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Abstract This paper addresses the problem of exploiting spatiotemporal information to
improve small object detection precision in video. We propose a two-stage object detector
called FANet based on short-term spatiotemporal feature aggregation and long-term object
linking to refine object detections. First, we generate a set of short tubelet proposals. Then,
we aggregate RoI pooled deep features throughout the tubelet using a new temporal pool-
ing operator that summarizes the information with a fixed output size independent of the
tubelet length. In addition, we define a double head implementation that we feed with spa-
tiotemporal information for spatiotemporal classification and with spatial information for
object localization and spatial classification. Finally, a long-term linking method builds long
tubes with the previously calculated short tubelets to overcome detection errors. The asso-
ciation strategy addresses the generally low overlap between instances of small objects in
consecutive frames by reducing the influence of the overlap in the final linking score. We
evaluated our model in three different datasets with small objects, outperforming previous
state-of-the-art spatiotemporal object detectors and our spatial baseline.

Keywords Video Object Detection · Small Object Detection · Convolutional Neural
Network · Spatiotemporal CNN

1 Introduction

Object detection has been one of the most active research topics in computer vision in recent
years. However, the use of temporal information in videos to boost detection precision is still
an open problem. Although object detection frameworks can be executed at the frame level,
they do not take advantage of temporal information available in videos that can be crucial to
address challenges such as motion blur, occlusions or changes in object appearance in some
frames. Addressing these issues is fundamental to solving the small object detection problem
since the spatial information given by each individual frame is very limited. Therefore, any
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partial occlusion or subtle image degradation might have a considerable impact on detection
precision.

In general, object detection frameworks implement two main tasks: bounding box re-
gression and object classification. We hypothesize that extracting spatiotemporal informa-
tion from the object appearance in previous frames can significantly improve classification
task accuracy. For small targets, limited spatial information makes it difficult to distinguish
objects of close categories. This raises the issue of linking and aggregating spatiotemporal
features throughout time.

Object detection based on convolutional neural networks (CNNs) follows two main ap-
proaches: one-stage and two-stage architectures. One-stage methods [1,2] generate candi-
date object locations directly from the feature maps in a dense manner. Instead, two-stage
frameworks [3,4,5] use an additional network, called the region proposal network (RPN), to
generate the proposals that are later refined by the network head. Our approach follows the
two-stage architecture, and our spatiotemporal network uses the RPN proposals to propagate
information from previous frames.

Small objects are present in many real applications. Typical videos including small tar-
gets, are those recorded from on-board cameras on unmanned aerial vehicles (UAV) or out-
doors video surveillance cameras. The main challenge in these scenarios comes from a high
density of small moving objects. This highly degrades the performance of state-of-the-art
object detectors, especially when working with spatiotemporal object detectors that are de-
signed to deal with few large objects per image.

Additionally, for small objects, the generally low overlap of an object between close
frames and the lack of spatial information due to the small size —which is essential to dis-
tinguish between objects of different categories— hinder the feature matching and aggrega-
tion process across neighboring frames. This not only limits the benefits of exploiting spa-
tiotemporal information of small objects with traditional video object detectors, but might
also spoil the final feature map by aggregating nonrelated features. An incorrect aggregation
blurs the already limited visual differences among small object categories, decreasing the
final detection precision.

Our proposal follows the Faster R-CNN model but extends it to generate both temporal
and spatial information to improve small object detection precision. The novelties of this
work are as follows:

– A new tubelet proposal method that calculates object proposals at different levels in a
feature pyramid network (FPN) model. Object proposals in the same tubelet are mapped
to different pyramid levels in each frame according to their corresponding size. This
makes our approach robust against size changes in consecutive frames, allowing to ex-
tract box features at different resolution levels for the same object.

– A temporal pooling method capable of summarizing information from the previous N

frames, that calculates a feature map with the same size regardless of the number of
input frames. Thus, it works with a fully connected network head with the same number
of parameters and a constant execution time independent of N .

– A spatiotemporal double head. This component exploits both spatial information from
the current frame and spatiotemporal information from many input frames. Spatial in-
formation is used to solve the object localization problem, while both spatial and spa-
tiotemporal are combined to improve classification accuracy.

– A long-term linking algorithm that creates long tubes associating object instances through-
out video frames. Then, confidence scores are updated for every detection in each tube,
considering long-term spatiotemporal consistency. This method reuses short-term infor-
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mation to improve the long tube creation process, overcoming network errors in certain
frames such as missing detections that can otherwise break the tubes. Addressing miss-
ing detections is one of the main challenges of small object detection.

– Our framework outperforms state-of-the-art video object detectors in the USC-GRAD-
STDdb [6], UAVDT [7] and VisDrone [8] datasets for the very small object subset —
≤ 256px— defined in [6].

2 Related Work

The object detection problem with CNNs was first defined in the single image domain fol-
lowing both one-stage and two-stage architectures [9]. Recently, spatiotemporal frameworks
were proposed based on these methods but considering the temporal information available
in videos to improve detection precision.

2.1 Single image object detection

The first milestone for two-stage detectors was R-CNN [3]. R-CNN needs to apply feature
extraction with a CNN on each region of a precalculated proposal set, resulting in a very
slow approach. This issue was addressed in Fast R-CNN [4], by adding an RoI pooling
layer on top of the CNN. Instead of executing the CNN over each proposal, Fast R-CNN
extracts the features of the whole image, generating a global deep feature map. Then, RoI
pooling generates a per proposal feature map extracting the corresponding features. This
significantly improves both the training and test times by sharing all the CNN backbone
calculations.

All these methods rely on an external region proposal method. The Faster R-CNN frame-
work [5] defines an RPN to generate the proposal set in a fully convolutional fashion reusing
the backbone calculations. This makes it possible to perform end-to-end training of the
whole system without any precomputed information. The feature pyramid network [10] pro-
poses a change in the definition of the CNN backbone, extracting feature maps at different
depth levels instead of taking just the deepest level. Therefore, the RPN and the network
head must calculate object proposals and the final detections at different feature map levels.
FPN implements a top-down pathway and lateral connections to combine low-resolution
semantically strong features with high-resolution semantically weak features to work at dif-
ferent levels without losing semantic meaning. Working with high-resolution feature maps
enables the network to improve the small object detection precision. mSODANet [11] ex-
tends this idea by adding contextual features at multiple levels, improving the detector ro-
bustness to scale variations.

As an alternative, STDnet [6] proposes a specific architecture to address the small object
detection problem. First, it selects promising areas of the image with a high probability of
containing small objects. Then, a two-stage approach generates object proposals in these
promising regions to calculate the final object detection set. By focusing on small portions of
the image, a small stride of 4 from shallow layers can be kept without dramatically affecting
the computation time. Hence, it enables to work with semantically strong high-resolution
feature maps.

Many other solutions propose new header implementations based on the original Faster
R-CNN framework, such as the Cascade R-CNN [12]. This method defines a multistage
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head that iteratively refines the object proposal set. One-stage object detectors [13,1,2] di-
rectly regress and classify anchor boxes without object proposals.

2.2 Video object detection

The video object detection problem has drawn the attention of the research community with
new architectures specifically designed to exploit spatiotemporal information. Even so, im-
proving the detection performance, including the temporal information available in videos,
remains an open problem. The same issue also remains unsolved in related fields such as
action recognition.

Some video object detection approaches rely on optical flow. For example, [14] pro-
posed aggregating deep spatial features throughout time to improve the per-frame feature
maps. To do so, the authors resort to movement information given by the optical flow to
find the correspondences between the current features and the nearby feature maps. As an
alternative to deep feature fusion, SVM-based spatiotemporal feature fusion [15] has been
successfully applied to address the small object detection problem in low-contrast aerial
environments. This approach focuses on analyzing pixel variations over time rather than
the usually limited visual representations of small objects. We propose a novel method to
find these correspondences working with two-stage frameworks by linking object proposals
throughout time.

Several approaches have been proposed to link object detections throughout neighbor-
ing frames, making up short object tubelets. In reference [16], the authors introduced a
method to link detections generated by a frame-level object detector through tracking tech-
niques. T-CNN [17] also applied tracking to link detections of two single-frame detectors
over time. The authors in [18] defined a tubelet proposal network (TPN) with two main
components. First, it propagates static proposals at the frame level across time. Then, the
second network estimates the bounding box displacement in each frame to build the tubelet
proposal. Although this second component works with pooled features extracted from the
same bounding box over time, the network can handle moving objects due to the gener-
ally large receptive field of CNNs. Instead of applying frame-level RoI pooling methods,
a temporal RoI align operator was proposed in [19]. This operator performs feature aggre-
gation between RoI features in the current frame and features from the entire feature map
in the support frames. Therefore, it is not bounded by object proposals in support frames,
extending the search area to the entire feature map.

Another idea is to extend the anchor boxes of single-frame object detectors to the
spatiotemporal domain. The ACtion Tubelet detector (ACT-detector) [20] utilizes anchor
cuboids to initialize the action tubelets. The work in [21] proposed a cuboid proposal net-
work (CPN) for short object tubelet detection. Unlike these previous methods, in our pro-
posal the regression of each of the anchor boxes in the anchor cuboid is performed by the
corresponding RPN with information from the corresponding frame, allowing us to reuse
part of the computations from previous iterations while preserving the proposals linked
throughout consecutive frames.

The aim of the described methods is to link objects in the short-term. Therefore, they
only take into account the nearby frames wasting long-term information. To overcome this,
the approach described in reference [22] solves object linking with tracking information to
build long tubes, and aggregates detection scores throughout the tube. To do that, tracking
and object detection are performed and learned simultaneously with a multitask objective.
Sequence level semantics aggregation (SELSA) [23] links object proposals extracted at the
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Fig. 1 FANet architecture with a single level backbone. The dotted backbone and RPN boxes represent com-
ponents that are reused without new computations. Blocks labeled as 2MLP in the network head implement
a multilayer perceptron with two fully connected layers.

frame level based on semantic similarities. Then, it performs feature aggregation according
to these similarities, obtaining more robust and discriminative object features.

The authors in [21] also performed long-term object linking by concatenating small
tubelets. First, they calculated short temporally overlapping tubelets, so one single frame
could have detections associated with more than one tubelet. Then, tubelets were joined
by analyzing the overlap in the shared frames. Memory enhanced global-local aggregation
(MEGA) [24] extends relation distillation networks (RDN) [25] to take advantage of long-
term spatiotemporal information. Both methods are based on attention mechanisms to estab-
lish the proposal relationships between different frames. STDnet-ST [26] improves STDnet
[6] by adding spatiotemporal information, linking objects throughout time. Although this is
a specific architecture for small object detection in videos, it is a class agnostic detector. We
address this issue in our spatiotemporal double head by providing both object localization
and classification.

All these methods only consider the final detection set to perform long-term object link-
ing. In this work, we include short-term information calculated by the RPN to overcome
missed detections, and build larger tubes. It is important to note that our approach only uses
object proposals and detections given by the network, without any external tracking method
to aid the object linking process.

3 FANet Architecture

The proposed framework (Fig.1) generalizes a single-frame two-stage object detector, adding
spatiotemporal information from the nearby frames ft−N+1..., ft−1, ft to improve the de-
tection precision in each frame ft. Even though we build our system on Faster R-CNN [5]
with a feature pyramid network (FPN) backbone [10] to illustrate the network architecture,
the same ideas can be applied to other models. Indeed, since the spatiotemporal tubelet pro-
posal is a core concept in our architecture, the multiscale level approach imposes higher
complexity than single scale models due to the multiple RPNs. These object tubelets link
proposals throughout time allowing the network to improve the per-frame features by aggre-
gating box features from different frames. The proposal linking strategy relies on the RPN
receptive field instead of overlap-based metrics or visual appearance similarities, making
the method robust against moving small objects. Then, a long-term object linking leverages
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temporal consistency, increasing the confidence of detections that maintain spatiotemporal
coherence throughout the video. Reusing short-term linking information allows this long-
term method to overcome network errors such as false negatives, which are more frequent
in small object detection.

We initialize object tubelets as anchor cuboids. Each anchor cuboid is a sequence of
N anchor boxes, one per frame, with the same area and aspect ratio, in the same position.
Then, the RPN modifies each anchor box independently in the corresponding frame using
features calculated by the corresponding backbone. This, together with the fact that both the
network backbone and the RPN share the convolutional weights among all input frames,
allows us to reuse the backbone and RPN computations to reduce the overhead associated
with the proposed spatiotemporal approach with respect to the single-frame method. Thus,
feature maps and object proposals associated with frames ft−N+2, ..., ft−1, ft are reused
to process the next frame. As in single image object detectors, the resulting proposal set
has spatially redundant proposals. In our implementation, this issue is addressed by adding
a tubelet non-maximum suppression (T-NMS) [21] algorithm that filters redundant tubelet
proposals. The tubelet generation process is described in Sec. 3.1.

An RoI align method [27] is fed with per-frame feature maps and tubelet proposals,
extracting RoI features centered on objects with a fixed size. Fig. 1 shows the simplest
case in which there is a single level backbone rather than the more complex FPN. After
RoI align, we concatenate all feature maps associated with proposals belonging to the same
tubelet. Then, we shuffle the channels, so channels in the same position in the original feature
maps are consecutive in the concatenated feature map (Fig.1). The resulting feature map
has a joined dimension N times the original RoI align size, making it dependent on the
number of input frames. The temporal pooling method reduces this dimension to a fixed
size independent of N . The joining and pooling processes are described in Sec. 3.2.

We implement a spatiotemporal double head with spatial and spatiotemporal branches
specifically designed for object classification and localization (Sec. 3.3). Spatial information
from the current frame is processed in the spatial branch while spatiotemporal information
is used in the spatiotemporal branch. As one of the goals of the spatial branch is to localize
the object in the current frame, we follow a multistage object architecture [12] in which each
stage output is the input to the next stage. Consequently, it gradually refines object proposals
to maximize the overlap with the actual object. Our framework can be trained end-to-end as
it does not need any precomputed or heavily engineered object proposals.

Last, per-frame object detections are linked, making up long tubes. Short-term object
tubelets provide helpful information about whether two detections in different neighboring
frames are the same object. The proposed long-term object linking algorithm takes this
information as input to grow the final tubes. Then, the detection confidence score is updated
taking into account long-term spatiotemporal consistency (Sec. 3.4).

3.1 Short-term proposal linking

In general, the starting point for most object detectors is a set of predefined anchor boxes.
Then, they adjust these anchor boxes to better fit the objects and assign an object category,
removing those classified as background. Instead, we propose to use anchor cuboids gen-
erated as N consecutive anchor boxes. Therefore, for a given input frame, the number of
anchor cuboids is the same as the number of anchor boxes in the single image counterpart
calculated as k anchor boxes for each sliding position W ×H . Moreover, every anchor box
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in an anchor cuboid has the same size and aspect ratio and is in the same position for all
short-term input frames N .

As our framework is designed to work with an FPN (feature pyramid network) [10], ob-
ject proposals are mapped to different pyramid levels according to their area. In our imple-
mentation, every proposal box (bt−N+1, ..., bt−1, bt) in the anchor cuboid is independently
associated with the corresponding FPN level in each input frame following the association
strategy defined in [10]. Consequently, RPN outputs for previous frames can be reused and
only the new proposal bt must be calculated. Adapting this strategy to single-level models
implies that anchor boxes belonging to all anchor cuboids are mapped to the same level.

Regressing every anchor cuboid leads to spatially redundant tubelets in the proposal set.
In two-stage single-frame detectors, this problem is generally solved executing the nonmax-
imum suppression (NMS) method over the proposal set. In our case, we perform a gener-
alization that removes spatiotemporal redundant tubelet proposals instead of per image box
proposals. Otherwise, applying a traditional NMS method will remove tubelet fragments
breaking the short-term links. We implement an extension of the tubelet nonmaximum sup-
pression (T-NMS), first described in [21], but with different metrics to calculate the tubelet
score ts(τi) and to determine the overlap between two tubelets, τi and τj , making it more
suitable for small objects. The goal of our T-NMS is to remove redundant tubelet proposals
to support the RoI feature aggregation process. Instead, in [21], T-NMS is used to remove
final detections after a per-frame refinement of cuboid proposals.

The score of a given tubelet τi is calculated taking into account the confidence of pro-
posals that belong to τi:

ts(τi) = mean(bst−N+1
i , bst−1

i , ..., bsti). (1)

where bst is the score of proposal b at frame t.
To calculate the overlap between two tubelets τi and τj , we use:

overlap(τi, τj) = mean
k=t−N+1,...,t

IoU(bki , b
k
j ). (2)

The original tubelet overlap definition is based on the min function, which is too demanding
in the small object detection context. Instead, we use the mean function, reaching higher
overlap values.

Tubelet scores (Eq. 1) and overlaps between a pair of tubelets (Eq. 2) are used in the
T-NMS to remove tubelets with a high overlap with higher scoring tubelets. Unlike the orig-
inal FPN strategy, which performs a per-level NMS, our T-NMS implementation globally
removes the spatially redundant proposals, taking as input the whole set of tubelets. The
resultant subset T represents the final collection of proposals.

3.2 RoI feature aggregation

In Faster R-CNN-based object detectors, an RoI feature pooling method takes the proposal
set to produce a per proposal fixed-size feature map. Working with FPN, object propos-
als are distributed among the pyramid levels according to their size to perform RoI pool-
ing over the corresponding feature map. We employ the RoI align [27] method to per-
form the feature pooling operation taking each bounding box bj belonging to each tubelet
τi = (bt−N+1

i ..., bt−1
i , bti) to extract features from the corresponding pyramid level in frame

fj . Performing this mapping process independently in each frame rather than per tubelet en-
ables us to map each box bj within the same tubelet τi to a different pyramid level, making



8 Daniel Cores et al.

Fig. 2 Temporal pooling example with a number of input frames N = 4. From left to right, there are the four
input frames with an object proposal (the blue bounding box) in each one, all belonging to the same tubelet.
Below each input frame, a subset of channels from the RoI align output is represented. On the top right, we
show the tubelet proposal linking all box proposals. At the bottom right, we also show the aggregated feature
map calculated by thetemporal pooling method. We highlight one channel (framed in red) as an example of
how the highest activations (lighter colors) in each frame contribute to the aggregated feature map.

the system robust against scale variations in the tubelet sequence. This allows us to integrate
high-resolution feature maps from every input frame, even when objects are very small at
some time instant. The results are a fixed-size feature map (in our case of 7×7×256, Fig. 1)
associated with each box in the tubelet.

Spatiotemporal information associated with each tubelet is summarized by a new op-
erator called temporal pooling that calculates a feature map with a fixed-size independent
of N . Thus, the temporal pooling output has the same size as the RoI align output for one
single frame. This method requires N to be small enough to allow the RPN to adapt the
corresponding anchor box in the anchor cuboid sequence to fit the object in each frame.
Working with a large N , the object movement might exceed the RPN receptive field, mak-
ing it impossible to adjust the same anchor box in every frame to the target object 1. Since
all RoI Align outputs that belong to the same tubelet have a fixed size and are centered in
occurrences of the same object over time, we can link features in the same position of the
RoI pooled feature map in every frame.

RPN errors might result in misaligned proposals throughout the tubelet that can dam-
age the final output. However, as RoI pooled feature maps are coarse representations of the
object, small variations in consecutive frames have minor effects on the temporal pooling
inputs. This makes the short-term spatiotemporal aggregation process robust against local-
ization errors in the RPN. These localization issues are of great importance when working
with small objects. Thus, slight localization errors can dramatically reduce the overlap with
the ground-truth.

The first step of the temporal pooling is to concatenate the N input RoI feature maps
of size W × H × C, resulting in a feature map of size W × H × N · C (Fig. 1). Then,
the output is reordered so that channels at the same position in the input feature maps are
placed consecutively (temporal pooling input in Fig. 1). Finally, the output feature map is
calculated as:

xijk = max
t=0...,N−1

(yij(N(k−1)+t)) (3)

where yij(N(k−1)+t) is an element in the position i × j in channel (N(k − 1) + t) in the
input feature map of size W ×H×N ·C, and xijk is an element in position i× j in channel
k of the output feature map. This process accumulates the highest activation values in the
nearby frames, as Fig. 2 shows.

1 As Section 4.3 shows, the network achieves the best result with N = 4.
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Fig. 3 Long-term object linking. The green boxes are actual network detections. The network does not detect
the two objects in f4, breaking ṽj in two fragments. The last detection of the first fragment and the first
detection of the second fragment belong to the same RPN tubelet (τk).

3.3 Cascade double head

The double head architecture is based on the idea that aggregated spatiotemporal informa-
tion is valuable to improve object classification, while spatial information extracted from
the current frame is crucial for bounding box regression. Consequently, we design each
head branch to perform better in its respective task taking into account the input data.

The spatial head (Fig. 1, top right) takes as input the RoI align output at the current frame
ft to calculate a spatial object classification and a class agnostic bounding box regression.
Since the main goal of this branch is the object localization, we implement a cascade head
[12] to iteratively refine the object proposal set until the final bounding box regression is
performed.

Following the Cascade R-CNN training strategy, we perform proposal resampling after
each stage, applying an increasing IoU threshold to assign each proposal to a ground truth
object. Hence, the requirements to consider one proposal as a positive example to train the
corresponding stage are harder as we advance in the cascade. In general, an IoU threshold
that is too high might assign all proposals to background, removing the positive examples.
Nevertheless, as each stage takes as input the refined proposal set from the previous stage,
we can increase the IoU threshold achieving more accurate boxes in each stage. At test time,
we use the average of the classification scores calculated by every stage detector over the
final proposal set [12].

The spatiotemporal head (Fig. 1, bottom right) is fed with RoI features generated by
our temporal pooling method. Thus, spatial information from the previous N frames is con-
sidered to classify the object in this branch. As a result, this strategy produces a bounding
box regression and two object classification vectors, one based on features in the current
frame and another based on the aggregated spatiotemporal features. The final classification
is calculated as follows [28]:

p = ptmp + pspt(1− ptmp) (4)

where pspt and ptmp are the score vectors from the spatial and temporal heads, respectively.
Thus, we are considering spatial classification in the current frame and spatiotemporal clas-
sification at the same level. This makes the current frame ft to have a greater influence on
the final classification result than any previous frame fi in ft−N+1, ..., ft−1.
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3.4 Linking object detection

We propose a two-step long-term object linking algorithm that takes network detections
and produces long object tubes. Linking network detections to build long tubes is a widely
adopted approach in both action recognition [29,30] and object detection [22,17,21]. The
main goal of these methods is to rescore all the detections in each tube, increasing the confi-
dence to those detections that can be linked throughout time and maintaining spatiotemporal
consistency in the long-term.

In the first stage of our method, linking detections in consecutive frames is addressed
by maximizing the accumulated linking score in each tubelet. Network errors such as false
negatives or misclassified detections might break large tubes, since it is not possible to find
a detection to link in some frames. The second step of the long-term linking method uti-
lizes the short-term tubelet information to overcome some of these problems, allowing the
algorithm to produce larger tubes.

In this implementation, each detection dit = {xit, yit, wi
t, h

i
t, p

i
t} in the set Dt at frame t

has an associated bounding box with center (xit, y
i
t), width (wi

t), height (hit), and an associ-
ated classification confidence (pit) for the object class. Detections with a confidence score
lower than a given threshold β are removed, reducing the probability of poor quality detec-
tions being part of the final object tubes. The linking score ls(di, dj) between two detections
di and dj at different frames t and t′ is defined as:

ls(dit, d
j
t′) = pit + pjt′ +GIoU(dit, d

j
t′). (5)

where GIoU is the generalized intersection over union proposed in [31]. For small objects,
detections associated with the same object in nearby frames might have no overlap. GIoU
allows us to measure the similarity of two bounding boxes even when they do not overlap.

Then, object tubes v̂ can be calculated maximizing the following expression:

v̂ = argmax
V

T∑
t=2

ls(Dt−1, Dt) (6)

where V is the set of all possible tubes. This optimization problem is solved by applying the
Viterbi algorithm.

Alg. 1 describes how we create long-term object tubes in detail. First, object tubes end-
ing at frame i = T are calculated by applying Equation 6 (Alg. 1:4). The selected detections
are removed from D, as they cannot be used to build new object tubes (Alg. 1:5). The pro-
cess iteratively creates all the tubes ending at frame i until there are no more remaining
detections at that frame. Then, the same method is applied to build tubes ending at frame
i− 1 (Alg. 1:2).

This method creates long tubes linking consecutive object detections without consid-
ering missing detections in some frames due to network errors or occlusions. Thus, one
missing detection in one specific frame would break a long tube in two parts. This naive
approach is widely used in the literature in both object detection and action recognition.
We propose a more robust method specifically designed to deal with these issues. Thus, in
the second step of our linking algorithm, the information given by RPN tubelets links tube
fragments, increasing the final size. In Fig. 3, both the last detection of the first fragment and
the first detection of the second fragment of ṽj belong to the same RPN tubelet. Taking this
information into account, our algorithm links the two fragments making one larger tube.

Alg. 2 describes how short-term information is added to the long-term linking process.
First, we check for any pairs of tubes if they are candidates to be joined (Alg. 2:6). The
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Algorithm 1: Long-term tube creation
Input : Per frame detection set D = {Dt = (d1t , ..., d

nt
t )}Tt=1

Input : All possible tubes: V
Output: Object tubes V̂

1 V̂ ← ∅
2 for i in T, ..., 2 do
3 while Di ̸= ∅ do
4 v̂ ← argmaxV

∑i
t=2 ls(Dt−1, Dt)

5 D ← D \ v̂
6 V̂ ← V̂ ∪ v̂

Algorithm 2: Long-term object tube linking
Input : Per frame detection set D = {Dt = (d1t , ..., d

nt
t )}Tt=1

Input : Tubelet set T = {τi = (b1i , ..., b
N
i )}θi=1

Input : Object tubes V̂ = {v̂i = (di,1, ..., di,mi}δi=1

Output: Joined object tubes Ṽ
1 Ṽ ← V̂
2 for v̂i in V̂ do
3 for v̂j in V̂ do
4 tsmax = 0
5 for τl in T do
6 if ∃bkl ∈ τl | γ(bkl , d

i,mi ) and ∃bk′
l ∈ τl | γ(bk

′
l , dj,1) and

time(di,mi ) > time(dj,1) then
7 if ts(τl) > tsmax then
8 tsmax = ts(τl)

9 Cij = tsmax

10 H ← Hungarian(C)
11 for hi inH do
12 Ṽ ← Ṽ \ v̂hi

13 ṽi ← ṽi ∪ v̂hi

14 for ṽi in Ṽ do
15 s = meanh=1,...,mi−1 ls(d

i,h, di,h+1)
16 if s > λ then
17 updateScores(ṽi)

first condition they have to fulfill is that the last detection of the first tube di,mi and the first
detection of the second tube have to belong to the same short-term RPN tubelet τl. This is
done with function γ(bkl , d

i,mi), which checks whether a detection is associated with a box
proposal bkl of a tubelet τl. This is necessary, as we apply nonmaximum suppression (NMS)
and bounding box voting [32] to remove spatially redundant detections and refine the final
detection set, so a detection d can be associated with several object proposals b. The second
condition that has to be fulfilled is that the last detection of the first tube is previous to the
first detection of the second tube.

We define a cost matrix C with as many rows as ending fragments, and as many columns
as starting fragments. The linking score is the confidence of the tubelet proposal that links
both detections and is calculated by applying Equation 1. As several tubelets might contain
di,mi and dj,1, we select the maximum confidence among all of them (Alg. 2:7-9). Then, we
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solve the assignment problem by applying the Hungarian method (Alg. 2:10). The second
fragment is removed from Ṽ (Alg. 2:12), and its detections are added to the corresponding
first fragment, building the final long tube (Alg. 2:13). Finally, the linking score (Eq. 5) is
used to calculate the average linking score for the long tube ṽi (Alg. 2:15). If the average
linking score is higher than a threshold (λ), the confidence for all the detections that belong
to the tube is updated to the mean confidence of the top-α% detections with the highest
confidence score in the tube (Alg. 2:17).

4 Experiments

4.1 Datasets

We evaluate our models on the very small object subset of three publicly available datasets,
defining objects belonging to this subset as those that have an area smaller than 256 pixels:

– USC-GRAD-STDdb dataset [33]: this dataset contains 115 videos —92 for training and
23 for testing— with over 25,000 frames in total and 56,000 annotated small objects.
Videos in this dataset are recorded in three different environments —air, sea and land—
targeting 5 different classes: bird and drone (air), boat (sea), vehicle and person (land).

– Unmanned Aerial Vehicle Benchmark (UAVDT) [7]: this dataset is focused on videos
recorded with onboard cameras on UAVs. It contains approximately 40,000 annotated
frames in 50 different videos, 30 for training and 20 for testing, with objects of the
vehicle class.

– VisDrone dataset [8]: this dataset also contains UAV recorded images in 56 training
and 17 testing videos with approximately 24,000 frames in total. It has 10 different cat-
egories: pedestrian (9,255 annotated small objects), people (8,037 annotated small ob-
jects), bicycle (75 annotated small objects), car (3,639 annotated small objects), van (122
annotated small objects), truck (0 annotated small objects), tricycle (650 annotated small
objects), awning-tricycle (68 annotated small objects), bus (0 annotated small objects)
and motor (5,181 annotated small objects). We excluded from the test set those cate-
gories with a very low number of small objects —bicycle, van, truck, tricycle, awning-
tricycle and bus—, and we fused pedestrian and people categories.

4.2 Implementation details

We use a ResNeXt-101 [34] with FPN as the backbone in all the experiments. Network
weights are initialized with a pretrained model on the ImageNet classification dataset. We
add to both the single frame and the spatiotemporal approach a 3-stage cascade of detectors
[12] as described in Fig. 1. To train our spatiotemporal framework, we first train the single-
frame model, and then we initialize the spatiotemporal network with the same weights,
keeping all learned layers frozen. Thus, we only have to train the spatiotemporal head if we
have the equivalent single frame model already trained.

Input images are resized by setting the smallest dimension to 720 pixels, keeping the
original aspect ratio. If the largest dimension exceeds 1,280 pixels, the image is scaled down
again without modifying the aspect ratio.

For the spatial baseline training, we use the SGD learning algorithm with an initial
learning rate of 1.25 × 10−4, reducing it to 1.25 × 10−5 after the first 30K iterations, and
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Table 1 Contribution of each component of the network to the precision for the USC-GRAD-STDdb dataset.

Spatial
head Cls

Spatiotemporal
head Cls

Cascade
head

Long-term
object linking AP@.5

xs

✓ 38.8
✓ 38.0

✓ ✓ 40.8
✓ ✓ 43.8

✓ ✓ 47.0
✓ ✓ ✓ 48.5

✓ ✓ ✓ ✓ 49.6

to 1.25×10−6 after the next 40K iterations. We remove redundant RPN proposals and final
object detections by applying NMS, setting the IoU thresholds to 0.7 and 0.5, respectively.

As the spatiotemporal network only requires learning the spatiotemporal double head
weights, it requires considerably fewer iterations. Thus, we set the number of iterations to
15K with an initial learning rate of 1.25× 10−3 with two reductions at 10K and 14K itera-
tions by a factor of ten. The network needs N input frames for each example: the previous
N − 1 and the current frame. For this reason, we replicate the first frame N − 1 times to be
able to process the first N − 1 frames of each video.

Finally, we apply a bounding box voting transformation [32] and a confidence threshold
β = 0.05 over the output detection set. We keep the same configuration for every dataset.

4.3 Ablation studies

We conducted a series of experiments to assess the influence of the number of input frames
on the precision of the network. Moreover, we also performed a collection of ablation studies
to analyze the contribution of each component of the network to the final result.

Fig. 4 shows the influence of the number of input frames N on the precision of the
network on the three considered datasets. Our spatiotemporal method significantly improves
the single-frame baseline, in which no temporal information is available, even when only
considering one extra frame (N = 2). The AP generally stabilizes for a higher number of
frames, being robust to small variations in N . For large values of N , the AP decreases, as the
tubelet initialization based on anchor cuboids assumes that an object is always associated
with the same anchor box in the same position for every input frame. When the object moves
outside that scope, this assumption is not true, and this is more frequent in the case of long
tubelets.

Tab. 1 shows the contribution of each network component to the final mean average
precision (AP) on the USC-GRAD-STDdb dataset. In all these experiments, we obtain the
bounding boxes from the spatial header, choosing the classification scores from the spa-
tial branch, the spatiotemporal branch or the combination of both (Eq. 4). Regarding the
bounding boxes, we also compare the network precision with and without refining the ob-
ject proposals using a cascade of detectors. In these experiments, the architecture with only
the spatial head differs from the spatial network baseline in the T-NMS method that fil-
ters the proposal set differently from the conventional NMS. Our proposal with only the
spatial head reaches 38.8% AP, the cascade head improves AP by 5.0%, the short-term ob-
ject linking adds 4.7% AP and, finally, the long-term object linking improves AP by 1.1%.
Thus, the combination of both short- and long-term components improves the network AP
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Fig. 4 Detection AP when setting the tubelet length to N without long-term information.

by 5.8%. These results prove that the proposed long-term object linking method can recover
low-confidence detections that maintain spatiotemporal coherence, assigning them higher
confidence than the network output. Therefore, the tube creation method —described in
Alg. 1 and Alg. 2— effectively links related detections throughout the video, and the rescor-
ing strategy specified in Alg. 2:14 - Alg. 2:17 provides more accurate detection confidence
than the network output.

4.4 Results

We compare our method with state-of-the-art spatiotemporal object detectors and our single-
frame baseline (Cascade R-CNN FPN-X101) on three datasets. We also modified FGFA
[14], RDN [25] and MEGA [24] to work with an FPN architecture2. Our single-frame base-
line is also based on FPN, setting a strong baseline. Following the same strategy as other
video object detectors in the comparison, we also set a symmetric approach in which we

2 Source code available at https://github.com/daniel-cores/mega FPN

https://github.com/daniel-cores/mega_FPN
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Table 2 USC-GRAD-STDdb results.

Method Drone Boat Vehicle Person Bird AP@.5
xs

FGFA X101 [14] 44.1 50.6 15.4 39.8 6.6 31.3
SELSA X101 [23] 51.4 32.9 12.7 23.6 4.6 25.4
RDN X101 [25] 67.6 52.8 34.6 41.6 15.8 42.5
MEGA X101 [24] 66.0 39.2 19.9 40.3 22.1 37.5
Temporal RoI Align X101 [19] 46.1 28.0 10.0 19.5 2.6 21.2

FGFA FPN-X101 56.1 72.6 23.9 49.8 17.3 43.9
RDN FPN-X101 69.0 47.0 34.9 62.2 21.1 46.8
MEGA FPN-X101 67.5 52.6 30.7 59.3 10.7 44.1

Baseline: Cascade R-CNN FPN-X101 65.2 44.9 36.1 62.8 13.4 44.5
FANet FPN-X101 short-term (ours) 68.0 48.8 38.8 66.5 19.2 48.2
FANet FPN-X101 long-term (ours) 66.5 50.3 39.4 66.8 25.1 49.6

Table 3 UAVDT results. This dataset only contains one category (vehicle).

Method AP@.5
xs

FGFA X101 [14] 20.0
SELSA X101 [23] 19.8
RDN X101 [25] 21.5
MEGA X101 [24] 20.8
Temporal RoI Align X101 [19] 16.9

FGFA FPN-X101 26.7
RDN FPN-X101 32.4
MEGA FPN-X101 32.2

Baseline: CascadeR-CNN FPN-X101 35.1
FANet FPN-X101 short-term (ours) 37.8
FANet FPN-X101 long-term (ours) 38.2

select frames in advance. Hence, for instance, if N = 3, instead of selecting the 2 previous
frames, we select the previous and the next one to the current frame.

Tab. 2 shows the results on the USC-GRAD-STDdb dataset. Unlike [33], [6] and [26],
which give a class agnostic AP, we report the results taking into account object categories.
It can be seen how our modified versions of state-of-the-art spatiotemporal frameworks sig-
nificantly outperform the original versions in the small object detection domain. However,
our framework achieves the best results in comparison with previous spatiotemporal work,
including the FPN versions. Thus, adding both long- and short-term information leads to
49.5% AP with an IoU threshold of 0.5, the highest result in this dataset. The best modi-
fied spatiotemporal method achieves 46.8% AP, while the spatial baseline scores 44.5% AP,
resulting in a difference from our approach of 2.8% and 5.1%, respectively.

Tab. 3 shows the results in the extra small subset (objects smaller than 256 pixels in area)
of the UAVDT dataset. Our method achieves 37.8% AP with only short-term information
and 38.2% AP considering both short- and long-term information. This result improves the
single-frame baseline by 3.1% and the best spatiotemporal method by 5.8%.

The results for the VisDrone dataset are shown in Tab 4. Our approach again achieves
the best results with a 22.7% AP in the extra small subset. Our method outperforms the best
spatiotemporal framework by 2.1%, while the difference from the spatial baseline is 1.0%.
This dataset is particularly challenging for spatiotemporal approaches due to the high object
density that makes it difficult to link the same object throughout time. This hinders long-
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Table 4 VisDrone results for categories with a significant number of small objects.

Method People Car Motor AP@.5
xs

FGFA X101 [14] 8.2 36.0 7.2 16.8
SELSA X101 [23] 8.3 32.9 6.0 15.7
RDN X101 [25] 7.4 33.8 9.7 15.6
MEGA X101 [24] 8.5 35.9 7.4 15.5
Temporal RoI Align X101 [19] 6.5 33.1 3.8 14.5

FGFA FPN-X101 8,8 40,3 10.0 19.7
RDN FPN-X101 7.8 40.7 13.0 20.5
MEGA FPN-X101 7.8 40.6 9.3 19.2

Baseline: Cascade R-CNN FPN-X101 10.5 46.2 8.6 21.7
FANet FPN-X101 short-term (ours) 11.6 48.1 8.4 22.6
FANet FPN-X101 long-term (ours) 11.6 47.3 9.2 22.7

Fig. 5 Visual analysis of the results of FANet for images from USC-GRAD-STDdb, UAVDT and VisDrone
(from left to right).

term linking, limiting its effect in this dataset. Fig. 5 shows detection examples of FANet for
images from every dataset.

5 Conclusion

We presented a novel CNN-based framework that exploits spatiotemporal information to
improve small object detection in videos. The proposal implements a feature aggregation
method throughout short tubelet proposals that does not require neither tracking algorithms
or optical flow. We redesigned the network head to take advantage of this aggregated spa-
tiotemporal data with a double head implementation. The experimentation proved that this
short-term information is complementary to the long-term information calculated by the
proposed linking method. The overall framework outperformed the single-frame baseline
and previous state-of-the-art spatiotemporal object detectors in the very small object subset
of three different datasets. Therefore, it is a suitable solution for applications in which the
average object size tends to be very small.

Although our tubelet initialization based on anchor cuboids provides a light computa-
tional method to link objects throughout neighboring frames, it imposes a limitation on the
maximum tubelet length. In the future, we will further develop this component making it
more flexible.
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