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Abstract

This paper describes a new Fine-Tuning approach for Few-Shot object detec-

tion in Videos that exploits spatio-temporal information to boost detection

precision. Despite the progress made in the single image domain in recent

years, the few-shot video object detection problem remains almost unex-

plored. A few-shot detector must quickly adapt to a new domain with a

limited number of annotations per category. Therefore, it is not possible

to include videos in the training set, hindering the spatio-temporal learning

process. We propose augmenting each training image with synthetic frames

to train the spatio-temporal module of our method. This module employs

attention mechanisms to mine relationships between proposals across frames,

effectively leveraging spatio-temporal information. A spatio-temporal double

head then localizes objects in the current frame while classifying them using
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both context from nearby frames and information from the current frame.

Finally, the predicted scores are fed into a long-term object-linking method

that generates object tubes across the video. By optimizing the classifica-

tion score based on these tubes, our approach ensures spatio-temporal con-

sistency. Classification is the primary challenge in few-shot object detection.

Our results show that spatio-temporal information helps to mitigate this is-

sue, paving the way for future research in this direction. FTFSVid achieves

41.9 AP50 on the Few-Shot Video Object Detection (FSVOD-500) and 42.9

AP50 on the Few-Shot YouTube Video (FSYTV-40) dataset, surpassing our

spatial baseline by 4.3 and 2.5 points. Additionally, FTFSVid outperforms

previous few-shot video object detectors by 3.2 points on FSVOD-500 and

14.5 points on FSYTV-40, setting a new state-of-the-art.

Keywords: few-shot object detection, video object detection, few-shot

learning

1. Introduction

Object detection aims to localize and classify objects of interest in im-

ages. This field has witnessed a significant improvement, mostly due to the

adoption of deep learning techniques. Nevertheless, training current state-

of-the-art models requires large amounts of labeled data for each object cate-

gory. This makes the application of these techniques in data-scarce scenarios

infeasible. Also, the high annotation costs, even when sufficient unlabeled

data is available, might limit the usefulness of these methods in real-world

applications. Therefore, the development of few-shot object detection models

capable of learning from few annotated examples has become a very active
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Video test set (VOD and FSVOD)

VOD training set FSVOD training set

Figure 1: The training set of traditional video object detection (VOD) comprises fully

annotated videos. However, in a few-shot video object detection (FSVOD) setting, this

training set only contains isolated frames. Both VOD and FSVOD use the same test

set, which contains full videos. Thus, a FSVOD algorithm must learn to leverage spatio-

temporal relationships among objects in different frames from a single image training set.

research topic.

Traditional single-image object detectors can be adapted to video ob-

ject detection by processing each video frame independently. However, video

detection introduces unique challenges, such as motion blur, out-of-focus

frames, occlusions, and significant changes in object appearance that can

hinder detection accuracy in some frames. Recent studies [10, 7, 8] show

that leveraging spatio-temporal information in videos can improve detection

precision and address these issues effectively. Despite the success of tra-

ditional video object detection methods, there is still a significant gap in

developing few-shot algorithms specifically tailored for videos, leaving this

area almost unexplored.

The main challenge in adapting traditional video object detectors to data-
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scarce scenarios lies in their dependence on multiple labeled video frames

during each training iteration. This requirement violates the few-shot con-

straints, which restrict the training set to only a few single images per cat-

egory. Consequently, as shown in Fig. 1, few-shot video object detection

demands novel strategies to train models that can effectively extract spatio-

temporal information from test videos while being trained solely on single

images.

Given these considerations, we propose a few-shot object detector that

effectively exploits spatio-temporal information available in videos. The main

contributions of this work are:

• A novel training strategy that creates synthetic frames to facilitate

learning spatio-temporal features from single images. The synthetic

data simulates occurrences of the few annotated objects in different

locations, replicating their movement across nearby frames.

• A new spatio-temporal double head that uses both spatial and spatio-

temporal information. One branch localizes objects in the current

frame and performs spatial classification, while the other uses spatio-

temporal data to improve classification and confidence estimation.

• An enhanced long-term object-linking strategy that utilizes short-term

spatio-temporal information to associate instances of the same object

across the entire video. Long-term confidence optimization is applied

to these trajectories, improving the alignment between estimated de-

tection confidence and actual detection quality.
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• Our framework outperforms both single image and previous video ob-

ject detectors in the FSVOD-500 and FSYTV-40 datasets [11], which

have been specifically designed for the evaluation of few-shot video ob-

ject detectors.

2. Related Work

2.1. Object Detection

There are two main families of object detectors: one- and two-stage ar-

chitectures. Two-stage detectors [23, 35, 18, 34] rely on a proposal generator

to calculate a first set of regions with a high probability of containing an ob-

ject of interest, and then refine this initial set to compute the final detection

set. One-stage architectures [29, 36] follow a completely different approach,

directly calculating the final detection set without any intermediate stage.

Regarding the video object detection problem, state-of-the-art methods

rely on feature aggregation throughout a set of input frames to leverage

spatio-temporal information, boosting the precision of single image detectors.

Current methods for spatio-temporal feature aggregation fall into two main

categories: pixel- and object-level aggregation. Pixel-level methods [1, 13]

seek to calculate relationships between all the pixels in the current reference

frame and all the supporting neighboring frames to enhance the whole feature

map for the reference frame. Alternatively, object-level feature aggregation

methods [10, 7, 8] focus on mining relationships between object instances

from different frames.
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2.2. Few-Shot Object Detection

Traditional object detectors require large manually-labeled training sets,

limiting the applicability of these models in real scenarios. Therefore, there

is a need for new detection frameworks with lower data requirements in the

target domain. Few-shot learning techniques address this problem by ex-

tracting general knowledge from base data and rapidly adapting to novel

scarce data. Few-shot image classification [15, 32] has been widely studied

as the first attempt to apply few-shot techniques in computer vision. The

promising results obtained in the image classification field have led to the

development of few-shot object detection frameworks, more robust against

very limited training sets.

The first attempt to solve the few-shot object detection problem was

through meta-learning. Methods based on meta-learning redefine the detec-

tion problem as a comparison problem in which a distance metric is learned

to differentiate objects from different categories. Then, target objects are

compared with the support set, i.e. few annotated samples per object cat-

egory. Following this trend, FSRW [16] extends YOLOv2 [22] one-stage

architecture with a feature reweighting module and a meta-feature extrac-

tor. As an alternative, Meta R-CNN [33] proposes a two-stage architecture

based on Faster/Mask R-CNN. This method applies attention mechanisms

between object proposals and a set of prototypes representing each category

of interest to calculate the final bounding box and object category. As a

step forward, a multi-relation head is proposed in [12] to combine differ-

ent similarity metrics. This work also modifies the region proposal network

(RPN) to take into account category prototypes in the proposal generation
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stage and not only in the network head, as in previous works. Calculating

category prototypes general enough to represent each object category while

differentiating objects from different categories is a transversal issue for all

these methods. DAnA [6] focuses on calculating more robust category pro-

totypes with the introduction of a background attenuation block to reduce

the influence of the background and a new summarizing method to combine

the information from all annotations of each category.

Fine-tuning methods appear as an alternative to meta-learning frame-

works with a completely different approach. TFA [30] starts this new line of

research, proving that a simple transfer-learning approach obtains compet-

itive results compared to more complex meta-learning frameworks. In this

work, a traditional object detector is trained in base categories with abun-

dant labels while only the last layers of the detector are optimized with novel

categories, which only contain a few annotations per category. DeFRCN

[21] introduces a gradient decoupled layer (GDL) and a prototypical calibra-

tion layer (PCB) to the original Faster RCNN, boosting its performance in

data-scarce scenarios. The GDL scales the influence of the different loss com-

ponents, while the PCB decouples the classification and localization tasks.

As base images might contain unlabeled objects of novel categories, these

objects are treated as negatives in the base training. This might hinder the

training process, negatively affecting the recall of the model with novel cate-

gories. This issue was first addressed in [5], defining a pseudo-labeling strat-

egy to automatically mine annotations of novel categories in base images.

The pseudo-labeling approach was also explored in [17] to mine pseudo-

annotations in unlabeled images to automatically expand the training set
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with new annotations. This work focuses on scenarios in which a large set of

unlabeled images is available.

The few-shot video object detection problem remains almost unexplored,

with only one first attempt to leverage spatio-temporal information in few-

shot settings [11]. This work also proposes for the first time two datasets

specifically designed to evaluate the performance of few-shot video object

detectors. The object detector defined in [11] includes a tube proposal net-

work and a Tube-based Matching Network to compare tube proposals with

the support annotations following a meta-learning approach. Following the

current trend in single-image object detection, we propose for the first time

a fine-tuning based video object detection framework that leverages spatio-

temporal information through an object-level feature aggregation strategy.

We prove through experimentation that fine-tuning approaches are more ro-

bust than meta-learners.

3. Proposed Method

3.1. Problem Definition

As in previous works [16, 30, 12, 21], the training data comprises a base

Dbase and a novel Dnovel training sets. Dbase contains abundant annotations of

base categories Cbase, while Dnovel only contains a limited number of annota-

tions for novel categories Cnovel. There must be no overlap between novel and

base categories, Cbase ∩ Cnovel = ∅. The number of annotations per category

in Dnovel —shot size— is typically set in the literature to a value between

1 and 30. As the proposed framework follows a fine-tuning approach, the

training process is organized into two general stages. First, the network is
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trained in Dbase. Then, it is fine-tuned in Dnovel.

To evaluate our video object detector, we keep the same definition of

Dnovel as for single-image few-shot object detection evaluation: it contains

K annotated object instances in isolated video frames. Annotating object

trajectories throughout the video would increase the annotation effort and

data availability requirements, setting a completely different scenario than

the single image domain. This allows a fair comparison between single image

baselines and spatio-temporal detectors, proving that the benefits of exploit-

ing spatio-temporal information do not come from having larger training

sets.

The video object detection problem focuses on boosting the precision of

the detection in each frame ft by considering information from a set of input

frames, in our case N previous frames ft−N , ..., ft−1. We also consider the

whole video to perform a long-term confidence score optimization to ensure

spatio-temporal consistency throughout the entire video.

3.2. FTFSVid architecture

This paper introduces a new few-shot object detection framework that

leverages spatio-temporal information available in videos to improve the qual-

ity of the final detection set. The proposed spatio-temporal feature aggre-

gation method is added to a strong spatial baseline [21] that modifies the

original Faster RCNN architecture to improve its performance in low data

availability scenarios.

The proposed method is depicted in Fig. 2. First, object proposals are

generated for each input frame, only considering spatial information. These

proposals are calculated using a Region Proposal Network (RPN), which
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Figure 2: Overview of the FTFSVid architecture: The blue components handle spatial

information, while the green components incorporate spatio-temporal information. Pro-

posals from previous frames are reused, so only the proposals for the new frame need to

be computed.
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takes as input the feature maps extracted by a ResNet-101 backbone. Then,

a spatio-temporal aggregation module calculates relationships between object

proposals from the current frame ft, and support proposals PSF , extracted

from ft−N , ..., ft−1, ft. This aggregation process is detailed in Sec. 3.4.

The localization task is exclusively performed using information from the

current frame, as this provides the most accurate data for object positioning,

which can change from frame to frame. In contrast, the object classifica-

tion task combines both spatial and spatio-temporal information to improve

single-image classification accuracy. By incorporating multiple input frames,

this approach addresses challenges such as motion blur, occlusions, and sud-

den changes in object appearance that can hinder classification. Additionally,

the spatio-temporal branch predicts a class-agnostic confidence score, which

aids in guiding long-term object tracking and linking. Spatial and spatio-

temporal classification scores are combined as follows:

s = stmp + sspt(1− stmp) (1)

sspt being the spatial classification score and stmp the spatio-temporal score.

Our temporal branch is implemented as a multilayer perceptron (MLP)

with two hidden layers and two fully connected output layers: one for tempo-

ral classification and the other for class-agnostic confidence score prediction.

We keep the main building blocks of DeFRCN [21] in our implementa-

tion, including the Prototypical Calibration Block (PCB). The main goal

of this component is to decouple the localization and classification tasks at

inference time. A more robust classification score is achieved by modifying

the original classification score according to a similarity metric between each
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detection and the K annotated objects from the predicted category. First,

a per-category prototype is computed by averaging the feature maps of each

annotated object for the corresponding category. These feature maps are the

result of applying RoI Align over the features extracted for the whole image

using a CNN trained on the ImageNet dataset. Features for each detection

are also calculated following the same strategy. Finally, the classification

score is computed as:

s′ = β · s+ (1− β) · scos (2)

scos being the similarity between the detection and the corresponding cate-

gory prototype calculated as a cosine distance between the two feature maps.

The hyperparameter β modulates the influence of this component over the

original classification score.

The last step of the proposed architecture is a long-term confidence score

optimization method (LTO) that modifies the confidence score of each de-

tection based on the spatio-temporal consistency and the category agnostic

score calculated by the spatio-temporal double head. First, we create a set of

object tubes linking object detections across the entire input video, and then

we perform the score optimization over the generated object tubes. This

method is described in Sec. 3.6.

3.3. Single image spatio-temporal training

The training process of common video object detectors usually implies

a random selection of support frames for each input frame in each training

iteration [10, 7, 8]. This requires to work with videos in the training set,

making it impossible to train these models with single images. Therefore,
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these algorithms are not suitable for few-shot scenarios in which there are a

few images for each object category. Thus, a few-shot video object detector

must learn from a limited set of training images, while considering spatio-

temporal information at test time.

Therefore, we propose to generate synthetic support frames in each train-

ing iteration. The synthetic frame generation process involves introducing

variations of objects from the input training image, repositioning them within

the same background to simulate movement and slight changes in appear-

ance as seen in consecutive frames of real videos. It is important to note

that the generated frames should only capture the subtle variations in object

appearance between nearby frames. The goal of this method is to create syn-

thetic data that enables the relation module to effectively leverage short-term

temporal information.

Algorithm 1 describes the process of generating a set of synthetic support

frames F . The goal of this method is to generate Q synthetic support frames

fq for each training image It by inserting transformations of objects from It

in different positions of fq. First, fq is initialized as It (Alg. 1:3). Then, each

annotated object αt(j) from It is randomly transformed and inserted L times

in fq. The number of insertions depends on the size of the object relative to

the image size, with a maximum number of insertions of γ (Alg. 1:7). The

random transformation operator applies random horizontal flipping over the

original object (Alg. 1:9). A random position is also generated to insert the

object in fq (Alg. 1:10), ensuring that the new object fits inside the image

boundaries. Directly inserting the cropped object in a different position gen-

erates undesirable artifacts that might damage image features, hindering the
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Algorithm 1: Synthetic support frames generation

Input : Single image from the training set: It

Input : Object annotations: At = {αt(j)}ηtj=1

Output : Generated synthetic frames: F

1 F ← ∅

2 for q in 1, ..., Q do

3 fq ← It

4 for j in 1, ..., ηt do

5 Lx ← ⌈width(It)/width(αt(j)})⌉

6 Ly ← ⌈height(It)/height(αt(j)})⌉

7 L← min(Lx, Ly, γ)

8 for l in 1, ..., L do

9 α̂l ← T (αt(j))

10 (x, y)← P(fq)

11 fq ← C(fq, α̂l, (x, y))

12 F ← F ∪ {fq}

13 return F = {fq}Qq=1

learning process. Therefore, each transformed object α̂l is inserted in the

position (x, y) in fq by a seamless cloning operator [20] (Alg. 1:11). This

method can insert an object from a source image into a target image, remov-

ing undesirable artifacts. It does not require a segmentation mask, which

allows defining the boundaries of objects in the source image based on the

annotated bounding boxes.

Previous work on synthetically generated data for object detection [3]
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has emphasized the importance of maintaining consistency between the fore-

ground and background, as object detectors also rely on background features.

These works highlight the need for selecting plausible backgrounds when in-

serting new objects and propose robust position selection methods. However,

these approaches are unsuitable for data-scarce environments because they

require larger training sets. In contrast, our implementation introduces a

training-free generation method that reuses the background of the current

frame, leveraging the high spatio-temporal redundancy of nearby frames in

real videos. We slightly modify and reposition objects from the current frame

within the same scene. Our experimental results demonstrate that this ap-

proach is generalizable, achieving performance comparable to models trained

with additional real data.

3.4. Spatio-temporal relation head

Attention mechanisms were successfully applied to mine relationships

among objects on the same image [14], and also among object proposals

in different frames of the same video [14, 10, 8]. The core idea of these meth-

ods is the multi-head attention model defined in [28] applied in the natural

language processing field.

The relation module calculates M relation features rm between each ob-

ject proposal pt(i) ∈ Pt and support proposals in PSF :

rm(pt(i),PSF ) =
R∑

r=1

|Pr|∑
j=1

wm
t(i),r(j) (WV ϕ(pr(j))),

m = 1, ...,M

(3)

where PSF = {P1,P2, ...,PR} is the set of all proposals calculated in the sup-
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port frames. As the support frames are synthetically generated at training

time, PSF contains proposals extracted from the synthetic set F , generated

following Algorithm 1. At test time, PSF contains proposals calculated in

previous real frames. Each proposal is defined by its appearance features

ϕ(pt(i)) and geometry features b(pt(i)). The relation weight wm
t(i),r(j) is com-

puted as a pairwise attention between each proposal pt(i) in the current frame

t, and each support proposal pr(j) in SF . The linear transformation WV is a

learnable component.

The definition of the pairwise relational weight wm
t(i),r(j) is:

wm
t(i),r(j) =

gmt(i),r(j) exp(amt(i),r(j))∑
q g

m
t(i),q exp(amt(i),q)

(4)

amt(i),r(j) being the pairwise appearance similarity weight and gmt(i),r(j) the ge-

ometry similarity weight.

The appearance similarity weight is as a normalized dot product:

amt(i),r(j) =
⟨WH ϕ(pt(i)),WQ ϕ(pr(j))⟩√

dh
(5)

where WH and WQ are learnable parameters that project original appear-

ance features to a subspace to measure their similarity, dH being the feature

dimension after the projection.

The geometry similarity weight is calculated as:

gmt(i),r(j) = max{0,WG E(b(pt(i)),b(pr(j)))} (6)

where WH is also a learnable parameter. Geometry features containing the

parameters of the bounding box (x, y, w, h) are encoded as:(
log

(
|xi − xj|

wi

)
, log

(
|yi − yj|
hi

)
, log

(
wj

wi

)
, log

(
hj
hi

))
.
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Figure 3: Spatio-temporal aggregation. As the training set only contains single images, this

component is fed with the current reference frame ft and a set of synthetically generated

support frames —fk in the image— to mine object relationships between different frames

at training time. At test time, it receives the current frame and a set of previous frames

from the test video.

Function E represents an embedding calculation into a high-dimensional rep-

resentation following [28].

The final feature map for proposal pt(i) is enhanced by adding the con-

catenation of the M relational features rm(pt(i),PSF ) (Eq. 3):

ϕ′(pt(i)) = ϕ(pt(i)) + concat[{rm(pt(i),PSF )}Mm=1] (7)

Previous work [10, 7, 8] has proven that a simple relation module does not

suffice to model object relationships between different video frames. Thus, a

multi-stage approach is needed to extract useful relation features. Fig. 3 illus-

trates the proposed multi-stage spatio-temporal aggregation module. First,

in the basic stage, relational features between supporting proposals in PSF

and proposals in the current frame Pt are used to enhance proposals in the

current frame. This stage involves a sequence of relational modules with

residual connections that iteratively enhance proposal features in the current
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frame. The advanced stage consists of a two-step relation distillation. In the

first step, proposals in PSF are enhanced by calculating their relationships

with top-ϵ% proposals in PSF . Then, the resulting proposal set of the first

step and the output of the basic stage are fed to a new relation module that

generates the final feature maps ϕ′(pt(i)).

3.5. Class-agnostic confidence score

The proposed network head follows a two branch architecture, one branch

localizes and classifies the object based on spatial features, while the spatio-

temporal branch classifies the object and predicts a category-agnostic confi-

dence score. Thus, setting a double objective optimization loss function for

both branches. Regarding the spatio-temporal branch, the classification loss

function follows the standard cross-entropy loss for multi-class classifiers, and

the category agnostic score is optimized with a binary cross-entropy loss. The

objective is to predict the overlap of each detection with the ground truth, re-

gardless of its category. Therefore, the final spatio-temporal loss is computed

as:

L = LCLS + LIoU (8)

In this implementation, the overlap is calculated as the intersection over

union (IoU). The following equation describes the target generation process

for training:

ψ(pi(j), It) = max
∀αi(k)∈It

IoU(pi(k), αi(j)) (9)
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Figure 4: Long-term optimization. First, final detections are linked, calculating a linking

score —ls– between consecutive frames, generating long tubes. Then, the confidence scores

of detections belonging to each tube are updated. As isolated detections —red boxes—

cannot be linked to any large tube, their confidence score remains unchanged.

This equation calculates the maximum overlap between each object pro-

posal pi(k) in the current training image It and every annotation αi(j) in It.

Previous work on the use of the IoU to increase the correlation of the con-

fidence score with the actual detection precision has shown the effectiveness

of binary cross-entropy over other common regression loss function alterna-

tives such as L2 loss [31]. Therefore, our LIoU is defined as:

LIoU = mean
n=1,...,B

[ψ(pi(j), It) · log ψ̂(pi(j))+

(1− ψ(pi(j), It)) · log(1− ψ̂(pi(j)))]

(10)

ψ̂(pi(j)) being the predicted overlap for a proposal pi(j) and ψ(pi(j), It) the

actual maximum overlap with the ground truth defined in Eq. 9.

This loss function is used to train the model to predict the overlap of each

object proposal with the ground truth in the current frame. Experimental

results show that, simply including the IoU-aware loss function, increases the

detection precision (Sec. 4.3).
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3.6. Long-term Optimization (LTO)

Most state-of-the-art object detectors exclusively rely on the classification

score to calculate the final detection confidence. A strong confidence predic-

tion is crucial, as the common practice for removing redundant proposals

consists of applying a Non-Maximum Suppression (NMS) operator that re-

moves spatially redundant detections with lower confidence. Also, a lower

confidence threshold is usually imposed to reduce false positives.

In order to get more accurate confidence scores for the final detection set,

we apply a long-term optimization to ensure spatio-temporal consistency.

This technique has been successfully applied in both object detection [10, 4,

9] and action recognition [26]. The goal of the long-term confidence score

optimization (LTO) is to link detections in consecutive frames, building long

object tubes. Then, the confidence score is updated for all detections in each

tube. The link score ls between a detection dt(i) in frame ft and a detection

dt′(j) in ft′ is calculated as:

ls(dt(i), dt′(j)) = ψ̂(dt(i)) + ψ̂(dt′(j)) + 2 · IoU(dt(i), dt′(j)). (11)

ψ̂(dt(i)) being the overlap predicted following the method described in Sec. 3.5.

Thus, detections with higher predicted overlap with the ground truth are

more likely to be linked. As the output of ψ̂(dt(i)) is between 0 and 1 the

factor 2 ensures that the network confidence and the overlap between dt(i)

and dt′(j) have the same influence on the final link score.

Each object tube v̂ from all possible tubes V is calculated by iteratively
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solving the following equation:

v̂ = arg max
V

T∑
t=2

ls(Dt−1, Dt) (12)

where Dt is the detection set in frame ft. Once an object tube v̂ is calculated,

all detections belonging to v̂ are removed from the candidate detection set

to build a new object tube. The output of ls is a matrix with the linking

score between each detection in Dt−1 and each detection in Dt. Eq. 12 can be

solved by applying the Viterbi algorithm. Then, following previous methods

[10, 7, 8], detections belonging to each tube v̂ are updated, setting their

classification score to the mean classification score of the top-20% in v̂. Fig. 4

shows the effect of this optimization, generally increasing the confidence score

of detections that are spatio-temporally consistent.

4. Experiments

4.1. Experimental settings

We evaluate our model on FSVOD-500 and FSYTV-40, first proposed in

[11]. These datasets define new data partitions suitable for few-shot evalua-

tion, reusing images and annotations from previous large-scale video datasets.

This new partitioning ensures that Cbase ∩ Cnovel = ∅, while keeping a high

diversity among the different categories.

FSVOD-500 contains 2,553 annotated videos with 320 different object

categories for Dbase, and 949 videos with 100 object categories for Dnovel
1.

1FSVOD500 also contains a validation set with 770 annotated videos with 80 object

categories. We do not use this set in the experiments reported in this section.
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Annotations in FSVOD-500 are provided at 1fps, thus there are no annota-

tions available for every frame in the video. Following the few-shot setting,

object categories from these splits are completely different: base categories

Cbase mainly contain common categories, while novel categories Cnovel are rare

categories for which available data is scarce. This simulates a real-world sce-

nario with few annotations for target categories, but in which public datasets

can be used as Dbase.

We also compare our method with the state of the art on the FSYTV-40

dataset. It sets a completely different scenario than FSVOD-500 with sig-

nificantly fewer object categories and more annotations per category. This

dataset defines 30 object categories for Dbase with 1,627 videos and 10 cate-

gories for Dnovel with 608 videos.

Following [11], instead of defining a unique global training set for fine-

tuning (Dtrain
novel) and a testing set with the remaining videos (Dtest

novel), we select

multiple fine-tuning sets, so that each video in Dnovel is picked once for test.

For this, in our implementation Dnovel is randomly divided into two subsets,

keeping the same distribution of videos per object category. Thus, one subset

is used as Dtest
novel, while Dtrain

novel is selected from the other subset, picking K

random object annotations per category. Then, the subsets are interchanged,

so each video is in Dtest
novel once. We repeat this whole process 5 times —with

different random splits—, and the reported results include the mean and

standard deviation of these 5 executions. The same 5 randomly generated

Dtrain
novel are used in all the experiments performed in this work for a fairer com-

parison, avoiding the effect of selecting different fine-tuning sets for different

models. The number of annotations per category K is set to 5 by default
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in all experiments to facilitate the comparison with previous methods. An

analysis on the influence of K is also provided.

Regarding the evaluation metric, we report the average precision on novel

categories setting an IoU threshold of 0.5 (nAP50), i.e. an object detection

is considered correct if the IoU with a ground truth annotation of the same

category is greater than 0.5.

4.2. Implementation details

The feature extractor backbone for all experiments is a ResNet-101 pre-

trained on ImageNet [25]. First, we train the spatial part of FTFSVid

on Dbase. Then, we fine-tune both the spatial and spatio-temporal parts

of FTFSVid on Dtrain
novel —for the spatial part, we start with the pretrained

weights on Dbase, while the spatio-temporal weights are randomly initialized.

For the baseline training on Dbase, we set the batch size to 16 and the base

learning rate to 2× 10−2 for the first 20K iterations, reducing it to 2× 10−3

for the next 5K iterations, and to 2 × 10−4 for the last 5K iterations. The

baseline fine-tuning on Dtrain
novel is also performed with 16 images per batch with

a learning rate set to 1×10−2 for the first 9K iterations, reducing it to 1×10−3

for the last 1K iterations. The spatio-temporal training is performed for 40K

iterations with 1 image per batch and an initial learning rate of 2.5× 10−4,

reducing it to 2.5× 10−5 after the first 30K iterations. The classification loss

function is implemented as cross-entropy with label smoothing regularization

[27].

Input images are resized with the shortest dimension randomly set to

(640, 672, 704, 736, 768, 800) pixels for training and 800 pixels for testing.

For training, 2 synthetic support frames are generated for each input image
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Figure 5: Examples of real reference frames and their corresponding synthetic support

frames generated following Alg. 1. The synthetic support frames might appear flipped as

the network data augmentation includes horizontal flipping.

with a maximum number of γ = 5 new objects inserted into each synthetic

support frame. For training, 2 synthetic support frames are generated for

each input image with a maximum number of γ = 5 new objects inserted

into each synthetic support frame. Empirical results indicate that increasing

the number of synthetic frames beyond two has minimal impact on model

performance. At testing, 15 support frames are considered for each reference

frame to mine object relations. The hyperparameter β that modulates the

influence of the Prototypical Calibration Block on the classification score is

set to 0.5. For the relation module, the ratio of proposals selected for the

advanced stage is ϵ = 20%. We keep the same hyperparameters for both

datasets.

4.3. Ablation Studies

We have conducted a series of ablation studies to assess the performance

of each component of the detection framework. In addition to the final AP,

we also provide an error type analysis to evaluate how the proposed model

improves the baseline results.
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STA IoU loss LTO nAP50

- - - 37.6±0.5

✓ - - 38.6±0.4 ↑ 1.0

✓ ✓ - 38.8±0.7 ↑ 1.2

✓ ✓ ✓ 41.9±2.0 ↑ 4.3

Table 1: Ablation Studies for FTFSVid.

Tab. 1 provides a detailed comparison of each stage of our proposed frame-

work against the spatial baseline, shown in the first row. In the second row,

we see that incorporating the Spatio-Temporal Aggregation (STA) module

leads to a 1.0 point increase in nAP50. In this setting, the model is optimized

using only the classification loss for the spatio-temporal branch. The third

row introduces the IoU loss, which yields a slight performance gain, despite

not yet utilizing the predicted IoU at test time to refine the detection re-

sults. We argue that the inclusion of the more complex loss function helps

to alleviate overfitting, especially given the scarcity of data. Finally, when

the predicted IoU is incorporated via the Long-Term Optimization (LTO)

module, the nAP50 improves by an additional 3.1 points, resulting in a total

improvement of 4.3 nAP50 points over the baseline.

Fig. 5 provides a qualitative evaluation of the synthetic support frames

used for spatio-temporal training. To evaluate the impact of this approach

on AP50, we repeated the experiment described in the third row of Tab. 1,

but using real data. Instead of generating synthetic support frames, real

frames were randomly selected from the original videos corresponding to
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the images in Dtrain
novel. This method, exceeds the K-sample limit per object

category, violating the constraints of few-shot learning by introducing extra

data. In this scenario —which does not fulfill the few-shot constraints—,

the detection framework achieved 38.9 AP50, which is only 0.1 points higher

than the results in Tab. 1. This marginal difference shows that training

the spatio-temporal components with synthetic data yields nearly identical

performance to using complete video data, which is impossible within the

constraints of few-shot learning.
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Figure 6: Error type analysis for the single image baseline (DeFRCN), FTFSVid and

FTFSVid without LTO (FTFSVid*). For five random training sets, we report average

dAP [2] —, the lower the better. Labels represent difference with baseline (DeFRCN)

We have performed an error type analysis based on the TIDE toolbox [2]

to identify the source of errors. This framework defines six different error

types: classification (Cls.), localization (Loc.), localization and classification

(Both), duplicated detections (Dup.), background detected as object of in-

26



1 2 3 5 10 30
K

20

25

30

35

40

45

50

nA
P5

0

DeFRCN
FTFSVid

Figure 7: Influence of the shot size (K). Mean AP and standard deviation for each value

of K.

terest (Bkg.) and missing objects (Miss.). Moreover, it also analyzes false

positive and false negative errors. The proposed methodology consists of

defining oracles that solve each error type independently and report the dif-

ference in AP (dAP). Fig. 6 shows the comparison between the single image

baseline (DeFRCN), FTFSVid and FTFSVid without LTO (FTFSVid* in

the figure).

As expected in a few-shot scenario, the most prominent error type is the

classification error. That motivates the need to extract information from

multiple frames in video sequences. We argue that combining spatial infor-

mation from multiple input frames might not contribute to localize the object

in the current frame, as the most valuable spatial information to localize each

object proposal must come from the current frame ft. However, this spatio-

temporal information might be crucial for object classification, in order to

overcome issues such as motion blur or occlusions that have a greater impact

on the classification task. Our spatio-temporal method (21.4 dAP) improves

the single image baseline (24.9 dAP) by 3.5 dAP in classification error.
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Figure 8: Performance improvement of FTFSVid over the spatial baseline for each novel

category in FSVOD-500. Blue bars indicate categories where spatio-temporal information

enhances performance, while orange bars represent categories for which spatio-temporal

information decreases performance compared to the spatial baseline.

Fig. 7 analyzes the influence of the shot size (K) for both DeFRCN and

FTFSVid. Our approach outperforms the spatial baseline in all the cases,

from 1 annotated example per category up to 30 annotated examples per

category. As expected, the results also show an improvement as the number

of annotations in Dtrain
novel increases. DeFRCN improves 18.6 AP50 by increas-

ing K from 1 to 5 while FTFSVid improves 19.6 AP50. The maximum AP50

for FTFSVid is 48.0, outperforming DeFRCN by 4.6 points (43.4 AP50) and

achieving a total improvement —from 1-shot to 30-shot— of 25.7 points,

which is 1.3 points higher than DeFRCN. Thus, our method performs bet-

ter in very limited data availability scenarios, and also exploits better new

annotations with a higher increment in the final nAP50.
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Fig. 8 reports the nAP improvement of FTFSVid over the spatial base-

line (DeFRCN) across the 100 novel categories in FSVOD-500. FTFSVid

increases AP50 in 81 out of 100 categories, with declines greater than 5 points

in only three categories. The largest decline occurs in the ’Horseshoe crab’

category, where annotation sizes are six times larger than the average, in-

dicating an out-of-distribution category in terms of object size that impacts

FTFSVid. Overall, FTFSVid shows strong performance across a wide range

of categories, achieving improvements of up to 30 AP50 points in the ’Gems-

bok’ category.

4.4. Experimental Results

Tab. 2 shows the comparison with state-of-the-art methods for the FSVOD-

500 and FSYTV-40. As the few-shot video object detection problem remains

almost unexplored with only one previous work, for comparison purposes we

also include single image few-shot object detectors, traditional video object

detectors and methods based on multiple object tracking (MOT). The re-

sults for traditional video object detectors and MOT-based methods were

originally reported in [11]. In those experiments, authors extracted class-

agnostic object tubes and applied a meta-learner classifier to calculate the

final detection set. We extended this experiments including our single im-

age baseline —DeFRCN[21]—, and a transformer-based single image object

detector, ViTDet [18].

FTFSVid outperforms previous approaches, improving our single image

baseline (DeFRCN) by 4.3 points and previous few-shot video object detec-

tors by 3.2 points in the FSVOD-500 dataset. Traditional video object de-

tectors that include attention mechanisms for mining proposal relationships
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Table 2: Results on FSVOD-500 and FSYTV-40. The comparison includes single-image

object detectors, traditional video object detectors, multiple object trackers + meta-

learning classifiers, and few-shot video object detectors.

Type Method
FSVOD-500

nAP50

FSYTV-40

nAP50

Obj. Det.
Faster R-CNN [23] 26.4±0.4 15.4±1.7

ViTDet [18] 36.4±0.9 41.5±1.5

Few-shot Obj.

Det.

TFA [30] 31.0±0.8 20.8±1.6

FSOD [12] 31.3±0.5 20.9±1.8

DeFRCN [21] 37.6±0.5 40.4±1.8

Vid. Obj. Det.
MEGA [7] 26.4±0.5 13.0±1.9

RDN [10] 27.9±0.4 13.4±2.0

Mult. Obj.

Track.

CTracker [19] 30.6±0.7 14.4±2.5

FairMOT [37] 31.0±1.0 16.0±2.2

CenterTrack [38] 30.5±0.9 15.6±2.0

Few-shot Vid.

Obj. Det.

FSVOD [11] 38.7±0.7 28.4±1.2

FTFSVid 41.9±2.0 42.9±2.3
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[10, 7] fail to perform few-shot object detection, falling behind single-image

few-shot detectors. This proves the need for algorithms specifically designed

for few-shot video object detection.

Regarding the FSYTV-40 dataset, our method outperforms the single

image baseline by 2.5 points and clearly outperforms previous methods by

14.5 points. Our method is the first fine-tuning based few-shot object detec-

tor specifically designed for videos, in contrast with previous methods based

on meta-learning. This makes our framework more robust against different

training sets, specifically when the number of categories in Dbase is lower.

This lack of diversity among categories in Dbase hinders the learning process

of meta-learners.

We also evaluate whether the differences are statistically significant through

the Wilcoxon Signed Rank Test on paired samples over multiple runs of De-

FRCN and FTFSVid. We have used the STAC platform [24] to perform

this analysis. We obtain a probability of having statistically significant dif-

ferences (1 − p-value) of 95.7% for FSVOD-500 and FSYTV40. We cannot

replicate the same analysis for comparing our method with previous state-of-

the-art approaches, as the authors only report the aggregated information.

In summary, we have set a strong baseline that achieves competitive results

compared to previous methods, and we can conclude that FTFSVid outper-

forms this baseline and the differences are statistically significant.

We further analyze the impact of the number of categories and annota-

tions in Dbase (Fig.9). To do this, we create several subsets of the original

base categories from the FSVOD-500 dataset. We then compare the effect

of reducing the number of base categories on our method (FTFSVid) and
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(b) Reducing the number of annotations in Dbase

keeping a constant number of categories.

Figure 9: Experiments on the FSVOD-500 dataset with a subset of Dbase reducing the

number of categories or the number of annotations per category.

FSOD [11], the best-performing publicly available meta-learner. As shown

in Fig. 9a, the performance drop is more severe for the meta-learner, with

a decline of around 15 points when reducing the number of categories from

320 to 160, while FTFSVid shows minimal changes. Furthermore, when re-

ducing the number of categories by a factor of 8 —from 320 to 40—, the

meta-learner becomes ineffective, whereas our method continues to produce

reasonably strong results. To isolate the impact of the number of categories

from the reduction in training samples, we performed a complementary ex-

periment (Fig. 9b). In this case, we fixed the number of base categories to

320 but reduced the number of videos per category by the same factor as in

Fig. 9a. This ensured that the overall size of Dbase remained comparable. The

results reveal that reducing the number of categories has a greater negative

effect on performance than reducing the number of objects. For example,

when applying a reduction factor of 4, the nAP50 of FSOD is approximately
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10 points higher when the number of categories is kept constant. This in-

dicates that meta-learner performance is highly sensitive to the diversity of

Dbase, relying more on category variety.

5. Conclusions

We have proposed FTFSVid, a new few-shot video object detection frame-

work that, first, applies attention mechanisms to mine proposal relationships

between different frames. Then, a spatio-temporal double head classifies ob-

ject proposals leveraging spatio-temporal information, and it also predicts the

overlap of each proposal with the ground truth. Finally, overlapped predic-

tions are used in an object linking method to create long tubes and optimize

classification scores. Moreover, we have defined a new training strategy to

learn from single images while considering a group of input frames at infer-

ence time.

Our proposal presents the first few-shot video object detector that effec-

tively employs fine-tuning techniques, allowing for robust adaptation across

diverse data availability scenarios. This includes cases with both a limited

number of distinct categories and those with significant category variability.

Our method, FTFSVid, surpasses previous leading few-shot video object de-

tectors, specifically FSVOD, by achieving improvements of 3.2 and 14.5 AP50

points on FSVOD-500 and FSYTV-40 datasets, respectively. Additionally,

we have proved that the proposed spatio-temporal components enhance per-

formance over the single-image baseline by 5.5 AP50 points on FSVOD-500

and 1.4 on FSYTV-40. These improvements are statistically significant, es-

tablishing a new state-of-the-art in few-shot video object detection.
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Although incorporating spatio-temporal information significantly reduces

classification errors in few-shot object detectors, these errors remain the most

prevalent. This is expected given the challenging few-shot setting, where the

limited number of objects per category makes accurate classification inher-

ently difficult.
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Appendix A. Qualitative analysis

Fig. A.10 presents a qualitative analysis of FTFSVid performance on the

FSVOD-500 dataset, comparing it with our spatial baseline, DeFRCN. Over-

all, FTFSVid shows improved classification accuracy over the baseline. In

the first example, FTFSVid shows higher confidence for the correct category

removing the duplicate detection, while in the third example, it resolves false

positives caused by classification errors. The second example illustrates its

ability to reduce “missing” errors, as discussed in the experiments section.

In the last example, FTFSVid successfully detects an object overlooked by

DeFRCN, however it misclassifies the category, highlighting that object clas-

sification remains challenging even with spatio-temporal information.
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Figure A.10: Qualitative evaluation. From right lo left: ground truth annotations, detec-

tions from our spatial baseline (DeFRCN) and detections from our method (FTFSVid)

leveraging spatio-temporal information.
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