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Abstract

Large language models have demonstrated impressive performance when integrated
with vision models even enabling video understanding. However, evaluating video mod-
els presents its own unique challenges, for which several benchmarks have been pro-
posed. In this paper, we show that the currently most used video-language benchmarks
can be solved without requiring much temporal reasoning. We identified three main
issues in existing datasets: (i) static information from single frames is often sufficient
to solve the tasks (ii) the text of the questions and candidate answers is overly infor-
mative, allowing models to answer correctly without relying on any visual input (iii)
world knowledge alone can answer many of the questions, making the benchmarks a test
of knowledge replication rather than video reasoning. In addition, we found that open-
ended question-answering benchmarks for video understanding suffer from similar issues
while the automatic evaluation process with LLMs is unreliable, making it an unsuitable
alternative. As a solution, we propose TVBench, a novel open-source video multiple-
choice question-answering benchmark, and demonstrate through extensive evaluations
that it requires a high level of temporal understanding. Surprisingly, we find that many
recent video-language models perform similarly to random performance on TVBench,
with only a few models such as Aria, Qwen2-VL, and Tarsier surpassing this baseline.

1 Introduction
Vision language models [1, 22, 28] have gained popularity, benefiting from both the progress
made in natural language processing [4, 10, 33] and the surge of foundation models for
vision [5, 31, 52] tasks with strong generalization capabilities. Recently, video-language
models have been introduced [20, 45, 48], aiming to replicate the success achieved in the
image domain. To evaluate their performance, visual question answering has emerged as a
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Figure 1: Existing VideoLLM benchmarks
are time-invariant. The performance of a
SOTA model [35] on commonly used bench-
marks hardly drops when shuffling the in-
put videos. This suggests that these bench-
marks do not effectively measure temporal
understanding. In contrast, in our proposed
TVBench, shuffling input frames results in
random accuracy, as it should be.

key task requiring both textual and visual
reasoning. With the rapid model develop-
ment and release cycles, having a reliable
and robust benchmark is crucial in measur-
ing progress and guiding research efforts.

There are two main approaches to de-
signing question-answering benchmarks for
videos: multiple-choice question answering
(MCQA) [19, 26, 29, 39, 42] and open-
ended question answering (OEQA) [41, 44,
46, 51]. Given the critical role these bench-
marks play in evaluating video understand-
ing, their reliability is paramount. This
raises an important question: To what ex-
tent do they truly capture and assess video
understanding?

Previous analysis in image question an-
swering benchmarks [14] has demonstrated
that poorly formulated benchmarks could
bias the development of new models towards learning strong text representations while ig-
noring visual information. This is especially relevant for the video-language community,
where benchmarks must account not only for visual but also for temporal understanding.

In this work, we conduct a comprehensive analysis of widely used video question-
answering benchmarks, revealing that temporal information is poorly evaluated (see Fig. 1).
Furthermore, in MCQA tasks, prior world knowledge, combined with overly informative
questions and answer choices, often allows questions to be answered solely through text
without the need for visual input. Our results also indicate that automatic open-ended evalu-
ation is unreliable, with significant evaluation discrepancies in results for different models.

We reveal the shortcomings of existing benchmarks such as MVBench [19], NextQA
[42], MSVD-QA [41], MSRVTT-QA [46] and ActivityNet QA [51] and based on those
insights propose a new benchmark, TVBench, that requires temporal understanding to be
solved, providing an effective evaluation tool for current video-language models: i) We pro-
vide only temporal challenging candidate answers, requiring models to leverage temporal
information to answer correctly. ii) We design task-specific templates to generate questions
that are not overly informative such that they cannot be answered solely by text. iii) We
design questions that can only be answered from the video content, without relying on prior
world knowledge.

As a result, TVBench measures the temporal understanding of video-language models in
contrast to previous benchmarks. In this setting, text-only and single-frame models, such as
Gemini 1.5 Pro and GPT-4o, perform at random chance levels on TVBench despite achieving
competitive results on other benchmarks. Surprisingly, even recent state-of-the-art video-
language models perform close to random chance on TVBench, with only a few models,
such as Qwen2-VL [36] and Tarsier [35], outperforming the random baseline. Shuffling
the videos for these models lead to significant performance drops, unlike prior benchmarks,
further verifying TVBench as a temporal video benchmark. Moreover, TVBench has already
been used in several recent SOTA methods such as Seed1.5-VL [15] or PerceptionLM [8].

Citation
Citation
{Wang, Yuan, and Zhang} 2024{}

Citation
Citation
{Li, Wang, He, Li, Wang, Liu, Wang, Xu, Chen, Luo, et~al.} 2024{}

Citation
Citation
{Mangalam, Akshulakov, and Malik} 2024

Citation
Citation
{Patraucean, Smaira, Gupta, Recasens, Markeeva, Banarse, Koppula, Malinowski, Yang, Doersch, et~al.} 2024

Citation
Citation
{Wang, Wang, Zhao, Xie, and Zheng} 2024{}

Citation
Citation
{Xiao, Shang, Yao, and Chua} 2021

Citation
Citation
{Wu, Yao, Fu, and Jiang} 2017

Citation
Citation
{Xu, Zhao, Xiao, Wu, Zhang, He, and Zhuang} 2017

Citation
Citation
{Xu, Mei, Yao, and Rui} 2016

Citation
Citation
{Yu, Xu, Yu, Yu, Zhao, Zhuang, and Tao} 2019

Citation
Citation
{Goyal, Khot, Summers-Stay, Batra, and Parikh} 2017{}

Citation
Citation
{Li, Wang, He, Li, Wang, Liu, Wang, Xu, Chen, Luo, et~al.} 2024{}

Citation
Citation
{Xiao, Shang, Yao, and Chua} 2021

Citation
Citation
{Wu, Yao, Fu, and Jiang} 2017

Citation
Citation
{Xu, Mei, Yao, and Rui} 2016

Citation
Citation
{Yu, Xu, Yu, Yu, Zhao, Zhuang, and Tao} 2019

Citation
Citation
{Wang, Bai, Tan, Wang, Fan, Bai, Chen, Liu, Wang, Ge, Fan, Dang, Du, Ren, Men, Liu, Zhou, Zhou, and Lin} 2024{}

Citation
Citation
{Wang, Yuan, and Zhang} 2024{}

Citation
Citation
{Guo, Wu, Zhu, Leng, Shi, Chen, Fan, Wang, Jiang, Wang, et~al.} 2025

Citation
Citation
{Cho, Madotto, Mavroudi, Afouras, Nagarajan, Maaz, Song, Ma, Hu, Jain, et~al.} 2025



CORES, DORKENWALD, MUCIENTES, SNOEK, ASANO: LOST IN TIME 3

2 Related Work

Traditional video evaluation benchmarks focused on specific tasks such as action recogni-
tion [13, 17] or video description [9, 38, 46]. With the emergence of Vision Language
Models (VLMs), there is a growing need for more comprehensive evaluation protocols to
effectively evaluate models with increasingly advanced generalization capabilities. There
are two major trends in the QA format: open-ended QA and multiple-choice QA (MCQA).
Open-ended question answering. Evaluating open-ended QA introduces new challenges,
as traditional evaluation metrics such as ROUGE [21], METEOR [3], and CIDEr [34] fail to
analyze discrepancies of more complex and elaborated answers. Alternatively, Maaz et al.
[24] introduces a novel quantitative evaluation pipeline for open-ended QA datasets. The
proposed method relies on GPT-3.5 to determine the correctness of the predicted answer
and provides a matching score with the ground truth. Commonly used datasets for evaluat-
ing models in this context include MSRVTT-QA [44], MSVD-QA [44], TGIF-QA [16] and
ActivityNet-QA [51]. In general, any open-ended QA benchmarks can be evaluated follow-
ing this protocol. Our analysis shows that Large Language Model (LLM) based evaluations
are prone to hallucinations, leading to unreliable conclusions. In contrast, MCQA benefits
from a more straightforward evaluation process based on the accuracy score.
Multiple-choice question answering. CLEVRER [50] assesses reasoning about object in-
teraction in synthetic videos. Perception Test [29] was introduced to evaluate visual per-
ception in multimodal settings, mainly in indoor scenes. EgoSchema [26] focuses on long
egocentric videos. NextQA [42] aims to evaluate temporal explanation of actions. VideoHal-
lucer [39] was introduced as a first attempt to define a video-language benchmark specifically
designed for hallucination detection. Lately, several approaches [2, 6, 32, 37] emphasize long
video understanding. MVBench [19] defines 20 dynamic tasks designed to require temporal
reasoning throughout the entire video. However, our experiments demonstrate that many
of these tasks are highly spatial and textual biased, failing to evaluate temporal understand-
ing effectively. We propose a new benchmark that requires a high level of spatiotemporal
understanding across different tasks to be solved.

3 Problems in Video MCQA Benchmarks

In this section, we identify two key shortcomings in current video multiple-choice question-
answering (MCQA) benchmarks, as demonstrated on MVBench [19] and NextQA [42].
First, we show that these benchmarks contain strong spatial bias, meaning that questions
can be answered without requiring temporal understanding. Secondly, we find also a strong
textual bias, as many questions can be answered without even looking at the visual input.

3.1 Does Time Matter?

Video benchmarks must define tasks that cannot be solved using solely spatial information
to evaluate the temporal understanding of a model effectively. Questions should not be an-
swerable using spatial details from single random or multiple frames, e.g., after shuffling
them. However, if no understanding of the sequence of events and temporal localization
is needed, the benchmark fails to assess temporal understanding, focusing only on spatial
information, which we define as spatial bias. To analyze this bias, state-of-the-art image
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Input
Action
Count

Unexp.
Action

Action
Antonym

Episodic
Reasoning Avg.

Random – 33.3 25.0 33.3 20.0 27.9

Llama3 70B
text-
only

44.5 63.5 74.5 50.5 58.2
Gemini 1.5 49.0 68.0 85.5 49.0 62.9
GPT-4o 44.0 69.5 57.5 51.5 55.6
Tarsier-34B 37.0 39.5 66.0 44.0 46.6

Gemini 1.5
video

41.2 82.4 64.5 66.8 63.7
GPT-4o 43.5 75.5 72.5 63.0 63.6
Tarsier-34B 46.5 72.0 97.0 54.5 67.5

Table 2: Textual bias of MVBench. Text-
only LLMs perform nearly as well as video
models, indicating vision is not essential. Av-
erage is over the four tasks.

Input
FG

Action
Scene

Transition
FG

Pose Avg.

Random – 25.0 25.0 25.0 25.0

Gemini 1.5
image

47.0 78.0 46.5 57.2
GPT-4o 49.0 84.0 53.0 62.0
Tarsier-34B 48.5 67.0 22.5 46.0

Gemini 1.5
shuffle

49.5 90.0 54.5 64.7
GPT-4o 52.0 84.5 69.0 68.5
Tarsier-34B 51.0 89.0 56.5 65.5

Gemini 1.5
video

50.0 93.3 58.5 67.3
GPT-4o 51.0 83.5 65.5 66.7
Tarsier-34B 48.5 89.5 64.5 67.5

Table 3: Spatial bias of MVBench. Near
random for image and shuffled videos.

Input NextQA

Random – 20.0

Tarsier-34B

text-only 47.6
image 71.3

video shuffle 78.5
video 79.0

Table 1: Spatial and textual
bias on NextQA.

and video-language models like GPT-4o [28], Gemini 1.5
Pro [12], and Tarsier-34B [35] are tested on MVBench
(Table 3) and the NextQA (Table 1) dataset by comparing
their performance using single frames, shuffled videos,
and original videos.

The models receiving only a random frame as input
show strong performance across all four tasks in Table 3,
surpassing the random baseline. GPT-4o achieves the
highest average performance of 62.8% across the four
tasks, nearly matching its video performance with 65.8% and other state-of-the-art video-
language models. The lower image performance of Tarsier-34B might stem from its training
data composition, which contains five times more video data than image data. These find-
ings are unexpected, as task names like Fine-grained Action suggest a need for temporal
understanding. For this fine-grained task, the image-model GPT-4o achieves 49%, which is
even slightly better than the state-of-the-art Tarsier model, which scores 48.5%. Similarly,
for the other three tasks. Overall, GPT-4o achieves an average accuracy across all 20 tasks of
47.8%, which is 20.5% higher than the random performance of 27.3% on MVBench. Also,
on NextQA in Table 1, the Tarsier model significantly outperforms the random baseline of
20.0% with 71.3%, processing a single random frame. In Fig. 2 we show examples of such.
In the Appendix, in Fig. 15 -22 we show 34 more examples of spatial bias in MVBench.

Additionally, shuffling the videos has minimal impact on the MVBench performance
of all video-language models, with an average difference of 2.3%, indicating that temporal
information is not necessary to solve these tasks. Similarly, for NextQA, the Tarsier model
achieves the same performance for shuffling or non-shuffling. Note, as confirmed in Sec. 5.2,
the Tarsier model shows a significant drop in performance when videos are shuffled for tasks
that require temporal understanding. This problem goes beyond these tasks as shown in
Table 5, Gemini 1.5 Pro and Tarsier achieve an average accuracy across all 20 MVBench
tasks of 60.5% and 67.6%, respectively. Shuffling video frames causes a performance drop
of only 3.8% and 6.4%, respectively, indicating that the spatial bias affects not only the tasks
analyzed in Table 3 but the entire dataset. The agreement between the correct responses of
Tarsier-34B across modalities is 91.0% between image and video inputs, and 93.9% between
video and shuffled video. This confirms that current models heavily rely on spatial biases to
solve MVBench.
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Figure 2: Spatial bias of MVBench. We show different tasks of the MVBench benchmark
and observe that the question can be answered without requiring temporal understanding.

Problem 1

MVBench and NextQA have a strong spatial bias, meaning questions can be answered
without requiring temporal understanding.

3.2 Does Vision Matter?

Video benchmarks must be designed to prevent questions from being answered solely through
common sense reasoning. Modern LLMs possess strong reasoning skills, which can exploit
the information within the question and candidate sets in MCQA video language evalua-
tion benchmarks. This creates textual bias, enabling models to answer questions without
leveraging the video content.

We analyze the impact of textual bias on MVBench in Table 2. We evaluate the per-
formance of state-of-the-art text-only LLMs, Llama 3 [27], and multi-modal LLMs such as
Gemini 1.5 Pro [12], GPT-4o [28] and Tarsier [35]. Our findings reveal that LLMs can elim-
inate incompatible candidates easily, greatly outperforming the random baseline. Models
using only text achieve competitive results compared to video-language models across these
four tasks. For instance, Gemini 1.5 Pro achieves an average performance of 62.3% using
text-only, compared to Tarsier-34B’s 67.4% using videos. Additionally, we verify an 85.3%
agreement between Tarsier-34B’s correct text and video responses, confirming its strong re-
liance on textual biases in MVBench.

This goes beyond the four tasks, as Gemini Pro 1.5 achieves an average performance
across all 20 tasks of 38.2% with text-only, which is 10.9% higher than the random chance
baseline of 27.3%. Similarly, for NextQA in Table 1, Tarsier achieves 47.6% performance
across the whole dataset, an increase of 27.6% over the random baseline. We have identified
three key sources of this textual bias on MVBench:
Bias from LLM-based QA generation. Collecting and manually annotating large datasets
for training and evaluation is very costly. Automatic and semi-automatic collection and an-
notation processes are commonly used [19, 26]. This includes techniques such as automatic
QA pair generation with LLMs. ChatGPT plays a fundamental role in QA generation for 11
of the 20 tasks in the MVBench dataset. However, this introduces unrealistic candidates and
QA pairs with excessive information. Fig. 3 presents examples of QA pairs that can be re-
solved merely with text information. Questions 1 belong to the Action Antonym task, where
an LLM is prompted to generate the antonym of the actual action shown in the video. The
answers generated are either unrealistic, as one cannot “remove something into something,”
or consistently incorrect, such as “not sure”.
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Figure 3: Textual bias of MVBench. We show the shortcomings of the QA generated by
MVBench and find that questions can be answered without considering the visual part.

Bias from unbalanced sets. Unbalanced QA sets also hinder a robust evaluation process.
For instance, the correct answer for the Action Count task on MVBench is ‘3’ for 90 out of
200 questions, while ‘9’ is only the correct answer for one question. A model with a similar
bias might get higher results than random by chance. We have observed in our experiments
that some text-only models such as GPT-4o have this bias, predicting ‘3’ for 88 out of 200
samples. This makes GPT-4o perform on par with the best video model with an accuracy of
44.0% and 46.5% respectively.
Overreliance on world knowledge in questions. Video benchmarks should ensure models
cannot rely solely on memorized world knowledge from an LLM to guess answers without
using visual input. Even with well-designed questions, models might bypass visual reason-
ing and rely on prior knowledge to answer correctly. An example of this can be seen in
question 3 of Fig. 3. The question does not exhibit an obvious bias in the QA generation.
Still, it can be correctly answered if the model has world knowledge of the TV show from
which the question was derived as answer 2 are character names from the House TV show.

In the Appendix, in Fig. 23 -29, we show 26 more examples of textual bias in MVBench.

Problem 2

MVBench and NextQA can be partially solved without visual information due to the
bias from LLM QA generation, unbalanced dataset, and world knowledge.

4 Open-ended QA to the rescue?
Contrary to multiple-choice question answering (MCQA), open-ended question answering
can be seen as an alternative to solving the aforementioned issues. Without a predefined
candidate answer set, the model cannot rely on textual information to eliminate implausible
candidates. However, open-ended evaluation presents new challenges compared to MCQA.
Following Maaz et al. [24], LLMs have been widely used for the evaluation of open-ended
question-answering in video datasets such as MSVD-QA [41], MSRVTT-QA [46] and Ac-
tivityNet QA [51]. Specifically, Maaz et al. [24] proposed GPT-3.5 as the evaluator model,
which makes the entire evaluation process rely on a private API model. The evaluation model
determines if the predicted answer is correct given the question and the ground-truth answer.
In addition, the evaluator also computes a score to measure the answer quality.

We conducted a comparative analysis to assess the influence of the evaluation model on
the results. Table 4 shows the accuracy and average score for different models on two open-
ended datasets, using two evaluators: GPT-3.5 and Llama3-70B. The evaluators produced
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Evaluation method

Model Input GPT-3.5 Llama3-70B
∆Acc.Acc. Score Acc. Score

Lama3 70B text

M
SR

V
T

T 23.9 2.4 47.8 2.6 +23.9
GPT-4o text 23.3 2.3 42.4 2.3 +19.1
GPT-4o image 34.2 2.7 50.8 2.7 +16.6

Tarsier-34B shuffle 63.1 3.5 62.7 3.4 -0.4
Tarsier-34B video 66.4 3.7 63.0 3.4 -3.4

Evaluation method

GPT-3.5 Llama3-70B
∆Acc.Acc. Score Acc. Score

A
ct

iv
ity

N
et 25.3 2.6 32.6 1.9 +7.3

27.1 2.5 33.9 1.8 +6.8
46.4 3.2 56.2 2.9 +9.8
59.9 3.6 60.8 3.4 +0.9
61.6 3.7 61.3 3.4 -0.3

Table 4: Unreliability and biases of open-ended video-language benchmark evaluation.
Different LLMs used for evaluation produce varying results, see ∆ column. Additionally,
open-ended benchmarks also exhibit spatial and textual bias, similar to MCQA.

significantly different results for the same method on the same dataset, with discrepancies
of more than 20 points. Specifically, Llama3 highly increases the accuracy of text-only and
single-image models, while providing similar or even lower results than GPT-3.5 for video
models. Llama3 assigns better metrics to predictions made by the same model. If both the
prediction model and the evaluator contain similar biases, the hallucinations in the predic-
tions may be classified as correct responses by the evaluator. This includes cases where the
model gives completely unrelated answers to the video —for example, responding to the
question “Which plants can be seen in the desert?” with a generic list of desert plants— yet
the evaluation model incorrectly assigns a high score classifying the response as correct. Ad-
ditional qualitative examples are provided in Appendix A.3. These findings raise doubt about
the reliability of these evaluations, as different models give completely different results.

Moreover, as shown in Table 4 open-ended QA does not solve the main issues of MCQA.
The performance of text-only models is surprisingly strong; LLMs can guess the answer
solely from the question text for a significant number of questions, even without a candidate
list. This includes questions such as Which hand of the person in black wears a watch? or
What color is the pants of a person wearing black clothes?, which correct answers are Left
hand and Black. The first question can be answered just with prior knowledge as people
commonly wear the watch on the left hand, while in the second one, the question contains
the answer. Similar to the findings for MCQA on spatial bias in Sec. 3.1, when using a
single random frame for image-text models such as GPT-4o, performance reaches 60.6%
and 46.4%, approaching the video-language model’s 80.3% and 61.6%, respectively. In
addition, the performance of Tarsier-34B does not significantly drop—on average less than
3%—when the input videos are shuffled, indicating the low temporal understanding required
for solving the benchmarks. This shows that open-ended benchmarks also exhibit strong
spatial bias, not requiring temporal understanding to be solved.

In summary, current open-ended benchmarks are unreliable due to their use of LLMs
as evaluators. This makes them unsuited for evaluating video-language models, especially
as they also suffer from spatial and textual bias. In addition, they rely on closed-source
LLMs for evaluation, which incurs costs to access, and becomes unreproducible when newer
versions are released.

5 TVBench: A Temporal VQA Benchmark

We propose TVBench, a new benchmark for evaluating temporal understanding in video
QA. We adopt a multiple-choice QA approach to prevent the problems of open-ended VQA
described in Sec. 4. The main design principles of TVBench are derived from and address



8 CORES, DORKENWALD, MUCIENTES, SNOEK, ASANO: LOST IN TIME

the problems listed in Sec. 3. Appendix A.2 provides an overview of the tasks, questions, and
answers candidates used in our benchmark. We verify our choice of tasks and QA templates
in Sec. 5.2 by the performance of multi-modal LLMs with a random frame or shuffled videos.

5.1 Designing TVBench

This section explains the key strategies implemented in TVBench to address the issues iden-
tified in Sec. 3 of current video MCQA evaluation benchmarks.
Strategy 1: Define Temporally Hard Answer Candidates. To address Problem 1, it is
crucial that the temporal constraints in the question are essential for determining the correct
answer. This involves designing time-sensitive questions and selecting temporal challenging
answer candidates.

1. We select 10 temporally challenging tasks that require: repetition counting (Action Count),
properties of moving objects (Object Shuffle, Object Count, Moving Direction), tempo-
ral localization (Action Localization, Unexpected Action), sequential ordering (Action
Sequence, Scene Transition, Egocentric Sequence), and distinguishing between similar
actions (Action Antonyms).

2. We define hard-answer candidates based on the original annotations to ensure realism
and relevance, rather than relying on LLM-generated candidates that are often random
and easily disregarded, as seen in MVBench. For example, in the Scene Transition task
(Fig. 4), we design a QA template that provides candidates based on the two scenes
occurring in the videos for this task, rather than implausible options like “From work to
the gym.” Similarly, for the Action Sequence task, we include only two answer candidates
corresponding to the actions that occurred in the video. More details for the remaining
tasks are in Appendix A.2.

Strategy 2: Define QA pairs that are not overly informative. Contrary to LLM-based
generation, we apply templates to mitigate the effect of text-biased QA pairs (Problem 2).

1. We design QA pairs that are concise and not unnecessarily informative by applying task-
specific templates. These templates ensure that the QA pairs lack sufficient information
to determine the correct answer purely from text. An example of Unexpected Action
is illustrated in Fig. 4. QA pairs require the same level of understanding for the model
to identify what is amusing in the video, but without providing additional textual in-
formation. Unlike MVBench, the model cannot simply select the only plausible option
containing a dog. We use the same candidate sets across tasks like Action Count, Object
Count, Object Shuffle, Action Localization, Unexpected Action, and Moving Direction,
to ensure balanced datasets with an equal distribution of correct answers, keeping visual
complexity while reducing textual bias. Appendix Table A.2.2 provides an overview of
all tasks, demonstrating that the QA templates are carefully crafted without unnecessary
textual information.

2. Solving the overreliance on world knowledge requires providing questions and candidates
that contain only the necessary information, specifically removing factual information
that the LLM can exploit. We remove tasks such as Episodic Reasoning, that are based
on QA pairs about TV shows or movies.
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Figure 4: TVBench Strategies. Strategy 1 (left) mitigates spatial bias by defining tempo-
rally challenging answer candidates. Strategy 2 (right) reduces textual bias by minimally
informative QA templates.

5.2 TVBench Evaluation

Table 5 provides a detailed performance breakdown of state-of-the-art text [27] and multi-
modal LLMs [7, 12, 18, 19, 25, 28, 35, 36, 47, 49, 54, 55] across the 10 TVBench tasks.
In addition, we also report a human baseline to verify the quality of the benchmark, more
details see appendix A.2.3. We also include the average performance of these models on
MVBench and TVBench, with the upward arrow ↑ indicating the improvement over random
chance, and a human baseline to verify our benchmark’s solveability.
Does time matter? For TVBench, multi-modal LLMs with a single image perform at ran-
dom chance, verifying that a random frame is not sufficient for accurate question answering.
Specifically, Gemini 1.5 Pro, the top image-language model on TVBench, outperforms ran-
dom chance by only 3.0%, compared to a 21.2% improvement on MVBench. Shuffling
videos has minimal impact on the performance of video-language models on MVBench, but
significantly degrades their accuracy on TVBench, where it drops to near-random levels. For
example, Tarsier-34B’s accuracy is 33.9% higher than the random baseline on MVBench
when videos are shuffled, while on TVBench, it is only 4.7% higher under the same condi-
tions. This suggests that temporal understanding is crucial for TVBench, where visual data
alone is insufficient to outperform random chance, unlike MVBench.
Does vision matter? For TVBench, state-of-the-art LLMs with text-only perform at ran-
dom levels, highlighting the effectiveness of our Strategy 2 for Problem 2. Notably, Llama
3 achieves the best performance, just 1.4% above random chance on TVBench, whereas it
performs 10.8% better on MVBench. This indicates that LLMs cannot determine the an-
swer solely by analyzing the question and answer candidates or by relying on prior world
knowledge. Thus, visual information becomes key for solving TVBench.

6 Discussion

A sobering view on current models. With our new TVBench, we can accurately assess
the temporal understanding of existing video-language models. Surprisingly, we find that
recent state-of-the-art and highly popular models, such as VideoChat2, ST-LLM, PLLava,
VideGPT+, GPT-4o, mPLUG-Owl3 perform close to random chance on our temporal bench-
mark. Only five models, Qwen2-VL, LLaVA-Video, IXC-2.5, Aria, and Tarsier, achieve
above 50% accuracy, significantly outperforming the random baseline. From these results,
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MVBench TVBench TVBench

Model Input Average Average AC OC AS OS ST AL AA UA ES MD

Random – 27.3 33.3 25.0 25.0 50.0 33.3 50.0 25.0 50.0 25.0 25.0 25.0

GPT-3.5 Turbo

text-
only

35.0↑7.7 33.1↓0.2 27.2 18.2 44.9 32.0 53.5 26.9 45.9 29.2 26.5 26.7
Llama 3 70B 38.1↑10.8 34.7↑1.4 30.2 27.0 48.7 32.9 55.1 26.9 49.1 23.3 25.5 28.0
GPT-4o 34.8↑7.5 33.8↑0.5 28.0 21.0 48.7 33.3 53.5 25.6 50.9 25.8 28.5 22.4
Gemini 1.5 Pro 38.2↑10.9 33.6↑0.3 25.0 17.6 53.0 33.3 51.9 25.0 54.7 23.3 28.0 24.1
Tarsier-34B 35.7↑8.4 34.4↑1.1 28.7 25.0 50.9 33.3 49.7 26.2 54.7 22.5 23.5 29.7

Idefics3

image

44.2↑16.9 34.5↑1.2 27.1 23.0 56.8 36.9 49.2 25.6 52.2 29.2 25.5 19.8
GPT-4o 47.8↑20.5 35.8↑2.5 30.8 19.6 62.1 33.3 52.4 25.0 52.5 27.5 33.0 21.6
Gemini 1.5 Pro 48.5↑21.2 36.3↑3.0 22.8 21.0 55.9 36.4 51.4 36.9 54.7 35.8 30.0 23.7
Tarsier-34B 45.1↑17.8 35.0↑1.7 30.0 26.4 61.0 27.1 53.0 32.5 49.4 27.5 21.5 22.0

VideoChat2
video
shuffle

49.8↑22.5 34.7↑1.4 25.6 27.0 54.0 32.9 56.2 23.1 48.1 33.3 24.5 22.4
PLLaVA-34B 56.7↑29.4 37.2↑3.9 25.9 29.1 58.5 35.1 56.2 34.4 55.9 28.3 25.0 23.7
Gemini 1.5 Pro 56.8↑29.5 36.1↑2.8 26.5 23.7 55.9 35.1 51.4 31.3 51.9 31.7 29 24.6
Tarsier-34B 61.2↑33.9 38.0↑4.7 30.2 35.8 59.8 34.7 52.4 35.6 55.6 35.0 23.0 18.1

VideoChat2

video

51.0↑23.7 35.0↓1.7 25.9 27.0 56.8 32.9 56.2 23.1 48.1 32.9 24.5 22.4
ST-LLM 54.9↑27.6 35.7↑2.4 25.0 35.1 51.7 36.0 54.4 31.0 45.6 34.2 24.0 20.3
GPT-4o 49.1↑21.8 39.9↑6.6 26.1 21.3 59.3 33.2 52.4 25.0 78.4 41.7 31.0 30.6
PLLaVA-7B 46.6↑19.3 34.9↑0.9 32.1 25.7 55.6 33.3 52.4 23.8 53.1 30.5 20.5 21.6
PLLaVA-13B 50.1↑22.8 36.4↑3.1 37.3 24.3 61.8 33.3 55.1 28.1 47.8 39.0 19.5 17.2
PLLaVA-34B 58.1↑30.8 42.3↑9.0 27.6 32.4 67.0 35.6 77.8 44.4 58.8 32.9 27.0 19.4
mPLUG-Owl3 54.5↑27.2 42.2↑8.9 27.4 32.4 69.8 37.3 76.8 43.1 56.9 34.2 18.0 26.3
VideoLLaMA2.1 57.3↑30.0 42.1↑8.8 25.4 30.4 71.2 29.8 76.6 46.9 58.1 36.8 23.5 22.4
VideoLLaMA2 7B 54.6↑27.3 42.9↑9.6 30.6 37.8 69.6 33.8 68.1 40.6 56.9 43.9 24.5 22.8
VideoLLaMA2 72B 62.0↑34.7 48.4↑15.1 26.7 46.6 73.5 40.4 81.6 53.1 76.6 36.6 19.5 29.7
VideoGPT+ 58.7↑31.4 41.7↑8.4 30.6 52.0 61.3 36.9 69.2 40.0 53.1 29.7 16.0 28.5
Gemini 1.5 Pro 60.5↑33.2 47.6↑14.3 33.5 22.3 71.5 34.5 82.6 51.6 77.8 43.9 25.0 33.6
Qwen2-VL 7B 67.0↑39.7 43.8↑10.5 27.1 61.5 63.8 38.7 75.7 41.3 63.1 22.0 22.5 22.4
Qwen2-VL 72B 73.6↑46.3 52.7↑19.4 32.6 73.0 68.6 31.1 82.2 45.0 75.3 37.8 19.5 62.1
LLaVA-Video 7B 58.6↑31.3 45.6↑12.3 32.6 23.6 78.5 32.9 81.6 58.8 71.9 29.3 22.5 24.1
LLaVA-Video 72B 64.1↑36.8 50.0↑16.7 38.6 27.0 80.3 33.3 85.9 65.6 66.6 35.4 25.5 41.8
IXC-2.5-7B 69.1↑41.8 51.6↑18.3 32.1 50.7 77.1 37.3 78.4 46.9 60.0 41.7 21.0 70.3
Aria 69.7↑42.4 51.0↑17.7 58.4 60.1 75.1 42.2 81.6 43.1 70.3 32.9 21.0 25.0
Tarsier-7B 62.6↑35.3 46.9↑13.6 22.9 58.8 73.2 35.6 64.9 46.9 75.6 40.2 25.5 25.0
Tarsier-34B 67.6↑40.3 55.5↑22.2 31.7 64.2 81.7 32.1 77.8 58.1 84.4 52.4 24.5 48.3
Human Baseline - 94.8↑61.5 100.0 94.9 100.0 90.6 90.0 96.0 100.0 86.0 90.0 100.0

Table 5: Results on TVBench where text-only and image models perform near-random as
well as several recent VideoLLMs With TVBench we can identify temporally strong models
like Aria and Tarsier as these models drop significantly when the videos are shuffled.

we observe that TVBench amplifies the performance gaps between models with the strongest
temporal understanding and those with weaker capabilities.

Conclusion. In this work, we highlight major limitations in existing language-video bench-
marks, particularly in the widely used MVBench and open-ended benchmarks. Key issues
include inadequate temporal evaluation and tasks that do not require visual information, mak-
ing tracking progress in this domain ineffective. To address these problems, we introduce
TVBench, a benchmark designed to assess the temporal understanding of video-language
models explicitly. Our experiments reveal that on TVBench, text-only and visual mod-
els lacking temporal reasoning perform randomly, and only a handful of models achieve
moderately high scores, showing the potential for progress supported by a human baseline.
TVBench provides a reliable yardstick for evaluating future advancements in VideoLLMs
and has already been adopted by the community as an evaluation standard for recent SOTA.
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