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Abstract

We present a new network architecture able to take advantage of spatio-temporal information available in videos to
boost object detection precision. First, box features are associated and aggregated by linking proposals that come
from the same anchor box in the nearby frames. Then, we design a new attention module that aggregates short-term
enhanced box features to exploit long-term spatio-temporal information. This module takes advantage of geometrical
features in the long-term for the first time in the video object detection domain. Finally, a spatio-temporal double
head is fed with both spatial information from the reference frame and the aggregated information that takes into
account the short- and long-term temporal context. We have tested our proposal in five video object detection datasets
with very different characteristics, in order to prove its robustness in a wide number of scenarios. Non-parametric
statistical tests show that our approach outperforms the state-of-the-art. Our code is available at https://github.
com/daniel-cores/SLTnet.
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1. Introduction

The advances in Convolutional Neural Networks
(CNNs) have dramatically boosted the precision of sin-
gle image object detectors. Nevertheless, applying sin-
gle image methods directly on isolated video frames
might produce unsatisfactory results due to challenges
such as motion blur, out of focus or occlusions in some
specific frames. Videos contain spatio-temporal infor-
mation that single image object detectors do not exploit,
and that can be very valuable to address these issues.
Thus, to calculate the detection set for a given frame,
spatio-temporal object detectors enrich features in the
reference frame by analyzing a set of supporting frames
that provide spatio-temporal context.

Spatio-temporal feature aggregation is a fundamen-
tal part in almost every state-of-the-art video object de-
tector. Features from a set of supporting frames are
aggregated to features in the reference frame, achiev-
ing more robust feature maps. Regarding the aggrega-
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tion strategy, there are two main categories of spatio-
temporal object detectors: pixel level aggregation meth-
ods [40, 34, 1, 36, 13, 24] and object level aggregation
methods [18, 17, 31, 7, 8, 29, 4, 5]. Pixel level based
methods aggregate information using per frame full size
feature maps, while object level approaches focus on ag-
gregating box features throughout time. Thus, the main
goal of object level methods is to improve per proposal
feature maps instead of improving the whole frame fea-
ture maps, concentrating on regions with high probabil-
ity of containing an object.

We propose a new box level spatio-temporal object
detection framework that exploits both short and long-
term spatio-temporal information. First, we aggregate
box features throughout nearby frames by applying a
new proposal linking algorithm based on anchor boxes.
We avoid short object tubelets used in previous work
[18, 17, 16, 31, 5] to establish short-term relationships,
providing a simpler and more efficient yet effective
method. Also, we define a self-guided multi stage atten-
tion module that takes the short-term enhanced box fea-
tures to establish long-term relationships. For the best
of our knowledge, this is the first implementation that
can handle both geometry and appearance features in
long-term attention modules, since previous work such
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as [8] only exploits a short-term temporal context, and
[4] only takes into account appearance features when it
comes to long-term. Our approach shows state-of-the-
art results in a wide variety of video object detection
datasets.

The main contributions of this work are:

• A new short-term linking method throughout
neighboring frames to associate object proposals.
This method links each proposal in the reference
frame with proposals that come from the same an-
chor in the supporting frames, relying on the Re-
gion Proposal Network (RPN) to adjust the anchor
to the object in the corresponding frame.

• A new self-guided multi-stage attention module
that can handle both appearance and geometry fea-
tures in the long-term. Object position becomes
meaningless in the long-term when it comes to
compare two bounding boxes. To solve this issue,
we keep track of the bounding box center, updat-
ing the bounding box position. We call this method
self-guided because it reuses the attention weights
from previous frames to guide the proposal track-
ing.

• An in-depth experimental study in five object de-
tection video datasets with different characteris-
tics regarding the number of objects per frame, the
size of the objects, and the speed at which the po-
sition of the object changes between consecutive
frames. We have compared our proposal with the
state-of-the-art approaches, and we have applied
a non-parametric statistical test, which shows that
our method ranks first, and that the differences with
the other approaches are statistically significant.

2. Related work

Image object detection. State-of-the-art single image
object detectors follow two main approaches: two stage
and one stage architectures.

Two stage frameworks were first popularized by R-
CNN [12]. Then, Fast R-CNN [11], introduced an RoI
pooling layer that allows the network to use a per im-
age feature map instead of one for each object proposal.
The generation of the object proposals was first inte-
grated in the network by Faster R-CNN [26] defining
a Region Proposal Network (RPN). Feature Pyramid
Network (FPN) [20] produces feature maps of differ-
ent resolutions with high-level semantics throughout by
adding a top-down architecture with skip connections to

Faster R-CNN. That idea has also been improved in cur-
rent state-of-the-art networks like PANet [22] and Effi-
cientDet [30].

One stage object detectors such as SSD [23] and
YOLO [25] directly calculate the final detection set tak-
ing a dense grid of bounding boxes as input, instead of
proposals targeting objects of interest. Therefore, these
architectures must deal with a high imbalance between
objects of interest and background examples in the net-
work head. Authors in [21] propose a new cost func-
tion to deal with this issue. A more recent work [32]
proposes an anchor free approach, avoiding the compli-
cated computation related to anchor boxes.

All previous work considers object instances individ-
ually, without exploiting any relationship between them.
Attention modules were first introduced in the object
detection domain by [14] to model these relations. This
work was motivated by the success of attention modules
in natural language processing (NLP), modeling depen-
dencies between different elements [33].

Video object detection. The main idea behind most
of the state-of-the-art spatio-temporal object detection
frameworks is to include feature aggregation through-
out several input frames to enhance the per-frame fea-
tures. Some works such as [40, 34] use optical flow
information to find correspondences between features
in the reference frame and features in the supporting
frames. Recent methods try to avoid the optical flow
calculation time, for instance by learning these cor-
respondences based just on deformable convolutions
[1]. Alternatively, [36] proposes a Recurrent Neu-
ral Network (RNN), defining a module called Spatial-
Temporal Memory Module (STMM) that aggregates
spatial information throughout time. A more recent
work [13] proposes a new module, Progressive Sparse
Local Attention (PSLA), based on attention mecha-
nisms but working in a local fashion. All these methods
aim to find correspondences and aggregate features at
pixel level.

Several approaches have proposed to work at object
level instead of pixel level [18, 17, 31, 7, 8, 29, 4, 5],
linking objects throughout time. Object level methods
aggregate only useful information in areas with high
probability of containing an object. We follow this ob-
ject oriented approach in our architecture.

Object tracking techniques have been applied to link
detections calculated at frame level in [18, 17]. As an al-
ternative to object tracking, a Tubelet Proposal Network
(TPN) was first introduced in [16]. This network has
two main steps: propagation of static proposals across
time and calculation of the corresponding displacement
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in each frame. It takes advantage of the generally large
receptive field of CNNs and the spatio-temporal redun-
dancy between consecutive frames to be able to handle
moving objects using static proposals throughout neigh-
boring frames. A similar idea is present in [31] with the
definition of a Cuboid Proposal Network (CPN) as the
first step for short object tubelet detection. This CPN
works with anchor cuboids, a spatio-temporal general-
ization of anchor boxes from the single image domain,
to generate short tubelets that link objects in the short-
term. Using anchor cuboids to link object proposals is
also included in [5], and was also proposed to solve the
action recognition problem in [15]. In our implementa-
tion, we avoid tubelet proposals, working directly with
box proposals. This reduces the overhead of adding
spatio-temporal context to single image object detec-
tors.

As in pixel level methods, attention mechanisms have
also grown in popularity among object level methods
[7, 8, 29, 4]. The method described in [14] for single
image object detection was extended to videos in [8],
modeling relationships between object proposals across
nearby frames with a multi stage attention module. This
module takes into account both appearance (RoI pool-
ing output) and geometry features (bounding box defi-
nition) to establish the relation weights. These relation
weights among proposals of different frames are used
to enhance box features in the current frame. The so-
lution in [29] also searches for similar proposals in the
supporting frames, focusing on long term relationships.

Previous work only considers short- or long-term in-
formation to implement attention mechanisms, but not
the combination of both to take full advantage of the
whole spatio-temporal context. This issue is tackled in
[4] by integrating both information from nearby frames
and randomly selected key frames from the entire video.
Nevertheless, since original bounding box positions are
not meaningful to compare proposals in distant frames,
they just get rid of geometric features, proposing a lo-
cation free implementation. As a step forward, we pro-
pose a new method to integrate these geometric features
in the long-term aggregation method. Our approach up-
dates bounding box positions throughout time, making
possible to use previous locations to establish proposal
relationships. This way, object trajectories guide the at-
tention process, associating proposals corresponding to
the same object in the past.

3. Method

We propose a new spatio-temporal framework able to
improve object detection precision in videos by exploit-

ing short- and long-term temporal context. Although
our implementation is based on the two-stage object de-
tector Faster R-CNN [26] with a Feature Pyramid Net-
work (FPN) structure [20], the core components of our
approach can be directly applied to any two-stage object
detector architecture.

Two-stage single image object detector architectures
take a predefined set of anchor boxes to initialize object
proposals. Then, a Region Proposal Network (RPN)
calculates the final object proposals set by modifying
these anchor boxes to better fit the objects in the im-
age. In addition, the RPN also gives the probability of
containing an object of interest for each proposal box.
Finally, spatially redundant proposals with lower confi-
dence are removed, typically applying Non-Maximum
Suppression (NMS). Our spatio-temporal framework
keeps this same pipeline to initialize the per frame ob-
ject proposal set. Thus, we do not add an extra overhead
in the proposal generation in comparison with the single
image counterpart.

Once the per-frame object proposals are calculated,
they are linked throughout the nearby frames to exploit
short-term information. We define two modes of oper-
ation: (i) an approach working with N input previous
frames — ft−N−1, ..., ft−1, ft— for each reference frame
ft; (ii) a symmetric approach using frames in advance
taking into account ft−N , ..., ft−1, ft, ft+1, ..., ft+N for each
reference frame. For the sake of simplicity we only con-
sider the symmetric approach in further explanations.
We report the precision for both approaches in the re-
sults section.

Box features in the reference frame ft are enhanced
with features in the nearby supporting frames, perform-
ing an adaptive weight feature aggregation (Fig. 1a).
More details about both the linking and aggregation pro-
cess are given in Section 3.1.

We also exploit long-term relations among proposals
to further enrich box features. Our long-term method
works with short-term aggregated features and atten-
tion mechanisms to define the long-term relationships
(Fig. 1b). Section 3.2 describes this component.

Finally, the spatio-temporal double head classifies the
objects of interest using both the enhanced box features
and spatial features, while the bounding box regres-
sion is performed by just taking features from the ref-
erence frame (Fig. 1c). This differs from the extended
trend in the state-of-the-art of applying both the bound-
ing box regression and object classification heads over
the spatio-temporal aggregated features. Even if ob-
jects in the current frame are not well defined, we argue
that the most relevant information to localize the ob-
ject must come from this frame. For instance, although
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Figure 1: Our approach has three main components: (a) short-term object linking based on anchor boxes, and box aggregation features throughout
the nearby frames; (b) long-term self-guided attention module that enhances short-term aggregated features with key frame information (k ft′ ); (c)
spatio-temporal double head.

(a) Reference frame. (b) Supporting frame.

Figure 2: Images from ImageNet VID validation set. Red boxes rep-
resent the bounding box in the supporting frame. The green box repre-
sents the object location in the reference frame. Location information
from the supporting frame (red box) is not accurate in the reference
frame (green box).

Fig. 2a suffers from motion blur, making the classifi-
cation task really challenging, the localization task can
still be done. In fact, even though Fig. 2b gives relevant
information to address the classification issue, the most
relevant information to localize the object regarding its
position and shape is still in Fig. 2a. The final classifi-
cation score is calculated as:

p = ptmp + pspt(1 − ptmp) (1)

being ptmp the classification score calculated with
spatio-temporal features and pspt the score of the classi-
fication in the reference frame without spatio-temporal
information.

3.1. Short-term anchor linking and aggregation

Our short-term module first links the proposal boxes
in the nearby frames and, then, aggregates the corre-
sponding box features. Each object proposal pi has an

associated confidence score s(pi) and a bounding box
b(pi) used to extract box features with an RoI pooling
layer —RoI Align in our implementation. These box
features have the same shape regardless of the object
size. Thus, the output of this short-term module keeps
the same dimension as the original RoI pooling layer,
independently of the number of input frames.

To link proposals in the short-term, we exploit the
spatial redundancy between close frames. For every ob-
ject in the image, it is very likely that the same object ap-
pears in a similar position in the nearby frames. This is
a core concept in our implementation: we link proposals
that come from the same anchor box for every frame in
{ ft−N , ..., ft−1, ft, ft+1, ..., ft+N}. This method also relies
on the generally large field of view of deep CNNs that
allows the RPN to fit each anchor to the actual object
even when the object is not very close to the predefined
anchor box.

For every frame ft in the input video, the RPN gen-
erates a proposal set Pt = {pt,i}

A
i=1, being A the to-

tal number of anchor boxes, calculated by multiply-
ing the number of anchor boxes per position by the
number of grid positions in one image. Hence, A is
also the initial number of proposals per image. The
final proposal set used by the network head is calcu-
lated as P′t = tops(NMS(Pt)). Thus, P′t only con-
tains the top s proposals ordered by confidence after
removing the spatially redundant ones by means of
Non-Maximum Suppression, resulting in |P′t | ≤ |Pt |.
Therefore, it is very likely that there are no proposals
associated with the same anchor box for every input
frame f j in { ft−N , ..., ft−1, ft, ft+1, ..., ft+N}, making im-
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possible to link proposals directly using the P′j proposal
sets. Instead, we keep the original proposal set P j for
every supporting frame { ft−N , ..., ft−1} ∪ { ft+1, ..., ft+N},
and we link each proposal in P′t with proposals from
{Pt−N , ...,Pt−1} ∪ {Pt+1, ...,Pt+N} that came from the
same anchor box. This process is shown in Fig. 1a:
boxes with the same colors for nearby frames come
from the same anchor box.

Then, we aggregate the box features extracted with
the RoI Align method at the corresponding bounding
box of each frame:

x′t,i =

N∑
l=−N

ωs
t+l,i xt+l,i (2)

being x′t,i the aggregated feature map, ωs
t+l,i the short-

term weight for the feature map that came from the pro-
posal associated with anchor i in frame ft+l, and xt+l,i

the feature map associated with proposal i in frame ft+l.
The short-term weight is based on the cosine similarity
metric between supporting proposals and proposals in
the reference frame:

ωs
t+l,i = exp

(
xt,i xt+l,i

|xt,i||xt+l,i|

)
(3)

Then, the weights are normalized using a Softmax
function to ensure that

∑N
l=−N ω

s
t+l,i = 1.

This goes beyond the highly effective pixel level
method reported in [40] and [1], by designing a new
box level method. In contrast with previous methods
that use a subnetwork to calculate an intermediate fea-
ture representation of the full frame feature maps, we
work directly with the box features calculated by the
RoI Align method. Hence, we focus just on promising
regions instead of aggregating the complete frame infor-
mation, which simplifies the process.

3.2. Long-term self-guided attention module
In the long-term scenario, we cannot rely on spa-

tial redundancy to link the proposals as in the short-
term case. Therefore, we follow a more flexible ap-
proach in which every reference proposal is compared
to every supporting proposal. This idea is based on at-
tention methods proposed in [33] applied to NLP, and
lately in [14] applied to the single image object detec-
tion problem. In spatio-temporal long-term aggregation,
this technique allows to establish the relationship be-
tween each proposal in the reference frame and every
proposal in a set of supporting key frames. In this case,
supporting key frames are selected at a fixed interval I
rather than consecutively as in the short-term phase. We
are also considering the reference frame as a supporting

frame, so that we can use proposals from the reference
frame in the aggregation process.

Formally, given a proposal in the reference frame p′t,i
and a set of supporting proposals PKF , the goal of the
relation module is to calculate M relation features fm

R :

fm
R (p′t,i,P

KF) =

K∑
k=1

|P′k |∑
j=1

wm
t(i),k( j) (WV x′k, j), m = 1, ...,M

(4)
where PKF = {P′1,P

′
2, ...,P

′
K}, being K the number of

long-term supporting key frames, and where each pro-
posal p′t,i is defined by its appearance features x′t,i and
geometry features b(p′t,i). The linear transformation ma-
trix WV is optimised through backpropagation in an end-
to-end fashion. Previous attempts to adapt the relational
module to the spatio-temporal domain [8, 4] use as ap-
pearance features the RoI pooled object proposals di-
rectly. In contrast, the appearance features that feed the
relational module in our implementation are the output
of the short-term aggregation process x′k, j. This way, we
can work with a more robust representation of the ob-
ject.

The relational weight wm
t(i),k( j) is calculated as:

wm
t(i),k( j) =

gm
t(i),k( j) exp(am

t(i),k( j))∑
q gm

t(i),q exp(am
t(i),q)

(5)

being am
t(i),k( j) the appearance weight and gm

t(i),k( j) the ge-
ometry weight. The appearance weight is calculated as
a normalized dot product:

am
t(i),k( j) =

〈WH x′t,i,WQ x′k, j〉
√

dh
(6)

where WH and WQ of Eq. 6, as well as WG in Eq. 7, are
also learnt in the training process as WV (Eq. 4). WH

and WQ project the appearance features in the reference
frame and supporting key frames, respectively, being dH

the projected dimension.
Geometry weights are computed as:

gm
t(i),k( j) = max{0,WG E(b(p′t,i), γk→τ(b(p′k, j)))} (7)

where each geometric feature b(p′) is a 4-d vector rep-
resenting the bounding box parameters (x, y,w, h) asso-
ciated with proposal p′. Function E embeds the vector(
log

(
|xi−x j |

wi

)
, log

(
|yi−y j |

hi

)
, log

(w j

wi

)
, log

( h j

hi

))
in a high di-

mensional representation following the method outlined
in [33]. We introduce a new function γk→τ to transform
geometric features from supporting key frames, so that

5



Algorithm 1: γk→τ

Input : Previous frame proposals:
P′τ = {p′τ,i}

η
i=1

Input : Key frame proposals: P′k = {p′k, j}
η
j=1

Input : Attention weights:
{wm

τ(i),k( j)} | ∀p′τ,i ∈ P
′
τ,∀p′k, j ∈ P

′
k

1 wτ(i),k( j) = meanm(wm
τ(i),k( j))

2 for k in 1, ...,K do
3 Si, j ← s(p′τ,i) exp(wτ(i),k( j)) | ∀p′τ,i ∈

P′τ,∀p′k, j ∈ P
′
k

4 H ← Hungarian(S)
5 for (i, j) inH do
6 bxy(p′k, j)← bxy(p′τ,i)|p

′
τ,i ∈ P

′
τ, p′k, j ∈ P

′
k

7 return updated P′k

they can be compared with geometric features from pro-
posals in the reference frame. Otherwise, comparing
box positions in distant frames would not be meaningful
to calculate strong attention weights. This new method
allows to exploit geometric features in long-term atten-
tion mechanisms for the first time in video object detec-
tion.

The core idea behind γk→τ is to update proposal box
positions using the attention weights to predict the ob-
ject movement throughout the video by matching object
proposals (Alg. 1). In doing that, this function considers
the previous frame proposal set P′τ and the supporting
key frame proposal set Pk. At a certain reference frame
ft we have already calculated the relation weights that
associate every proposal in P′τ with proposals in P′k:
wm
τ(i),k( j) (Eq. 5). As there are M relation weights for ev-

ery pair of proposals, we aggregate them calculating the
average relation weight wτ(i),k( j) (Alg. 1:1). The output
of γk→τ are the per key frame proposal sets P′k with the
proposal positions updated to the predicted position of
the objects in the previous frame fτ.

Then, to link proposals in key frames with propos-
als in fτ, a score matrix S is populated (Alg. 1:3), tak-
ing into account proposals score s(p′τ,i) and relational
weights wτ(i),k( j). By considering the RPN confidence in
fτ, we avoid to link with low confidence proposals in the
previous frame. The association problem can be solved
with the Hungarian method (Alg. 1:4) [19]. Then, each
bounding box position bxy(p′k, j) in the supporting key
frame k is updated to the corresponding position in fτ
(Alg. 1:6). bxy(p′) represents the bounding box center
coordinates of proposal p′. We experimentally found
that it is better to keep the original bounding box size

(w; h), and just updating the center coordinates. Now,
Eq. 7 compares bounding box positions in consecutive
frames rather than in arbitrary distant frames.

The final feature map for each proposal used by the
network head is calculated as:

fR(p′t,i,P
KF) = fR(p′t,i,P

KF) + concat[{fm
R (p′t,i,P

KF)}Mm=1]
(8)

This is the concatenation of the M relational features
fm
R (p′t,i,P

KF) (Eq. 4), and adding the result to the origi-
nal proposal appearance feature fR(p′t,i,P

KF).
We follow a multi stage implementation similar to

[8] with a set of stacked relation modules. The aim of
this architecture is to iteratively refine object proposals
defining two main stages, a basic stage and an advanced
stage (Fig. 1b).The basic stage inputs are the top λ pro-
posals of every key frame and the reference frame pro-
posals P′t . The advanced stage has two steps. First, the
top r% proposals in PKF are enhanced by an attention
module with PKF as supporting proposals —first rela-
tion module in the advanced stage in Fig. 1b. Then,
these enhanced proposals are used as supporting pro-
posals to further improve proposal features calculated
in the basic stage —second relation module in the ad-
vanced stage in Fig. 1b.

3.3. Training and inference
Both nearby frame and long-term key frame selec-

tions are implemented in a different way in the train-
ing and inference phases. This is mainly because of the
ground truth availability in the training stage and the
lack of constraints on which frames can be used in each
moment.

As explained in Sec. 3.1, we resort to a set of neigh-
boring frames { ft−N , ..., ft−1, ft, ft+1, ..., ft+N} to enhance
the reference frame box features. In the inference stage,
all video frames are sequentially processed by the net-
work. Therefore, we can reuse all the backbone and
RPN calculations from the nearby frames, drastically
reducing the impact of enlarging the reference frame
neighborhood. In contrast, in the training stage, instead
of all video frames, we select a fixed size subsample of
evenly spaced frames. This way, we prevent from large
videos to bias the training process. In consequence, the
idea of reusing computations in training cannot be ap-
plied since close frames are not selected as reference
frames. Thus, the training approach is slightly different,
taking just three input frames: the reference frame and
two supporting frames. The two supporting frames fs1
and fs2 are randomly selected from { ft−N , ..., ft−1} and
{ ft+1, ..., ft+N} respectively.
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In the long-term method we also face the same issue.
Instead of several key frames, we randomly select two
frames from the whole video for each reference frame.
In both long- and short-term cases the number of input
frames does not change the number of parameters in the
network, so training and testing with different number
of input frames does not need any modification in the
architecture.

Moreover, the implementation in the training stage
of γk→τ (used in Eq. 7) also differs from the inference
version described in Sec 3.2. As the network does not
process frames sequentially, relational weights for pre-
vious frames are not available. However, most video
object detection datasets include object identity annota-
tions that link appearances of the same object through-
out the whole video. We exploit these annotations dur-
ing training to update the position of proposals in the
key frame following the actual object movement. First,
each object proposal is linked to the ground truth box
with higher Intersection-Over-Union (IoU). Then, we
apply the ground truth object translation to proposal
boxes. These updates allow to use Eq. 7 during train-
ing.

4. Experimental Results

4.1. Datasets

ImageNet VID dataset [28] has become the standard
benchmark to evaluate spatio-temporal object detection
frameworks. In fact, most recent solutions report their
metrics only on it [10, 36, 1, 34, 31, 8, 29, 13, 4]. Never-
theless, we believe that a complete and reliable evalua-
tion requires tests in several datasets with different char-
acteristics to assess the quality of the detector in a wide
number of scenarios. In so doing, we have selected 5
different video datasets to evaluate the performance of
both our proposal and state-of-the-art approaches: Im-
ageNet VID [28], UAVDT [9], VisDrone [38], USC-
GRAD-STDdb [2] and MOTChallenge [6]. As we will
show in the results section (Sec. 4.4), the performance
of some of these approaches highly changes with the
dataset in comparison with the baseline.

There are many characteristics of the datasets that in-
fluence the detection precision. In this paper, we focus
the analysis on three of them:

• Number of objects per frame (Fig. 3), which influ-
ences both spatial and spatio-temporal object de-
tectors. Most spatio-temporal detectors exploit ob-
ject relations between different frames and, there-
fore, a greater number of objects per frame would
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Figure 3: Average number of objects per frame for each test set.

be preferable to assess how these methods can es-
tablish robust relationships working with many ob-
jects simultaneously.

• Size of the objects (Fig. 4), which affects both spa-
tial and spatio-temporal detectors. In fact, small
object detection is a challenge itself [3], specially
for objects with areas smaller than 256 pixels (≈
16 × 16).

• The speed at which the position of the objects
changes due to the own objects motion or the cam-
era motion. This influences the performance of the
spatio-temporal detectors, as most of them make
feature aggregation throughout nearby frames. We
measure this speed with the Intersection over
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Figure 4: Box plot for the object size of each test set.
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Figure 5: Mean IoU for the same object bounding boxes separated by
different number of frames, and for all the training sets.

Union (IoU) of the bounding boxes of the same ob-
ject in two frames (Fig. 5).

Fig. 6 shows some examples of frames extracted from
different datasets. The datasets have been selected to
cover a wide variety of scenarios, including low/high
number of objects per frame, small/large objects, and
low/fast position changing

ImageNet VID dataset [28]. It contains 30 different ob-
jects categories in 3,862 training and 555 validation
videos. Following the training procedure proposed by
[10], we also include data from ImageNet DET, a sin-
gle image object detection dataset. This dataset contains
456,567 training and 20,121 validation images with an-
notated objects of 200 different categories that include
the 30 classes considered in ImageNet VID. We select
at most 2,000 images per VID object class from Ima-
geNet DET to prevent from biasing the training set by
including categories with a large number of images in
ImageNet DET. To be able to train our spatio-temporal
framework with still images, each image is repeated to
create short input videos. The dataset has a very low

number of objects per frame, the objects are large, and
the position of the objects changes very slowly —IoUs
of 0.7 on average for an object 10 frames apart.

Unmanned Aerial Vehicle Benchmark (UAVDT) [9]. It
is focused on videos recorded by cameras mounted on
Unmanned Aerial Vehicles (UAVs) with about 40,000
annotated frames belonging to 30 training videos and
20 testing videos, with just one category. The number
of objects per image is higher than Imagenet VID, the
size of the objects is medium/small, and the position of
the objects changes slowly.

VisDrone dataset [38]. It is also focused on UAV
recorded images, with 56 training videos and 17 videos
for testing, containing 11 object categories. Neverthe-
less, it has much more objects per frame than UAVDT,
and the size of the objects is medium/large. Also, the
position of the objects changes fast.

USC-GRAD-STDdb dataset [2]. It is specifically de-
signed for small object detection. It is composed of 92
training videos and 23 testing videos with over 56,000
annotated small objects of 5 different categories. The
number of objects per frame is very low, and their size
ranges 256 (≈ 16 × 16) to as small as 16 (≈ 4 × 4) pix-
els. Moreover, the object position changes very fast —
average IoUs below 0.7 for an object in two consecutive
frames— due to the small object sizes and the camera
movement.

MOTChallenge [6]. It proposes pedestrian focused an-
notated video sequences. In this paper we train all
the object detectors with the 7 training sequences from
MOT17 and evaluate with the 4 sequences in the
MOT20 training set. The number of objects per frame in
MOT20 is considerably higher than in MOT17, chang-
ing the training and testing conditions. Following the
same strategy that we use with ImageNet VID and Im-
ageNet DET, we also add single images from CUHK-
SYSU dataset [37] to the training set.

4.2. Implementation details
Our proposal has as per frame feature extractor a Fea-

ture Pyramid Network (FPN) [20] with ResNeXt-101
backbone and deformable convolutions [39] on conv3,
conv4 and conv5. We initialize the backbone with pre-
train ImageNet classification weights to train the single
frame baseline. To train the spatio-temporal network,
we reuse the baseline weights keeping them frozen.
This way, we only have to train the attention module
and the temporal classification head if we have the sin-
gle image counterpart trained, speeding up the training

8
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Figure 6: Examples from the different video datasets evaluated with state-of-the-art solutions and our approach.

process dramatically. In the ablation studies we replace
the ResNeXt-101 backbone by the smaller ResNet-50
due to the high number of different experiments needed.

The results of the state-of-the-art proposals in the dif-
ferent datasets have been obtained from: (i) the results
reported by authors in their original work —ImageNet
VID dataset—; and (ii) training and testing them with
the implementations provided in [4] —UAVDT, Vis-
Drone, STDdb, MOT.

For experimentation on ImageNet VID, images are
scaled, so the smallest size is at most 600px. To train
the single image baseline we set the base learning rate
to 2.5 × 10−4 for 360K iterations, reducing by ∗0.1 at
280K and 250K iterations. For the spatio-temporal net-
work the initial learning rate is set to 1.25 × 10−3 for
270K iterations with learning rate reductions at 210K
and 250K iterations. For UAVDT, VisDrone, SDTdb
and MOT we run 45K training iterations for the base-
line network with an initial learning rate of 1.25 × 10−3

and learning rate reduction steps at 30K and 45K iter-
ations. For the spatio-temporal network the number of
iterations is set to 15K with a learning rate of 1.25×10−3

and just one reduction step at 12K iterations. We set the
shortest image dimension to 720px in VisDrone, STDdb
and MOT, and 540px for UAVDT, keeping the largest
dimension below 1280px and 1024px, respectively.

We define a heuristic rule to set the number of short-
term supporting frames N in the different datasets. The
rule takes into account the object movement average in
the training set to determine this hyperparameter. Based
on data from Fig. 5, we select the value of N that keeps
the IoU for the same object higher than 0.7 for every
displacement lower than N frames. Therefore, N is set
to 10 for ImageNet VID, 4 for UAVDT and MOT, 2
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Figure 7: mAP varing the number of short-term input frames without
considering long-term information.

for VisDrone, and 1 for STDdb. We keep all the other
parameters unchanged, irrespective of the dataset.

4.3. Ablation studies

We conducted a series of ablation studies to prove
that each component in our architecture is contributing
to the network precision. For the sake of simplicity, we
use ImageNet VID as the reference dataset for these ex-
periments. Fig 7 shows how the number of short-term
input frames affects the mAP in both sequential and
symmetric modes. Moreover, Fig 7 shows how the sym-
metric setting yields a higher mAP than the sequential
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Table 1: Long-term strategy, without short-term information.

Method Appearance Geometry Mean AP

location free X 77.1
self-guided X X 77.3

Table 2: Influence of each component on the framework precision on
ImageNet VID dataset.

Short-term Long-term Mean AP

73.4
X 76.1

X 77.3
X X 77.8

approach. This was expected since the network can ag-
gregate more information representing the same object
in close frames than in the sequential approach. In both
cases, our spatio-temporal approach shows a significant
improvement over the single frame baseline: 0.6 by just
using one supporting frame in the sequential case, and
1.4 with two supporting frames in the symmetric case,
which is the minimum possible value in this approach.

Regarding the long-term strategy, Table 1 proves the
effectiveness of considering geometry features in the
long-term aggregation process. Our approach outper-
forms the location free version —first proposed in [4]—
in which geometry features are just not taken into ac-
count. In order to evaluate the long-term method iso-
lated, we do not include short-term aggregation in these
experiments.

Finally, Table 2 shows how each component con-
tributes to the final mAP. The results prove that short-
and long-term spatio-temporal information are comple-
mentary and, thus, both are valuable to boost the object
detection precision.

4.4. Results

In this section we compare our framework with the
state-of-the-art spatio-temporal object detectors in the 5
selected datasets. Table 3 shows the results for the Ima-
geNet VID dataset. We compare our model in both se-
quential and symmetric configurations, as well as with
box level post-processing techniques. In our case, the
post-processing is just box rescoring over long tubes
calculated with the Viterbi algorithm over the per frame
final detection set. Post-procesing methods are a special
case of a symmetric approach, as they use frames in ad-
vance. However, these methods need the detection set
for every frame in the video in order to be executed. Our

method ranks second in the sequential mode and third in
both symmetric and post-processing modes, with mAPs
close to MEGA. It is important to notice that in the
symmetric mode MEGA selects random frames from
the whole video, while the other methods —including
our proposal— just use a small number of consecutive
frames in advance

For the rest of datasets, the comparison has been
done with those proposals provided in [4] —FGFA
[40], RDN [8], MEGA [4]; all of them in the sym-
metric mode, which is the best available one—, and
the baseline FPN-X101. We report mAP@0.5 and, also,
mAP@0.5−0.95, which is much more exhaustive.

Table 4 shows the results in the UAVDT dataset.
Our method outperforms the best spatio-temporal ob-
ject detector by 1.4 points in mAP@0.5 and 2.5 points
in mAP@0.5−0.95. For the Visdrone dataset (Table 5) our
method also achieves the best results with higher differ-
ence in mAP@0.5−0.95. In the challenging small object
detection problem (Table 6), the other spatio-temporal
object detectors degrade their performance with results
below our single frame baseline. Our approach achieves
again the best results, overcoming the single frame
baseline by 2.6 mAP@0.5, and the best spatio-temporal
framework by 4.8 mAP@0.5. Finally, Table 7 shows the
results for the MOT dataset, where our method ranks
second, 0.9 mAP@0.5 below FGFA, which is the best.

In summary, our method achieves the best results in
UAVDT, Visdrone and STDdb, while MEGA [4] pro-
vides the best results in ImageNet VID —our method
ranks third—, and FGFA [40] in the MOT20 dataset —
our method ranks second. All in all, it can be stated that
our method ranks better than the state-of-the-art in the
collection of tested datasets, showing an excellent per-
formance under very different conditions of number of
objects per frame, size of the objects, and the speed the
objects move in consecutive frames. In order to assess if
the differences between our method and the state-of-the-
art are statistically significant, we conducted a series of
non-parametric tests with the STAC platform [27]. As
data is non symmetric and paired, we run the Binomial
Sign test comparing our proposal with each of the state-
of-the-art approaches (Table 8). In this comparison we
use the more robust mAP@0.5−0.95 for every dataset ex-
cept for ImageNet VID, in which we use the mAP@0.5
originally reported by the authors. The test shows that
the probability of having statistically significant differ-
ences with FGFA, RDN and MEGA is 93.75%, and of
100% with our single frame baseline. Therefore, we
can conclude that, overall, our proposal outperforms the
state-of-the-art, and that the differences are statistically
significant.
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Table 3: Results on ImageNet VID dataset.

Method Mode mAP@0.5

FPN-X101 baseline Sequential 78.6
D&T [10] Sequential 78.7
PSLA [13] Sequential 80.0
OGEMN [7] Sequential 80.0
MEGA [4] Sequential 81.9
ours Sequential 81.3

FGFA [40] Symmetric 77.8
STSN [1] Symmetric 78.9
MANet [34] Symmetric 78.1
SELSA [35] Symmetric 80.3
RDN [8] Symmetric 83.2
MEGA [4] Symmetric 84.1*
ours Symmetric 81.9

D&T [10] Post-processing 79.8
FGFA [40] Post-processing 80.1
STSN [1] Post-processing 80.4
MANet [34] Post-processing 80.3
STMN [36] Post-processing 80.5
SELSA [35] Post-processing 80.5
PSLA[13] Post-processing 81.4
OGEMN [7] Post-processing 81.6
RDN [8] Post-processing 84.7
MEGA [4] Post-processing 85.4
ours Post-processing 82.4

5. Conclusions
We have proposed a new framework for spatio-

temporal object detection that takes into account both
short- and long-term information. First, short-term in-
formation is linked and aggregated based on anchor as-
sociation. Then, long-term information is taken into
account by means of our self-guided attention module.
This component allows to consider geometrical features
in the long-term for the first time in the video object
detection domain.

We have tested our proposal with 5 video object de-
tection datasets, in order to analyze the performance in
very different scenarios. Moreover, we have compared
our approach with the state-of-the-art. Results show
that our proposal ranks first on average in the collection
of datasets, and non-parametric statistical tests indicate
that the differences are statistically significant.
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