using data from Detectron (Facebook) [30], one
of the combinations for detection that offers better results,
Faster R-CNN with ResNeXt 101 backbone and FPN, has an
inference time of 0.098 sec. This would give an ideal rate of
10.2 FPS, far from real-time. This processing speed is met with
an NVDIA V100 GPU with a power consumption of 300 watts
compared to 15 watts that would have an embedded system
like NVIDIA Jetson TX2. This gives a idea of how far current
research is from being fully exploited by low-power embedded
systems, which are more suitable for edge IoT devices.

The other type of detectors are ‘one-stage’ detectors, which
directly propose boxes from input images without using a
specific region proposal. One of the first approaches of this
type was You Only Look Once (YOLO) [31] that divides the
image into regions and predicts bounding boxes and prob-
abilities for each region simultaneously. Improvements were
made in successive versions [32], especially in YOLO v3 [33]
where an FPN-like architecture is used to allow detection
of smaller objects. Another algorithm of this type is Single
Shot MultiBox Detector (SSD) [34], which proposes a multi-
reference and multi-resolution detection techniques. One of the
most successful one-stage approaches is RetinaNet [35], that
obtains comparable results to those of the two-stage detectors
due to its new loss function named focal loss that changes
the standard cross-entropy loss, putting more focus on hard
misclassified examples during training. Despite being faster
than their two-phase counterparts, all these approaches still
require more hardware resources than an embedded system
like NVIDIA Jetson TX2 to achieve real-time operation [36].
Some lightweight versions of these detectors have emerged
such as Tiny-YOLO or MobileNet-SSD [37], [38] which offer
much higher processing speed at the cost of lower perfor-

mance. They are commonly used on embedded architectures
for object tracking with real-time speed, which we define in
this paper as 25 FPS.

The second part of a multiple object tracker system is object
tracking itself. We group the trackers in two categories: visual
trackers and motion-based trackers. After an initial detection,
visual trackers try to find the object in the successive frames
by searching for features similar to those previously detected.
One of the solutions of this type of tracking that has had more
presence in the field since 2010 [9] have been trackers based
on discriminative correlation filters (DCF). They model the
appearance of the object of interest through feature filters.
Once the position of the object is identified in the first
frame, the process continues correlating the filter over a search
window in the next frames, and making the new position of
the object be the maximum value of the correlation operation
map. Initially they were restricted to one feature channel [39],
but in the last years major improvements have been made
like: multi-channel feature maps [40], scale estimation [41],
nonlinear kernels [42], etc. However, with the introduction
of deep learning for computer vision, two trends —that use
deep features for visual tracking— have emerged to dominate
the current state-of-the-art [43]. The first are solutions that
exploit the benefits of deep learning with a CNN formulation
of the DCF [44]–[46]. The second are based on Siamese
networks, which train a deep CNN to solve the similarity
learning problem offline, and then evaluate the result online
during tracking [10], [47]–[50]. Deep Learning based trackers
improve the accuracy of classic algorithms, but they present
two major limitations compared with classic DCF solutions
with hand-crafted features: many of the latest solutions do not
work in real-time [51], [52] and/or their extension from single
to multiple objects is not straightforward.

The final part of a multiple object tracker system is data
association. It is responsible for integrating the information
provided by the detector with the current trackers to: update
the position of the trackers with the new detections, add
new trackers, and remove those that have disappeared. The
advances in this field are represented by those trackers that
undertake the Multiple Object Tracking Challenge (MOT).
They face the tracking as a data association problem [53],
[54] by assuming detections in all frames of a video (i.e.
tracking-by-detection). This, as we have mentioned before
when discussing object detection, is not a real expectation in
many cases, particularly in the case of embedded systems due
to their limited hardware resources. Current best performing
solutions focus on exploiting the benefits of CNN computing.
In [55] they predict the position of an object by exploiting the
bounding box regression of an object detector. In [56] they use
a joint-inference network to provide an appearance model that
enables comparison between trackers, and, thus, increases the
robustness of the tracking. These solutions provide promising
results but they have a big limitation in terms of computing
time, making impossible to achieve real-time processing speed.
On the other hand, classic solutions like [13], despite their
remarkable speed, do not exploit the features detected in the
detection phase, thus creating a lack of essential communica-
tion between the detection and tracking processes that hinders
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the performance of the system. Some research has emerged
that attempts to integrate information from the deep features
extracted in the detection network to the data association
process to make it more robust [57], [58]. One of the problems
they face is that they continue to assume detections in all
video frames and/or require high-end hardware to achieve the
proposed speed. Both requirements cannot be satisfied on an
embedded system.

III. COMPUTER VISION ON THE EDGE

Computer vision on the edge can be run in different modes,
i.e., with stand-alone systems on embedded devices [59],
cooperatively through edge computing in a wireless sensor
network [60]–[62], in IoT distributed networks with edge
and cloud computing combined [63], etc. The application at
hand will determine the network configuration, as well as the
hardware platform and the computer vision algorithms.

Stand-alone multiple object tracker systems typically [1],
[57] comprise object detection, one-object tracking, predictive
filters like Kalman solutions [64] to handle occlusions, and
data association to deal with several objects on the scene [65],
[66]. State-of-the-art object detectors and one-object trackers
are based on deep learning [67]–[69], and as such demand
large memory capacity, along with high-end GPUs not to yield
very long detection or tracking times that might render the
system useless for video rate processing. Predictive filters and
data association, however, are not so demanding, and they
can run on CPUs. Still, many core architectures provided
with many threads are desirable to parallelize tasks, and
track as many objects as possible at a time at video rate
processing. In this line, [1], [57] are solutions implemented
on server GPUs and many core CPU architectures for tracking
several objects at video rate processing. Nevertheless, such a
performance cannot be reached on low footprint and power
embedded devices, more suitable for edge computing. ASICs
and FPGA devices are the best option for embedded computer
vision with low footprint and power consumption [70]–[74].
Both, however, suffer from long design cycles and less on-
chip programming flexibility, which might make not to take
advantage of the latest contributions from the very rapidly
evolving field of deep learning for computer vision. This delay
between state-of-the-art computer vision solutions and hard-
ware implementations leads to a loss of tracking performance
of an embedded approach of this type.

Off-the-shelf microcomputers do not have capacity to hold
a stand-alone multiple object tracking system at video frame
rate, and they have mainly been used for classification
tasks [75]. Thus, embedded GPUs naturally emerge as the
best candidate to run our stand-alone multiple object tracker
at video rate processing among the plethora of platforms and
devices for computer vision on the edge, with the benefits of
low footprint and power consumption.

As a result of the previous comments, we have decided to
use as embedded hardware for our development the NVIDIA
Jetson TX2, which consists of a quad-core 2.0 GHz 64 bit
ARMv8 A57 processor, a dual-core 2.0 GHz superscalar
ARMv8 Denver processor, and an integrated Pascal GPU

Fig. 1. Jetson TX2 development kit with its integrated GPU was selected as
the embedded device for running our system.

1.3 GHz with 256 cores. The six CPU cores and the GPU share
8 GB DRAM memory. We have implemented our multiple
object tracking system on the Jetson TX2 development kit
which can be seen in Figure 1.

In [59], they also develop a multiple object tracking system
on an NVIDIA Jetson TX2 development kit. Their system
comprises a background subtraction algorithm for object de-
tection combined with the one-object deep learning tracker
GOTURN, instantiated multiple times to deal with several
objects on the scene, rendering the tracking of 5 objects at
5 FPS on QVGA video resolution. This multiple instantiation
of GOTURN leads to a steep decline in processing speed with
the number of objects on the scene. Also, the background
subtraction algorithm is not suitable for moving cameras. Our
current approach tracks dozens of objects at 25 FPS with a
deep learning approach suitable for still and moving cameras.

IV. MULTIPLE OBJECT TRACKING SYSTEM

The objective of our multiple object tracking system is to
identify the objects of interest that appear in a video and track
them while they remain on the scene. In case any of these
objects becomes occluded the system would try to recover its
identity when it reappears. The whole system must reach real-
time processing speed. The pipeline of our system is shown
in Figure 2. It consists of three main components: detection,
tracking and data association. In order to guarantee a real-
time processing speed our system will use tracking in all the
frames of the video, while detection and data association will
be performed only at certain time intervals. This reduces the
dependency of our system on the detector, which is the most
computationally expensive component. We denote the time
between successive detections by τ and, in practice, it is set
to the minimum value that allows this real-time speed to be
maintained.

When the system receives the first frame of a video,
detection is performed and all the detected objects are added
as new trackers. The detection (Section IV-B) is done using a
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Fig. 2. Different components of the multiple object tracking system. Object detection is carried out by a JDE-based detector —module (a)—, which provides
a bounding box for each detected object as well as a feature vector that models its appearance. Tracking —module (b)— is performed by a combination of two
different trackers: an appearance-based tracker —Kernelized Correlation Filter (KCF)— and a motion-based Kalman filter (KF). Data association —module
(c)— is solved in two steps: (i) associations based on visual features (embedding) which also use motion information; (ii) association by position. Real-time
processing speed is achieved through an optimal distribution of the components among the available hardware: detection on GPU, and tracking and data
association on CPU.

Joint Detection and Embedding (JDE) based approach [58]
—module (a) in Figure 2. This solution combines a deep
learning detector model for target localization and an ap-
pearance embedding model for data association within the
same architecture. Thus, it provides for each detected object
a bounding box and an embedding vector that models its
appearance.

From this point on, in each new video frame the first task
is to estimate the position of the trackers in the new video
image through the tracking module —module (b) in Figure 2.
This module determines the position of the objects of interest
in the successive frames until the next call to the detector,
allowing to maintain their identity. The tracking module is
composed of a combination of an appearance-based correlation
filter tracker —Kernelized Correlation Filter (KCF) [42]— and
a motion-based Kalman filter tracker (KF) [64] (Section IV-A).

The combination of these two trackers provides increased
robustness by making accurate tracking when the object is
visible (KCF), and allowing re-identification of occluded ob-
jects (KF). Both solutions have the advantage that they are
computationally very fast and are fully parallelizable on CPU.

The final process —module (c) in Figure 2— is data
association between detections and trackers (Section IV-C).
Its main objective is to integrate the information from the
other two components to preserve the correct identity of the
objects over time. Data association is conducted following
two strategies: based on the appearance or the position of the
objects. The association based on the appearance of the objects
is done through the embeddings provided by the detector,
while the one based on position is carried out using the object
bounding box. The association is used for: refining the position
and features of currently visible objects, adding new objects
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that appear in the scene, and removing those that leave the
scene or become momentarily occluded. For those frames for
which the detector is not run, the system will update the
position of the objects using only the information coming from
the tracking module.

Algorithm 1: Multiple Object Tracking System
Require:
(a) Imt : Image frame at current time t
(b) Φt−1: Set of current visible trackers in last frame t− 1
(c) Φlostt−1: Set of lost trackers

1 Function Main(Imt , Φt−1):
2 Φt =Track_KCF(Φt−1, Imt)
3 Φlostt =Track_KF(Φlostt−1,Imt)
4 if time elapsed > τ then
5 Ψt =JDE_Detect(Imt)

6 Φα
1

t ,Φβ
1

t ,Ψ
γ1

t =Hung(Emb(Φt,Ψt))

7 Φα
2

t ,Φβ
2

t ,Ψ
γ2

t =Hung(IoU(Φβ
1

t ,Ψ
γ1

t ))

8 Φα
3

t ,Φβ
3

t ,Ψ
γ3

t =Hung(IoU(Φlostt ,Ψγ2

t ))

9 Φt = {Φα1

t ,Φα
2

t ,Φα
3

t ,Ψγ3
t }

10 Φlostt = {Φβ
2

t ,Φ
β3

t }
11 return Φt

Algorithm 1 shows the main steps of the proposed multiple
object tracking system. In the following sections, we describe
in detail each of these steps.

A. Tracking
The goal of the tracking module is to calculate the position

of the previously detected objects in the new video frame.
Object tracking is carried out by a combination of two trackers:
KCF —appearance-based tracker— and KF —motion-based
tracker. On the one hand, the KCF algorithm presents a variant
of the classic correlation filter. It identifies the direction in
which the object is moving from the maximum correlation
between the future patch and any of the translated patches
proposed. The model of the object being tracked is updated
online using a linear ridge regression model. The main steps
of the algorithm KCF can be summarized as:

• With the initial position of the object the model for the
tracker is trained in the first frame.

• For a new frame the last bounding box position defines
a test image patch.

• The maximum score location over the test image patch
and the model represents the new center of the target, and
the bounding box is updated with that position.

• The new model is trained at the new position.
This type of tracker has good accuracy and high speed

due to exploiting the properties of circular arrays and kernel
functions.

On the other hand, Kalman filter-based tracking produces
an estimate of the position of the object based on its previous
state and the current measurement. The state of the tracked
objects is represented by:

s = [x, y, a, h, vx, vy, va, vh] (1)

where (x, y) represents the bounding box center coordinates,
a represents the aspect ratio, h represents the object height
and (vx, vy) represents the speeds of the object center shift,
and (va, vh) the speeds of the aspect ratio and height change.
The KF uses a constant velocity motion model. The state of
the object is updated with the measurement (from the matched
detection) represented by:

z = [x, y, a, h] (2)

In the first video frame the trackers —formed by a KCF
and a KF— are initialized from the first detections. From
that point on, at each time t the inputs to the system are:
the current frame of the video (Imt) and the sets of visible
(Φt−1) and lost trackers (Φlostt−1) —trackers that could not be
matched with previous detections— in the previous frame t−1.
Each one of the trackers in these sets contains a bounding
box that represents its last position, and an embedding vector
representing its appearance. The embedding vector is provided
by the JDE detector and contains 512-d features to model the
appearance of the object. At current time t, the new position of
the visible trackers is calculated (Φt) in the current frame with
the KCF tracker —Function Track_KCF, Algorithm 1, line
2 (Alg. 1:2). For the lost trackers the position in the current
frame (Φlostt ) is calculated using the KF tracker —Function
Track_KF, Alg. 1:3. The purpose of the motion-based tracker
is to support the appearance-based tracker when the later fails
due to occlusions, distractors or detector failures, thus allowing
the eventual re-identification of objects through position. This
combination of trackers has the advantages of speed and
robustness, making it possible to estimate an accurate position
of objects by visual features when they are available, and to
predict their movement when they are occluded.

B. Detection

Object detection is done through a JDE approach —module
(a) in Figure 2. This solution tackles object detection and
embedding modelling within the same architecture, making
both parts share the same low-level features and avoiding
the re-computation so common in most tracking-by-detection
algorithms, which results in a limitation for real-time perfor-
mance.

The underlying architecture of the detector is a modification
of YOLOv3 [33] single shot detector. It has the advantage of
being faster than its two-stage detection counterparts and by
incorporating an FPN-based architecture [27] for the feature
extraction within the network at different scales, which signif-
icantly improves the detection of small objects.

To calculate jointly detections and embeddings, once the
video image has made a forward pass through the network, a
feature map is obtained for each of the three down-sampling
scales and these are combined in the way established by FPN.
The JDE detection network works as follows: first, the cor-
responding input frame goes through the network backbone,
generating a feature map. In a second step, that feature map
enters the header of the network. In a conventional CNN
for object detection, the header has two heads: one for the
classification of each proposal and another one for refining
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the proposal bounding box through regression. However, as
seen in Figure 2, the JDE detection adds a third header to
generate the embeddings of each detected object.

The frame rate of the system is controlled through parameter
τ , which indicates the time elapsed between detections. The
challenge is to select the shortest time τ that allows to maintain
high frame rate values without affecting tracking metrics with
several objects in the scene. In operation, when the time
elapsed since the last detection exceeds τ , a JDE-based detec-
tion will be performed in the current frame, which will yield a
set of object detections (Ψt), each with a bounding box and an
embedding —Function JDE_Detect, Alg. 1:4-5. Once the
trackers (Φt) and detections (Ψt) in the current frame have
been calculated, it is necessary to perform data association in
order to integrate the information of both sources.

C. Data Association

Data association is done in three steps. First, the assignment
between detections and trackers is made using embedding
similarity because it provides greater robustness than location-
based association. This type of association is based on the
appearance of the objects through the use of the deep features
provided by the detection network. To carry out the process,
a cost matrix is created using the Euclidean distance between
trackers and detections embeddings vectors. Given the embed-
ding vectors (ema, emb) of size n corresponding to tracker a
and detection b respectively, the corresponding matrix element
(a, b) —representing row a and column b of the cost matrix
Cv— is calculated as:

Cv (a, b) =

√√√√ n∑
i=1

(
emb

i − ema
i

)2
(3)

The value of the matrix Cv contains each possible com-
bination between trackers and detections, that is, the matrix
will have as many rows as trackers and as many columns as
detections.

To filter out those associations that are not probable, such
as two very separate objects, we calculate the Mahalanobis
distance. The Mahalanobis distance between a tracker a with
mean µa and covariance Σa —given by its Kalman filter—
and a detection b that represents an observation zb is defined
as:

Cd (a, b) =
√

(zb − j(µa))T (JΣaJT +Qa)−1(zb − j(µa))
(4)

where j(µa) is the prediction of the measurement for the track
with predicted state µa, J is the Jacobian matrix of j and Qa
is the covariance of the measurement noise. This is calculated
for each possible combination between trackers and detections.
For those gating distances that are greater than a threshold η,
the cost of association in the matrix (Cd (a, b)) is set to infinity.
In practice, this threshold would be the 0.95 quantile of the
chi-square distribution with 4 degrees of freedom (9.4877).
Finally, the association value of the tracker a and detection b
will be a combination of both cost matrices —Cv and Cd—:

Cemb (a, b) = λ ∗ Cv (a, b) + (1− λ) ∗ Cd (a, b) (5)

The parameter λ determines the trade-off between both costs.
In practice, λ is set to 0.98.

Later on the associations are determined by the Hungarian
method, which is a well known algorithm for solving the
assignment problem in polynomial time, yielding three sets
as a result: pairs of detections and trackers successfully
associated, represented by a set of current updated trackers
Φα

1

t , unmatched trackers Φβ
1

t and unmatched detections Ψγ1

t

—Alg. 1:6. For each successful assignment Φα
1

t , the tracker is
updated with its corresponding detection in two ways. On the
one hand, updating the new bounding box of the tracker with
the one of the detection, resetting the KCF and updating the
KF in this new position. On the other hand, the feature vector
of the last detection (emb) is used to update the one of the
tracker (ema) by making a weighted sum of them, calculated
as:

ema = δ × ema + (1− δ)× emb (6)

where the hyper-parameter δ determines the update rate. This
way of updating the features allows to progressively refine the
embedding vector of the tracker with the new detections.

Unmatched pairings are due to the fact that the minimum
similarity threshold between a tracker and a detection is
not reached. Those trackers and detections not matched by
embedding (Φβ1t ,Ψ

γ1

t ) will go to the second step of the
data association, which is guided by IoU (Intersection over
Union) [13]. To make the association by IoU, giving the
bounding boxes of tracker a (bboxa) and a detection b (bboxb)
the cost is defined as:

Ciou(a, b) = 1− (
bboxa

⋂
bboxb

bboxa
⋃
bboxb

) (7)

Matrix Ciou is again solved by the Hungarian method,
which generates the properly updated trackers with their
corresponding detections (Φα

2

t ), unmatched trackers (Φβ
2

t )

and unmatched detections (Ψγ2

t ) — Alg. 1:7. In the third
step the process is repeated once again with the remaining
unmatched detections (Ψγ2

t ) and the vector of previously lost
trackers (Φlostt ). This vector contains those trackers that could
not be matched in previous time instants, not necessarily
only in the previous frame, either due to detector failures or
because the object was occluded. This last check allows the re-
identification of those objects that reappear on the scene after
one of these two situations. The result of this last matching
produces the successfully matched trackers (Φα

3

t ), unmatched
trackers (Φβ

3

t ), and unmatched detections (Ψγ3

t ) —Alg. 1:8.
Finally, the new set of trackers will be formed by every

successfully updated tracker (Φα
1

t ,Φα
2

t ,Φα
3

t ) and by those
detections that have not been matched up to this point (Ψγ3

t ),
which will be added as new objects (Alg. 1:9). Those trackers
that could not be matched throughout the whole process
(Φβ

2

t ,Φ
β3

t ) will form the set of lost trackers (Φlostt ) —Alg.
1:10. An track remains for a predetermined time tdelete in
vector Φlostt before being completely removed.

By performing the data association in three steps, priority
is given to matching based on features learned from the neural
network. This implies that in situations where several objects
appear together, fewer association errors will be made by
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taking into account their appearance first, instead of their
position.

V. EXPERIMENTAL STUDY

In this section, we will present an analysis of the results
obtained by our algorithm in different conditions. In Section
V-A, we perform a comparison of our system with other three
real-time multiple object tracking solutions.. In Section V-B
we perform a time analysis discussion about the improvements
of our proposal for an embedded architecture.

A. Experimental results and comparison

As quality metrics of our tracking system we will use
the two most common in the state-of-the-art: Multiple ob-
ject tracking precision (MOTP) and Multiple object tracking
accuracy (MOTA) [76]. These are calculated between hy-
pothesis (trackers) and objects (ground truth). MOTP reflects
the average precision, defined by the average Intersection
over Union (IoU) between the hypotheses and the correctly
matched objects. MOTA reflects the accuracy of the tracking
algorithm by combining three metrics: False Positives (FP),
False Negatives (FN) and ID Switches (ID Sw). False positives
are those cases in which a hypothesis has no associated
object. False negatives occur when an object does not have an
associated hypothesis. ID Switches occur when the hypothesis
associated with the same object changes. MOTA is the most
important of the two metrics and is used to rank the multiple
object tracking solutions.

In order to guarantee an accurate measurement of the quality
and the execution time of the tracking system, it is necessary
to use a widespread dataset with a considerable number of
objects. In this case we have selected the MOT16 dataset [54]
for several reasons. Firstly, it is the dataset used for JDE
evaluation [58], which leads to a fairer comparison with our
system. Secondly, it is a standard dataset for measuring MOT
metrics and presents a large number of objects in different
scenarios. For pedestrian detection we use the model JDE-
576×320 provided by JDE authors. We also use the MOT-16
test set for performing the measurements. Figure 3 shows the
visual result of our system in some videos of this test set.
As usual in a machine learning approach, we have separated
training and test sets, so our selected model has been trained
with several pedestrian datasets: Caltech, Citypersons, CUHK-
SYSU, PRW, ETHZ and MOT17.

To make a fair comparison with [58], it is necessary that
the systems to be measured reach a real-time processing speed,
i.e. 25 FPS, on the embedded system. The method proposed
in [58] works in real-time for a high-end hardware but once
integrated on the NVIDIA Jetson TX2 its speed decreases to
3.4 FPS. One of the reasons for this deep fall in processing
speed is that the JDE model calls for deep learning detection
in every frame. Thus, making straight numbers, video rate
processing at 25 FPS with this approach leads to a drop in
the number of times the detector is called from once per
frame to once every 8 frames on average. That would be the
realistic scenario in which a satisfactory processing rate would

TABLE I
TRACKING RESULTS OF OUR SYSTEM IN MOT16 TEST SET.

Sequence MOTA MOTP FP FN ID Sw,
MOT16-01 29.2 73.2 562 3,893 72
MOT16-03 67.3 74.7 9,307 23,673 1,184
MOT16-06 25.5 71.5 2,979 5,186 432
MOT16-07 33.4 73.2 2,100 8,459 317
MOT16-08 32.0 74.6 1,244 9,936 194
MOT16-12 43.9 73.7 863 3,663 124
MOT16-14 18.6 69.6 2,525 11,836 684
OVERALL 51.1 74.1 19,580 66,646 3,007

TABLE II
TRACKING RESULTS OF JDE-RT IN MOT16 TEST SET.

Sequence MOTA MOTP FP FN ID Sw
MOT16-01 25.5 72.9 399 4,327 38
MOT16-03 67.9 74.6 6,709 26,395 466
MOT16-06 8.4 70.4 1,887 8,400 283
MOT16-07 17.9 71.5 1,813 11,363 230
MOT16-08 29.0 73.4 632 11,116 131
MOT16-12 24.9 71.1 727 5,390 115
MOT16-14 1.6 66.9 1,639 15,897 660
OVERALL 45.9 73.9 13,806 82,888 1,923

be reached on the embedded system, we will call this approach
JDE-RT.

We have also compared our approach with other two real-
time solutions. Both of these approaches are based on an
implementation of Simple Online Real-Time Tracking (SORT)
[77]. This tracker includes a Kalman filter to estimate the
position of the objects and the Hungarian method to make
the association by Intersection over Union (IOU). For the de-
tection module, these approaches employ Tiny-YOLOv3 [33]
and Tiny-YOLOv4, [78] which are the more recent lightweight
versions of this single shot detector. These YOLO versions
represent the state-of-the-art in real-time object detection on
embedded systems. To train both detectors we have used the
same dataset as with the other two systems —our approach
and JDE-RT. We have called these systems Tiny-YOLOv3-
SORT and Tiny-YOLOv4-SORT. Detections have been made
in all frames since both approaches work in real-time on Jetson
TX2, specifically Tiny-YOLOv3-SORT at 33 FPS and Tiny-
YOLOv4-SORT at 30 FPS.

The results of our system (as described in Section IV),
which uses detections every 11 frames to achieve the target
processing rate, are shown in Table I. Results of JDE-RT
—with detections every 8 frames— are shown in Table II.
Tables III and IV show the results for the YOLO-SORT
based approaches, and finally Table V presents the overall
comparison.

In view of the results we can notice that our system achieves
a 5.2 point rise in overall MOTA compared with JDE-RT
— or a 11.3% increase. This boost in the accuracy of the
system is due to the management of trackers between detector
calls. Our solution uses a low-level tracker that adds more
robustness than the simple Kalman filter used in the JDE-RT.
This implies that the tracked objects will remain overlapped
with the ground truth for longer periods of time. Thus, we get
an overall better tracking performance by reducing the number
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(a) Sequence MOT16-03: Pedestrian street at night, elevated viewpoint (b) Sequence MOT16-07: A busy pedestrian street filmed at eye level by a
moving camera

(c) Sequence MOT16-12: Forward moving camera in a busy shopping mall (d) Sequence MOT16-01:People walking around a large square.

Fig. 3. Sample frames of our system running on some of the MOT 16 test set videos on the NVIDIA Jetson TX2 embedded device.

TABLE III
TRACKING RESULTS OF TINY-YOLOV4-SORT IN MOT16 TEST SET.

Sequence MOTA MOTP FP FN ID Sw
MOT16-01 27.5 79.0 114 4,473 47
MOT16-03 52.9 74.9 3,573 44,893 729
MOT16-06 50.1 78.6 332 5,241 186
MOT16-07 24.6 76.9 334 11,857 119
MOT16-08 32.3 79.2 529 10,645 149
MOT16-12 43.8 78.5 185 4,422 55
MOT16-14 11.6 72.6 225 15,862 260
OVERALL 42.8 75.8 5,292 97,393 1,545

TABLE IV
TRACKING RESULTS OF TINY-YOLOV3-SORT IN MOT16 TEST SET.

Sequence MOTA MOTP FP FN ID Sw
MOT16-01 33.9 74.6 139 4,015 71
MOT16-03 51.5 76.5 3,803 46,050 882
MOT16-06 46.5 78.7 300 5,652 219
MOT16-07 26.1 76.4 565 11,333 161
MOT16-08 32.4 80.1 352 10,818 152
MOT16-12 42.2 79.8 125 4,616 57
MOT16-14 13.6 71.4 653 14,943 368
OVERALL 42.3 76.8 5,937 97,427 1,910

TABLE V
COMPARATIVE RESULTS OF ALL SOLUTIONS.

System MOTA MOTP FP FN ID Sw
Ours 51.1 74.1 19,580 66,646 3,007
JDE-RT 45.9 73.9 13,806 82,888 1,923
Tiny-YOLOv4-SORT 42.8 75.8 5,292 97,393 1,545
Tiny-YOLOv3-SORT 42.3 76.8 5,937 97,427 1,910

of false negatives cases (FN) in 16,242.
Both solutions present limitations due to the impossibility

of adding a new object or removing one that no longer remains
in the scene until the next detector call. Our approach calls
the detector less frequently than JDE-RT, which explains the
increase in false positives (FP). This lower number of detector
calls should have an equally negative impact on the number
of false negatives but this is offset by the overall greater
robustness of our system. With respect to the number of ID
switches (ID Sw), they also increase simply because by being
able to track more objects, more associations are performed,
and therefore, more errors are made. Regarding multiple object
precision (MOTP), our system also improves JDE-RT although
the gain is not very significant and both results are high.

Comparing our system with Tiny-YOLOv4-SORT and Tiny-
YOLOv3-SORT, we see an improvement in MOTA of 8.3 and
8.8 points, respectively. This is a big difference, especially if
we take into account that both approaches use detections in
all frames, while our system does it only every 11 frames.

As we can see, the main advantage of our solution is the
significant reduction of the number of false negatives (FN), by
being able to keep the position of the objects for longer time
thanks to the tracking module. YOLO-SORT approaches have
fewer false positives (FP) because they perform detections on
all frames, thus resetting the bounding boxes of the objects
while our system can continue tracking incorrect objects (FP)
until the next detection arrives. They also present fewer ID
switches (ID Sw) because it is easier to associate objects
from consecutive frames than with a separation of 11 frames
between them.

Both Tiny-YOLOv4-SORT and Tiny-YOLOv3-SORT out-
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perform our system in MOTP by a small margin as both of
them always rely on the detector to establish the position of
the objects while our system uses tracking most of the time
to do so.

As stated before, MOTA gives the same importance to the
three errors that negatively impact the tracking of multiple
objects —false positives, false negatives or misses, and ID
switches. The improvement in MOTA achieved by our solution
outperforms the other methods in the comparison (Table V),
and makes it an excellent option as a tracking system on em-
bedded low-power devices to solve real-life video surveillance
applications. Still, our system features a higher number of false
positives than other approaches in Table V. Nevertheless, in a
real-life application, this number of false positives could easily
be reduced by using knowledge from the application domain at
hand, like detecting the areas from where the objects come out,
and by removing them at those positions without the need for
confirmation from the detector. Overall, the results obtained in
the MOT16 test dataset are more than satisfactory given the
time and hardware constraints as this dataset is proposed as a
real challenge with many objects and occlusions.

B. Time Analysis and Optimization

In this subsection we will give quantitative evidence of
the times obtained by the different solutions, as well as a
justification of the improvement obtained. First, we compare
the complete JDE system as proposed in [58] without any
modification using its faster model 576×320, with our system
(as explained in Section IV) using the same configuration.
These measures have been performed on the NVIDIA Jetson
TX2 embedded device and over the same MOT16 test set.
Table VI shows the results obtained. The results show that
our solution obtains a speed up of 7.4× with respect to JDE.
This makes our system suitable for real-time processing.

One of the reasons why it has been possible to achieve this
speedup has been the parallelization of the KCF algorithm on
the ARM architecture. To illustrate the effect of this optimiza-
tion, in Figure 4 we show a comparison of this isolated part
of the system, that is, only the KCF, comparing the sequential
version proposed in [42] against our own optimization on
the ARM architecture. This is the bottleneck of our system,
and will determine the maximum number of objects that our
system is able to manage in real-time. For the sequential
KCF implementation, as the number of objects being tracked
increases, it can be seen that for more than 12 objects (point
A) the system is no longer able to reach real-time processing
(25 FPS). However, our optimization, is able to track up to 70
objects (point B) at 25 FPS or more. Thus, our system is able
to operate with a large number of objects without sacrificing
the application’s computing time. The speedup achieved when
the workload is maximum (100 objects) is 5.25×. Taking into
account that the NVIDIA Jetson TX2 has 6 cores, it is close
to the ideal speedup of 6. For the MOT16 dataset the average
speed up is 4.03×.

It is worth commenting on the difference in computing
capability between high-end GPUs, for which many algorithms
are designed, and low-power embedded systems. Table VII

TABLE VI
AVERAGE FPS ON NVIDIA JETSON TX2

Solution Avg. FPS MOT16 Speed up

JDE 3.4 –

Ours 25.2 7.4×

TABLE VII
COMPARISON OF HARDWARE RESOURCES BETWEEN NVIDIA TITAN XP
GPU USED IN [58] AND NVIDIA JETSON TX2 USED IN OUR APPROACH.

THE TABLE SHOWS MAX POWER CONSUMPTION (MAX. PC) AND
SINGLE-PRECISION FLOATING-POINT PERFORMANCE (FP32).

Device Max. PC (W) FP32 (TFLOPS)
NVIDIA Titan XP GPU 250 12.15
NVIDIA Jetson TX2 15 1.5
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Fig. 4. Comparison of two KCF implementations: sequential (green) and our
optimization (red). Real-time speed is represented by the blue horizontal line.
The KCF tracker is the bottleneck of our system.

shows the comparison between the hardware resources used
by the original JDE [58] and our solution. On the one hand,
JDE [58] employs an NVIDIA Titan XP GPU, while our
system works in real-time on an NVIDIA Jetson TX2 system
that has an NVIDIA Pascal GPU. The NVIDIA Jetson TX2
has 8 times less single-precision floating-point performance
(FP32) and 16 times less power consumption (Max. PC) than
the NVIDIA Titan XP. This gives a rough estimate of the
challenge of achieving real time processing speed on hardware
with limited resources. That power consumption of 15 W
would allow for an energy autonomy of more than 5 hours
with a 6.000 mA.h LiPo battery. This allows the execution of
the system in environments where it would not be possible if
a higher consumption were required.

VI. CONCLUSIONS

We have presented a real-time multiple object tracking
system for an embedded platform that uses a cutting edge
deep learning architecture in conjunction with an additional
tracking module —optimized for the embedded architecture—
that alleviates the load of the detector and allows for better
tracking between widespread detections over time.

The system achieves a real-time processing speed of 25.2
FPS while following up to 45 objects simultaneously. A
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comparison of our solution with previous art JDE adapted
for real-time processing on an embedded system and two
YOLO-SORT solutions has been made using standard multiple
object tracking metrics in the MOT16 dataset. Results show an
improvement in MOTA ranging from 5.2 to 8.8 points. Also,
our parallelization of the low-level KCF tracking algorithm for
an ARM architecture has been analyzed, obtaining a maximum
speed up of 5.25× with respect to the sequential version.

The system has been deployed on the NVIDIA Jetson TX2
embedded device. Based on the results obtained and taking
into account the processing speed and a maximum power
consumption of only 15W, our solution is a suitable option
for a large number of real-life applications in which video
analytics is required.
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