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Fuzzy quantification supplies powerful tools for handling linguistic expressions. Nevertheless, its
advantages are usually shown at the theoretical level without a proper empirical validation. In this
work, we review the application of fuzzy quantification in two application domains. We provide
empirical evidence on the adequacy of fuzzy quantification to support different tasks in the context
of mobile robotics and information retrieval. This practical perspective aims at exemplifying the
actual benefits that real application can get from fuzzy quantifiers. C© 2009 Wiley Periodicals, Inc.

1. INTRODUCTION

Modeling of fuzzy quantification operators is a topic that has been widely
discussed by a number of authors,1−12 presenting different models that can be used to
relax the interpretation of classical existential and universal quantifiers, linguistically
oriented quantifiers (e.g., “three or more,” “more than eighty per cent,” etc.) and
quantifiers used for representing statistical indexes (e.g., overlapping indexes).

Following Zadeh,12 fuzzy linguistic quantifiers can be used to represent abso-
lute or proportional fuzzy quantities (e.g. “about three men are tall” and “about 70%
of blonde men are tall,” respectively). The usual application of these quantification
models has been the evaluation of fuzzy-quantified statements (FQS), where the ful-
fillment of a number of fuzzy properties by the elements of the domain is expressed
by means of a quantifier. Among other fields of application, FQS have been used
for flexible queries handling both in data retrieval2 or information retrieval.13,14 In
these domains, the ability of FQS for defining query languages that are natural and
intuitive for real users is found to be very important. FQS are also very useful in
data mining applications,15 where the main advantages come from the capabilities
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of FQS for managing different levels of information granularity. FQS have also been
applied in knowledge reasoning and control systems16 to facilitate the acquisition
of expert knowledge.

In this work, we present two applications for fuzzy quantification both in two
demanding domains: information retrieval and temporal fuzzy control in mobile
robotics. Our aim here is to show how fuzzy quantification models are useful for
other fields of use different of the usual ones.

In Section 2, a brief review of some of the most relevant fuzzy quantification
models is presented. Section 3 describes how to apply fuzzy quantification in in-
formation retrieval (IR) for large collections of documents. FQS supply appropriate
formal tools for handling linguistic expressions, which enrich the query language
of the IR system. The key ideas of the model used are sketched, and the main
experimental results are reported.

In Section 4, the implementation of two fuzzy control systems for the imple-
mentation of the obstacle avoidance and wall following behaviors in mobile robotics
is described. Modeling of the knowledge-based control systems for these behaviors
is made using fuzzy temporal quantified statements that allow a temporal evolution
of the occurrence of events to be estimated. The paper ends with some conclusions.

2. FUZZY QUANTIFICATION MODELS

Most models in the literature follow Zadeh’s approach to fuzzy quantification,12

which is very useful from a practical point of view. Nevertheless, it does not comprise
some families of quantified sentences, such as quantified sentences of exception (e.g.,
“all except 3 students are tall”), or comparative sentences (e.g., “there are about 3
more tall people than blond people”). Zadeh’s model has also been criticized due to
the lack of fulfillment of relevant properties such as coherence with logic, continuity,
or antonym.1,6,8 However, its implementation is simple and its underlying semantics
is clear.

Other proposals have also been described in the literature. Yager’s inclusive
model17 fails to fulfill very relevant properties for propositions involving two fuzzy
properties (type II propositions), such as duality or local monotonicity, while Yager’s
OWA model18 does not fulfill monotonicity. Other methods based on cardinality
measures have been defined,3 although relevant properties such as monotonicity,
correct generalization, or continuity are also missing in some particular cases.

Therefore, none of these models are capable to fulfill all of the properties that
may be defined as rational for a fuzzy quantifier. Summing up, the selection of
the most appropriate model for a given application must be preceded by a careful
analysis of which properties are really relevant for that application. Only the models
that fulfill such properties should be candidates as good quantification models for
that application, thus producing a consistent modeling of FQS.

A different approach based on the concept of semifuzzy quantifier was
defined6−8 to overcome the limitations of the previous approaches. Semifuzzy quan-
tifiers were formally defined as
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DEFINITION 1.6−8 An n-ary semifuzzy quantifier FQ on a base set E �= Ø is a mapping
FQ : P(E)n −→ [0, 1] which to each choice of crisp X1, . . . , Xn ∈ P(E) assigns
a gradual result FQ(X1, . . . , Xn) ∈ [0, 1].

Examples of semifuzzy quantifiers area

about 5 (X1, X2) = T2,4,6,8(|X1 ∩ X2|)

about 80% or more of the (X1, X2) =
⎧⎨⎩S0.5,0.8

( |X1 ∩ X2|
|X1|

)
X1 �= Ø

1 X1 = Ø

about 5 more than (X1, X2) = T1,4,6,9 (|X1| − |X2|)

nearly equal (X1, X2) =
⎧⎨⎩S0.5,0.8

( |X1 ∩ X2|
|X1 ∪ X2|

)
X1 ∪ X2 �= Ø

1 X1 ∪ X2 = Ø

Since semifuzzy quantifiers are mappings on crisp sets, they are much more
intuitive and easier to define than fuzzy quantifiers and are very close to the idea of
Zadeh’s linguistic quantifier.12 Semifuzzy quantifiers lie at a half-way point between
crisp quantifiers and fuzzy quantifiers.

A crisp quantifier is formally defined as

DEFINITION 2.6−8 An n-ary generalized crisp quantifier on a base set E is a mapping
CQ : P(E)n −→ {0, 1}.

Examples of crisp quantifiers are

all (X1, X2) = X1 ⊆ X2 (1)

80% or more of the (X1, X2) =
⎧⎨⎩

|X1 ∩ X2|
|X1| ≥ 0.80 X1 �= Ø

1 X1 = Ø

Fuzzy quantifiers are formally defined as

DEFINITION 3. 6−8. An n-ary fuzzy quantifier F̃Q on a base set E �= Ø is a map-
ping F̃Q : P̃(E)n −→ [0, 1] which to each choice of X1, . . . , Xn ∈ P̃(E) assigns
a gradual result F̃Q(X1, . . . , Xn) ∈ [0, 1].

aFunctions Ta,b,c,d and Sα,γ are defined as usual in the fuzzy literature

Ta,b,c,d (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 x ≤ a

x−a

b−a
a < x ≤ b

1 b < x ≤ c
1 − x−c

d−c
c < x ≤ d

0 d < x

, Sα,γ (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 x < α

2
(

(x−α)
(γ−α)

)2
α < x ≤ α+γ

2

1 − 2
(

(x−γ )
(γ−α)

)2
α+γ

2 < x ≤ γ

1 γ < x
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An example of a fuzzy quantifier could be ãll : P̃(E)2 −→ [0, 1] , which in
principle may be defined as

ãll(X1, X2) = inf{max(1 − μX1 (e), μX2 (e)) : e ∈ E} (2)

Given expression (2), a certain consensus may be achieved to accept it as a
suitable definition for an all expression. Nevertheless, there is usually controversy
on the definition of suitable general expressions for outlining the evaluation of a
quantified sentence.

The mere definition of semifuzzy quantifiers does not resolve the problem of
evaluating fuzzy-quantified sentences. To do so, quantifier fuzzification mechanisms
(QFMs) are described in Refs. 6–8 for transforming semifuzzy quantifiers into fuzzy
quantifiers, i.e., mappings with domain in the universe of semifuzzy quantifiers and
range in the universe of fuzzy quantifiers:

F̃Q = F (SFQ) (3)

In Refs. 6–8, a number of QFMs that preserve some relevant axioms and
properties derived from them are presented. Also a mechanism based on trivalued
cuts on fuzzy sets is defined for obtaining crisp sets in P(E). This produces some
quantification models for which a correct behavior is guaranteed from a theoretical
point of view. Also other proposals within this framework were made4,19 using
other QFM mechanisms and different methods for selecting the crisp sets in P(E).
For some particular cases (type I propositions), these methods collapse into other
non-QFM-based approaches. This allows these methods to be seen as a natural
extension of previous approaches with strong underlying semantics and a systematic
construction method.

In the following sections, applications of fuzzy quantifiers to the fields of
information retrieval and mobile robotics navigation are presented. The models that
are used for modeling fuzzy quantifiers are the probabilistic method defined in
Ref. 19 (which for propositions involving a single fuzzy property collapse into18)
and Zadeh’s model,12 respectively.

3. FUZZY QUANTIFICATION IN INFORMATION RETRIEVAL

Given a document base and an individual who has an information need, the
basic IR problem is the quest to find the set of documents, which satisfy the user’s
information need. IR models differ in the way in which documents and queries are
represented and matched. For instance, documents were usually modeled in early
systems as bags of terms and Boolean query languages were used for articulating
information needs. Nevertheless, there exists much evidence to show that most
users cannot articulate effective search statements using Boolean connectives.20

This provoked that a number of researchers have explored ways to incorporate some
elements of the natural language into the query language. Fuzzy quantification
was originally applied for IR in Ref. 13, yielding expressive query languages that
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include linguistic statements implemented through fuzzy quantifiers. Unfortunately,
this theoretical proposal was not empirically validated and, hence, its actual impact
on retrieval performance is unclear. Experimental results and comparative data
are the essence of modern research in IR, and theoretical proposals that were not
properly evaluated are open to the criticism that much of the work can be viewed as
formalization for its own sake. Indeed, the absence of empirical data has traditionally
provoked that the use of fuzzy techniques to assist retrieval systems is not standard
in the field.21 A first step to augment the availability of quantitative empirical data
for fuzzy quantification in IR was done in Ref. 22. In this section, we summarize
the main experimental findings found in Ref. 22 and we exemplify the advantages
that retrieval systems can get from quantified statements.

Consider a query with the form all(qt1, . . . , qtn), where qti are search terms. In
the IR field, the connection between search terms and documents is often weighted
using popular heuristics such as tf/idf,23 which takes into account the number of
appearances of the word in the document (tf , term frequency) and the distribution
of the term in the whole document collection (idf, inverse document frequency).
Therefore, given a document dk we can straightforwardly obtain a set of n tf/idf
scores, representing the connection between the document’s semantics and every
search term. A fuzzy quantifier can then be applied for combining the set of n scores
provided that the weights are normalized in the interval [0,1].

Formally, given a document dk , we define a fuzzy set Cdk
on the set of query

terms applying the popular tf/idf weighting strategy23:

Cdk
= {

μCdk
(qt1)/qt1, . . . , μCdk

(qtn)/qtn
}

μCdk
(qti) = fqti ,k

maxz fz,k

· idf(qti)

maxl idf(qtl)
(4)

where fqti ,k is the raw frequency of term qti in the document dk and maxz fz,k is the
maximum raw frequency computed over all terms mentioned by the document dk .
By idf(qti) we refer to a function computing an inverse document frequency (idf)
factor. For instance, it might be defined as idf(qti) = log(maxl nl/ni), where ni is
the number of documents in which the term qti appears and the maximum maxl nl

is computed over all terms in the indexing vocabulary. The value idf(qti) is divided
by maxl idf(qtl), which is the maximum value of the function idf computed over
all terms in the alphabet. The idf factor tries to capture how meaningful a term is,
taking into account its global frequency in the whole collection. A term that is very
frequent in the collection is not a good candidate for discriminating between relevant
and irrelevant documents and, thus, it receives a low idf value. On the contrary, very
infrequent terms are assigned high idf values because they are potentially good
discriminators between relevant and nonrelevant documents. Putting all together,
the final tf/idf value makes that an ideal term is one that appears many times in the
involved document (dk) but very few times in the rest of the document collection.

The fuzzy set Cdk
models the connection between the document dk and every

query component. Quantification can now be applied on Cdk
for evaluating the
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quantified symbol all. As argued in the previous section, a fuzzy quantifier can
be naturally defined from a semifuzzy quantifier through a quantifier fuzzification
mechanism. Hence, a key decision is to select the appropriate semifuzzy quantifier
which implements every quantification symbol. For instance, a natural way for
handling the symbol all is to apply a semifuzzy quantifier which assigns the value
1 if the crisp input set is {qt1, qt2, . . . , qtn} and 0 otherwise.

If we denote by Qs the semifuzzy quantifier, which supports a given quantifica-
tion symbol Q, the probabilistic fuzzification process is fired on Qs yielding a fuzzy
quantifier which is applied on Cdk

. Note that this application in IR involves a single
fuzzy set, Cdk

and the quantification process produces a retrieval score (F (Qs)(Cdk
),

where F is a QFM.
Different quantifiers can be applied to support different quantification symbols

leading to a flexible model in which query term weights can be combined in a variety
of ways. Indeed, more evolved combinations of the matching weights can be obtained
by varying the definition of the semifuzzy quantifier. This is a strong argument in
favor of fuzzy quantification for IR because a wide range of fuzzy quantifiers whose
behavior has been deeply studied is available in the literature. This supplies a great
variety of methods for combining the query-document weights which goes further
away from basic Boolean combinations. For instance, different relaxed mathematical
definitions for “at least quantifiers” can be empirically evaluated. Furthermore, it
is also interesting to observe that some classical retrieval strategies, such as the
inner product matching function of the vector–space model, can also be modeled as
particular cases of this general framework.22

The selection of particular semifuzzy quantifiers for implementing different
quantification symbols is an important decision that affects retrieval performance.
For instance, the typical crisp implementation for an at least statement is too rigid
to be applied in IR. Given a query with the form at least 4({qt1, qt2, . . . , qtn}), it
is not fair to consider that a document matching 10 query terms is as good as one
matching only four terms.b Moreover, it is too rigid to consider a document that
matches 0 query terms is as bad as one matching three query terms. The intuitions
behind at least quantifiers can be good for retrieval purposes if implemented in a
relaxed form. In particular, intermediate implementations, between a classical at
least and a linear implementation,c are promising for IR purposes. Indeed, it is not
strange that nonrelevant documents match a few query terms simply by chance. To
minimize this problem, a relaxed formulation can make that documents matching
few terms (less than four for the example depicted above) receive a lower score
compared to an alternative linear implementation. On the other hand, unlike the
rigid at least implementation, documents matching many terms (more than four
for the example) can receive a score that grows linearly with the number of those
terms. In general, a number of relaxed formulations may be proposed for every

bIndeed, analogous considerations for Boolean conjunctions and disjunctions provoked that
Lee and other researchers were rather critical with the application of fuzzy MIN and MAX
operators24,25 for IR.

cNote that most popular retrieval matching functions have a linear behavior, that is, they
implement a combination of the matching scores that grows linearly with the number of matches.22

International Journal of Intelligent Systems DOI 10.1002/int
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quantification symbol depending on the characteristics of the application domain.
For instance, high precision scenarios such as the Web, where the quality of the
top-ranked documents is a major issue, would require the application of stricter
fuzzy quantifiers. On the other hand, other recall-oriented applications are able to
tolerate the presence of some nonrelevant documents at high positions in the rank
provided that all relevant material can be found in the rank.d In these cases, softer
versions of the fuzzy quantifiers make sense.

3.1. Information Retrieval Experiments

The quantifier-based approach for retrieval has been evaluated using standard
IR benchmarks.22 The experiments were run against a subset of the well-known
TREC collection,26 which contains more than 175,000 documents and 50 informa-
tion needs expressed in natural language (called topics). Topics were preprocessed
by eliminating common words such as prepositions, conjunctions, etc. (stopword
processing) and, afterwards, words are reduced to their syntactical root (stem-
ming). The resulting term stems tsi were used to formulate queries with the form
at least x(ts1, ts2, . . . , tsn). This sort of query statements is adequate for retrieval
purposes because, as argued before, their relaxed implementation incorporates in-
teresting intuitions into the matching process. Since TREC topics are structured
into different subfields (title, description, and narrative), different quantifiers can be
applied to every subfield and their results can be combined by a boolean connective,
e.g., at least 4(. . . title terms. . .) AND at least 3(. . . description terms. . .) AND
at least 3(. . . narrative terms. . .). That is, fuzzy quantifiers can be used to tune the
relative importance of the individual components of the textual query.

In Ref. 22, the evaluation was centered on the adequacy of different mathe-
matical relaxations for implementing the at least expressions. As argued before,
intermediate implementations, between the popular at least and a linear implemen-
tation, make sense for retrieval purposes. To validate empirically this claim was the
main objective of the evaluation. Figure 1 depicts a typical crisp implementation of
an at least statement and the relaxed version applied in the experiments.

For each query, a rank of documents was built and the standard evaluation
methodology is applied to get performance metrics.e The experiments showed
clearly that the introduction of quantifiers can lead to improvements in retrieval
performance up to 20% of average precisionf when compared to the inner-product
matching function of the vector-space model.g This confirms previous intuitions
about the benefits of quantified sentences on retrieval performance. To handle
at least expressions through semifuzzy quantifiers with the relaxed form shown

dNote that to retrieve every relevant document is a nonrealistic challenge in Web search
engines and, hence, recall is not an objective in Web searching.

eAny IR benchmark includes relevance judgments for every topic.
fPrecision is an standard performance ratio that helps to measure the goodness of a ranking

of documents.
gRecall that this measure can be obtained as a case of the semifuzzy quantifier formalism

when a linear semifuzzy quantifier is applied.
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Figure 1. Semifuzzy quantifiers for an at least six expression.

in Figure 1 (right-hand side) outperformed clearly popular retrieval measures. This
advances the important role that fuzzy quantification can play in retrieval systems.

Fuzzy quantification appears as a powerful framework in which diverse query
quantified statements can be processed leading to a wide range of matching func-
tions. Classical IR approaches tend to oversimplify the content of user information
needs, whereas flexible query languages allow to articulate more evolved queries.
The simple methods implemented allow to obtain fuzzy representations from TREC
topics in an automatic way. This advances that fuzzy query languages might be
adequate not only to assist users when formulating their information needs but also
to transform textual queries into fuzzy expressions.

4. FUZZY QUANTIFICATION IN MOBILE ROBOTICS

The paradigm of fuzzy temporal rules (FTRs)27,28 provides a formal model for
the representation and reasoning on fuzzy temporal knowledge, oriented to the fields
of control/monitoring of systems in real-time applications. The generalization of
fuzzy rules to FTRs allows an explicit representation and handling of the occurrence
of facts, being this occurrence either absolute or relative to other facts, and also its
evolution. Temporal entities such as instants or intervals are considered as well as
specification, aggregation, and reduction fuzzy operators.

Within this general framework, a type of simple propositions (fuzzy temporal
quantified statements, or FTQS) are used to detect whether certain situations of
interest either occur persistently on a given temporal window, in a partially persis-
tent way or at a single temporal point. These propositions involve quantification
operators that allow the control action to be taken after considering information
on the state of the system within prior temporal instants and not only the current
one, as is usual in fuzzy control. FTQS have been used in the field of intelligent
control for implementing a fuzzy temporal controller for two behaviors in mo-
bile robotics: wall following29 and moving obstacles avoidance.30 By means of
the analysis of the evolution of state variables throughout temporal references, a
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filtering of noisy sensorial inputs is achieved, and therefore the control action is
more reliable. This is a crucial aspect in robotic applications, where uncertainty
about measures in the position of static and moving obstacles due to the ultrasound
sensors limitations (specular reflection, low angular resolution, and other measure-
ment errors) may be decisive.

4.1. Fuzzy Temporal Quantified Statements

Fuzzy temporal quantified statements are syntactically defined as X is A in Q

of T , where X is a linguistic variable, A represents a linguistic value of
X, T is a temporal reference or entity and Q is a fuzzy quantifier.

The temporal entities T may represent both fuzzy temporal instants as well as
fuzzy temporal intervals, being in both cases the membership functions defined on
a discrete set of values τ = {τ0, τ1, . . . , τk, . . .}, where each τk represents a precise
temporal instant and τ0 represents the origin. We assume that the values of this set
are evenly spaced, where � = τj − τj−1 is the unit of time, whose size or granularity
depends on the temporal dynamics of the application that is being dealt with. For
robotics � = 1

3s has been used, which is the time elapsed between two consecutive
control orders.

Different scenarios can occur for the fulfillment of nontemporal part “X is A”
when T is an interval: nonpersistence (as in “velocity is high in the last seconds”),
where fulfillment is required for at least one point of T, persistence (as in “velocity
is high throughout the last seconds”), where fulfillment is required throughout the
entire interval, and partial persistence, where the nontemporal part should be fulfilled
for some subinterval (“in the majority of T ,” “in part of T ”).

The execution process of FTQS differs from that of a conventional fuzzy rule
in the calculation of the degree of fulfillment (DOF), which now also depends on
the prior values of variables. The calculation of DOF is carried in the model in the
following manner: in the first place, the degree of fulfillment of the nontemporal
part of the proposition is calculated, which is defined as

sc(τk) = μA(X(τk)), τk ∈ τ (5)

where μA is the membership function that is associated with the value A of the
proposition, and X (τk) is the value observed for the variable X at the temporal point
τk .

Secondly, sc is modulated by the temporal part of the proposition, so that in all
the three cases the weight that is given to the temporal points is proportional to their
membership in T (μT ):

• Nonpersistence: “X is A in T ”

DOF =
∨
τk∈τ

sc(τk) ∧ μT (τk) (6)

• Persistence: “X is A throughout T ”
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Figure 2. Membership functions (μQ) of some temporal quantifiers.

DOF =
∧
τk∈τ

sc(τk) ∨ (1 − μT (τk)) (7)

• Partial persistence: “X is A in Q of T ”

DOF = μQ

(∑
τk∈τ sc(τk) ∧ μT (τk)∑

τk∈τ μT (τk)

)
(8)

The operators ∧ and ∨ are, respectively, the t-norm minimum and the t-conorm
maximum, and μQ is the membership function that is associated with the linguistic
quantifier Q. The Quantification model used here is Zadeh’s one.12

Figure 2 shows the membership functions μQ associated with some of the
temporal persistence quantifiers used to control the robot (“in,” “approximately in,”
“throughout,” and “in part of”).

4.2. Implementation of Behaviors in Mobile Robotics

For the wall-following behavior, the capacity for including information of a
temporal type enables us to filter part of the large amount of sensorial noise and
to deal with possible erroneous perceptions of the environment due to unsuitable
positioning of the robot. Also, we succeeded in determining the evolution of a
variable throughout a temporal interval, due to which it is possible to anticipate
future positions of the robot in the environment. In consequence, more continuous
behavior patterns are obtained, which enable the maximum velocities to be selected
taking into consideration the layout of the environment at each instant, which also
results in lower navigation time.

An example of a rule for this behavior is the following one:
IF frontal distance is low in part of the last four measurements AND frontal

distance is increasing approximately in the last four measurements AND quotient
between the left-hand and frontal distances is high in part of the last four mea-
surements AND velocity is low THEN maintain the velocity
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582 DÍAZ-HERMIDA ET AL.

Table I. Values of some parameters measured during the tests on the real robot.

Test Average Right Distance (cm) Average Velocity (cm/s) Time

1 49 15 3m 35s
2 48 11 6m 10s
3 45 15 2m 40s
4 48 17 2m 53s
5 49 16 4m 2s
6 47 17 3m 51s
7 50 25 4m 1s
8 49 25 3m 55s
9 52 24 3m 53s
10 51 23 4m 7s
11 45 18 3m 9s
12 48 22 2m 21s
13 49 23 2m 22s

This rule gets fired in situations where the specular reflection of the ultra-
sound sensors is very frequent, so measurements are very noisy. For this reason the
quantifier “in part of,” which requires the fulfillment of the spatial part in at least
50% of the points in the temporal interval, is used to filter this noise. On the other
hand, it is also interesting to know the evolution of the frontal distance. It can be low,
but if its values are increasing in the last measurements, the robot could maintain its
velocity, although the distance to the wall is low.

Table I shows the values of some parameters (average right distance, average
velocity, and time) that have been measured on the real robot in different environ-
ments. In all the tests, the average right distance has been very close to the reference
distance (the distance at which the robot has to follow the wall is 50 cm), although
the environments were quite complex (gaps, open doors, corners, etc). This reflects
the high reliability and robustness of the control system.

The second of the behaviors that has been implemented is the avoidance of
moving obstacles. The majority of approaches proposed in the bibliography only
take into account the values of position and velocity of the robot and the obstacle
in the present instant. Thus the control action could be not adequate, because the
evolution of the moving obstacle in the last instants has not been considered. Imagine
two situations in which the moving obstacle is at the same position and with the
same velocity, but the first situation has been produced due to an acceleration of the
moving obstacle, while the other one has been reached when the obstacle brakes. It
is clear that the control action should not be the same for these situations, although
at the present instant both moving obstacles have the same state.

For these reasons, the estimation of the trend of the moving object is of special
importance to avoid collision. Once the trend has been determined, the controller
selects the most adequate behavior for the robot, and implements this behavior with
the most suitable values of linear acceleration and angular velocity. FTRs have been
used for the estimation of the trend of the moving object. For this estimation, it is
necessary to analyze the evolution of the speed and angle of the moving obstacle in
the previous instants. One of the major problems for the avoidance is the difficulty
to obtain a reliable position and velocity of the moving obstacle (a person, another
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Figure 3. Example of collision avoidance with a person who lets the robot pass.

robot, . . . ) due to the low angular resolution of the ultrasound sensors. FTRs help
in the filtering of this noise evaluating not only the last position of the obstacle, but
the previous ones.

In real environments, and using people as moving obstacles, different tests
have been carried out showing that the system is robust and reliable, in spite of
the low precision of the method for ultrasonic-based moving obstacle detection.
86 tests have been done (Figure 3 shows one of them) covering a wide range of
situations. In 91% of the situations the robot successfully avoided the collision with
the person, and in 79% of the tests the FTRs correctly estimated the trend of the
moving obstacle. The small number of collisions is due to the erroneous estimation
of the trend of the obstacle (62% of the collisions) and the failure in the detection
of people with the ultrasound sensors (38%).

A real example of collision avoidance is shown in Figure 3. Ultrasonic sensors
measurements are represented by points, lines group all detected moving obstacles
that correspond to the same existing obstacle, and the robot trajectory is represented
by circles.

At the beginning, the robot moves at a constant velocity (18 cm/s) and detects
the moving obstacle (this happens when the obstacle is placed at M1 and the robot at
R1), but takes no action since the trend of the obstacle is indifferent and the collision
time is medium, so the robot will observe. Later, when the obstacle is placed at
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M3–M4, the obstacle course evaluation module detects that, due to the obstacle turn
to the left, its tendency is to give way. This is done by means of the following rule:

IF collision time is medium AND collision status change is increase in the
last three seconds AND nci trend is not decreasing throughout the last two seconds
THEN obstacle aim is to give way

This rule analyzes whether variable “collision status change” has taken the value
“increase” in at least one point of the temporal reference “the last three seconds,”
and also that the nci has not decreased in any point of the temporal reference “the
last two seconds.” As a consequence, the estimated trend will be “to give way,” and
the selected behavior will be “to pass in front,” which is implemented by means of an
acceleration and turning to the left (since obstacle’s incidence is from right to left).

5. CONCLUSION

In this paper, two real applications of fuzzy quantification in information re-
trieval and mobile robotics have been presented. This was an attempt to show how
fuzzy quantification works under real-world scenarios and the subsequent benefits
obtained from a fuzzy quantification based modeling. Indeed, the natural manage-
ment of linguistic expressions through fuzzy quantifiers is a powerful mechanism
able to produce advantages in a wide range of application domains.

The approach to fuzzy quantification applied for information retrieval is based
on semifuzzy quantifiers and quantifier fuzzification mechanisms.6−8 The evaluation
of retrieval performance followed the state of the art methodology of the field of IR
and involved a large collection of documents. Experimental results confirmed the
high interest of fuzzy quantification techniques for retrieval purposes.

In mobile robotics, we depicted the use of fuzzy quantifiers to evaluate fuzzy
temporal quantified expressions. Two behaviors were implemented: contour follow-
ing and mobile obstacles avoidance, by using a fuzzy temporal control system in
which fuzzy quantification plays a fundamental role, since it allows the controller
to take into consideration the occurrence of events in previous temporal instants to
the current one. This permits the control actions to be more reliable.
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