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Abstract. We propose a new two stage spatio-temporal object detector
framework able to improve detection precision by taking into account
temporal information. First, a short-term proposal linking and aggrega-
tion method improves box features. Then, we design a long-term atten-
tion module that further enhances short-term aggregated features adding
long-term spatio-temporal information. This module takes into account
object trajectories to effectively exploit long-term relationships between
proposals in arbitrary distant frames. Many videos recorded from UAV
on board cameras have a high density of small objects, making the detec-
tion problem very challenging. Our method takes advantage of spatio-
temporal information to address these issues increasing the detection
robustness. We have compared our method with state-of-the-art video
object detectors in two different publicly available datasets focused on
UAV recorded videos. Our approach outperforms previous methods in
both datasets.
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1 Introduction

Object detectors precision has raised in recent years mainly fueled by the ad-
vances in Convolutional Neural Networks (CNNs). However, there are some sce-
narios that remain a huge challenge for state-of-the-art object detectors. Thus,
videos recorded by on board cameras mounted on Unmanned Aerial Vehicles
(UAVs) are usually hard, mainly due to the high object density and the gen-
erally small object size. Moreover, camera movements might also increase the
effect of motion blur that might degrade image quality at certain frames.

Traditional image object detectors are not designed to take into account
temporal information available in videos. Therefore, the extended approach of
applying a traditional object detector at frame level is suboptimal when it comes
to video object detection. Spatio-temporal frameworks have been proposed to
exploit spatio-temporal information to tackle occlusion and motion blur issues,
generally increasing the detection precision. Still, most state-of-the-art video ob-
ject detectors fail to effectively exploit spatio-temporal information when dealing
with crowded images containing small objects.
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This paper proposes a new spatio-temporal object detector architecture de-
signed to overcome the main issues concerning object detection in videos recorded
by cameras mounted on UAVs. Our implementation is based on a two stage ob-
ject detector architecture. First, a short-term object aggregation method is im-
plemented to exploit spatio-temporal information from the nearby frames. Then,
shot-term enhanced box features are fed to an attention module that establishes
long-term relations among object proposals in distant frames.

The main contributions of this work are:

– A new strategy to link object proposals in neighbouring frames. We avoid
the use of short object tubelets to reduce the overhead of including spatio-
temporal information. Instead, our Region Proposal Network (RPN) is fed
with per frame anchor boxes as in the single image domain. Then, proposals
associated with the same anchor in consecutive frames are linked.

– A new attention method to establish long-term proposal relationships. Our
implementation takes into account object trajectories to update proposal
positions. Therefore, at a given frame the attention module is fed with up-
dated positions for each proposal instead of the original location in the corre-
sponding frame. This makes possible to compare geometry features between
proposals originally calculated in distant frames for the first time.

– We evaluate our method in two publicly available datasets. Video sequences
in these datasets were recorded by UAVs with built-in cameras in different
scenarios. We also compare our results with state-of-the-art video object
detectors, proving that our approach achieves the best results.

2 Related work

Single image object detectors follow two main approaches: two stage and one
stage architectures. Two-stage object detectors [14] first generate object pro-
posals, which are defined as regions with high probability of containing objects
of interest. Then, the network head refines and classifies these proposals. One
stage approaches [17] try to solve the detection problem without any proposal
generator.

Using feature maps at different pyramid levels was first popularized by Fea-
ture Pyramid Network (FPN) [12]. Feature maps with different resolutions make
the network robust against a wide range of object sizes. This idea was further
developed in PANet [13] and EfficientDet [15].

Recently, the success of attention mechanisms in the natural language pro-
cessing domain modeling different element dependencies [18] was implemented in
the single image object detection [7]. It allows to establish relationships between
object proposals to enhance box features.

The main approach to address the video object detection problem is to ag-
gregate spatial features through time getting more robust feature maps. Several
works have proposed to perform this aggregation at pixel level. Optical flow
was first used by these methods to link features in the nearby frames [23, 19].
As an alternative, the use of deformable convolutions was explored to identify
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these relationships [1]. Recurrent Neural Networks (RNN) have also been suc-
cessfully applied to perform the pixel level aggregation in [20] by defining a new
memory module that aggregates the spatio-temporal information. Motivated by
the success achieved by attention mechanisms in the single image object detec-
tion domain, there have also been attempts to implement pixel level aggregation
methods applying the same ideas [6].

As an alternative to pixel level aggregation, object level aggregation methods
have also been implemented to effectively aggregate spatial information through-
out time. These methods focus on areas of high probability of containing an
object instead of aggregating spatial information from the whole image. Some
spatio-temporal object detectors propose to link the per frame detection sets
applying tracking algorithms [10, 9]. As a follow on, [8] includes a Tubelet Pro-
posal Network (TPN) that links object proposals instead of final detections. It
exploits the generally large receptive field of CNNs to propagate static propos-
als throughout nearby frames, and adapts each proposal in the corresponding
frame to the actual object position. This idea of object linking by means of short
tubelet generation is further developed in [16]. In this case, authors designed a
Cuboid Proposal Network (CPN) in which object tubelets are initialized as an-
chor cuboids, a spatio-temporal extension of the concept of anchor boxes defined
in the single image domain. Anchor cuboids where also used in [3] as the first
step for short-term feature aggregation. Moreover, this framework also includes
a long-term object linking algorithm that reuses short-term tubelets to increase
the robustness of the association process. Instead of relying on anchor cuboids
to link proposals, we propose a new method based on anchor box linking that
reduces the overhead in comparison with a single image object detector baseline.

Attention mechanisms have also proved to be useful to establish relationships
between object proposals in different frames. Authors in [4] successfully extended
the method described in [7] for single images. However, this spatio-temporal ap-
proach only exploits short-term information. Long-term information is added in
[2], implementing a location free attention mechanism that only uses appear-
ance features, ignoring geometry information such as object position and shape.
Comparing object positions in distant frames is not meaningful to establish ob-
ject relationships and adds noise to the linking process. Alternatively, we keep
track of object trajectories in order to update proposal positions throughout
time making possible to also exploit geometry features in the long-term.

3 Method

We propose a short- and long-term aggregation method that can be applied
to two stage object detectors in order to take advantage of spatio-temporal
information available in videos. Both short- and long-term aggregation stages
take as input per frame object proposals calculated following the same strategy as
the single image baseline. This reduces the overhead of including these techniques
on traditional object detectors.
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Fig. 1: Short-term aggregation process with one support frame ft′ .

Box proposal features at each reference frame ft are enhanced with features
from nearby support frames ft−N , ..., ft−1, ft, ft+1, ..., ft+N by an object level
aggregation method. Sec. 3.1 describes the short-term linking and aggregation
strategy. A long-term spatio-temporal module (Sec. 3.2) is fed with short-term
aggregated box features to establish long-term relationships and further improve
object features.

Most previous works use spatio-temporal features to localize and classify the
object. In contrast, in our implementation, spatio-temporal information is only
used to boost the classification precision, as we argue that the most valuable
information to localize the object comes from the current frame. Therefore, we
use spatial information to localize the object and spatial and spatio-temporal
information to classify each object. The final classification score is calculated as:

p = ptmp + pspt(1− ptmp) (1)

being ptmp the classification score calculated with spatio-temporal features and
pspt the score of the classification in the reference frame with just spatial infor-
mation.

3.1 Short-term feature aggregation

Our short-term aggregation method links proposals throughout the neighbouring
frames and aggregates box features accordingly. Per frame object proposals are
initialized as anchor boxes At = {at,i}Ai=1. Then, the proposal set Pt = {pt,i}Ai=1

is calculated by an RPN modifying each anchor box to better fit the objects of
interest. Each proposal pt,i consists of a bounding box b(pi) and an objectness
score s(pi). Finally, spatially redundant proposals are removed applying Non-
Maximum Suppression (NMS), getting the final proposal set P ′t. This process is
shown in Fig. 1.

For each reference frame ft, we link proposals that come from the
same anchor box in the same position for every supporting frame ft′ in
{ft−N , ..., ft−1, ft+1, ..., ft+N}. The high overlap in consecutive frames for the
same object and the high field of view of CNNs make this lightweight linking
strategy suitable for the short-term. However, since |P ′t| ≤ |Pt| due to the re-
moved proposals, we link proposals in P ′t in the reference frame with proposals
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Fig. 2: Long-term aggregation strategy with one key frame ft−I .

in Pt′ in the supporting frames. Otherwise, proposals in P ′t and Pt′ might not
share the same anchors —see proposal associated with orange anchor and pro-
posal associated with red anchor in Fig. 1 after NMS.

Box features are extracted for each proposal by the RoI Align method. Then
box features that came from the same anchor box are aggregated (Fig. 1):

x′t,i =

N∑
l=−N

ωst+l,i xt+l,i (2)

being x′t,i the output aggregated feature map calculated as a weighted sum of
the per frame box feature maps xt+l,i. The short-term aggregation weights ωst+l,i
are calculated as:

ωst+l,i = exp

(
xt,i xt+l,i
|xt,i||xt+l,i|

)
(3)

normalizing the ωst+l,i using a Softmax function to ensure that
∑N
l=−N ωst+l,i = 1.

3.2 Long-term feature aggregation

Although our anchor-based strategy provides a lightweight effective linking
method in the short-term, it is not suitable for the long-term. The high overlap
between nearby frames cannot be assumed in the long-term. Therefore, we de-
sign a new method based on attention mechanisms to link proposals from distant
supporting key frames selected at a fixed interval I.

The attention module calculates M relation features fmR given the support
proposal set PKF and proposals in the current frame p′t,i:



6 D. Cores et al.

fmR (p′t,i,PKF ) =

K∑
k=1

|P′
k|∑

j=1

wmt(i),k(j) (WV x′k,j), m = 1, ...,M (4)

being WV a transformation matrix optimised through backpropagation. PKF in-
cludes the per key frame proposals, being K the number of key frames. We also
include in PKF proposals from current frame allowing to establish relationships
also with current proposals. Each proposal p′t,i has an associated appearance
feature x′t,i and geometry features b(p′t,i). Therefore, we use the short-term en-
hanced box features instead of the weaker RoI Align output of previous works
[4, 2]. The relation weight wmt(i),k(j) is calculated as:

wmt(i),k(j) =
gmt(i),k(j) exp(amt(i),k(j))∑

q g
m
t(i),q exp(amt(i),q)

(5)

being amt(i),k(j) the appearance weight and gmt(i),k(j) the geometry weight. The
appearance weight is calculated as a normalized dot product:

amt(i),k(j) =
〈WH x′t,i,WQ x′k,j〉√

dh
(6)

where WH and WQ of Eq. 6, as well as WG in Eq. 7, are also learnt in the
training process as WV (Eq. 4). WH and WQ project the appearance features
in the reference frame and supporting key frames respectively, being dH the
projected dimension.

Geometry weights are computed as:

gmt(i),k(j) = max{0,WG E(b(p′t,i),b
′(p′k,j))} (7)

where function E takes proposals bounding box definitions b(p′) and embeds

the vector
(
log
(
|xi−xj |
wi

)
, log

(
|yi−yj |
hi

)
, log

(
wj

wi

)
, log

(
hj

hi

))
in a high dimen-

sional representation following the method outlined in [18]. For features from
key frames we do not use the original geometry features b(p′k,j), but a modi-
fied version b′(p′k,j) taking into account object trajectories —proposals with the
same color in Fig. 2 belong to the same trajectory. We link proposals in consecu-
tive frames reusing previously computed relation weights defining the association
score between a proposal i in one frame and a proposal j in the next frame as:

Si,j = s(p′τ,i) exp(wτ(i),k(j)) (8)

where wτ(i),k(j) is the average relation weight between proposal i in frame fτ
and proposal j in fk. As we have previous relation weights already calculated,
we can establish object trajectories from key frames to the previous frame ft−1
maximising the association score Si,j applying the Hungarian method [11]. Using
this updated geometry features allows to compare proposal positions as if they
were in consecutive frames rather than in arbitrary distant frames.
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Finally, box features are calculated as the concatenation of M relational
features adding the result to the original appearance features:

fR(p′t,i,PKF ) = fR(p′t,i,PKF ) + concat[{fmR (p′t,i,PKF )}Mm=1] (9)

We stack a set of relation modules following an approach similar to [4]. Fig. 2
shows this pipeline organized in Basic and Advanced Stages. The inputs to the
Basic Stage are the key frame supporting proposals and the reference frame
proposals P ′t that are iteratively improved. Then, the top r% proposals in PKF
are enhanced with the whole set PKF as supporting proposals in the Advanced
Stage. Finally, the second step of the Advanced Stage takes Basic Stage output
and these enhanced proposals to calculate the final box features.

4 Experimental Results

4.1 Datasets

We evaluate our method in two publicly available datasets: Unmanned Aerial
Vehicle Benchmark (UAVDT) [5] and VisDrone [21]. Both datasets are focused
on videos recorded from on board cameras mounted on UAVs. The UAVDT
dataset contains 30 training videos and 20 testing videos recorded in urban
areas with annotated objects belonging to one category: vehicles. The VisDrone
dataset provides 56 training and 17 testing videos with annotations of 11 different
object categories. Compared to UAVDT, the number of objects per frame is
significantly higher in VisDrone with 25 and 85 objects per frame on average
respectively.

4.2 Implementation details

In our implementation, per frame features are extracted at different FPN levels
using ResNeXt-101 as backbone with deformable convolutions [22] on conv3,
conv4 and conv5. The backbone is pre-trained in the ImageNet classification
dataset.

To train our spatio-temporal network, we first train the single frame baseline,
setting the base learning rate to 1.25 × 10−3 for 45K iterations, and reducing
it by ∗0.1 at 30K and 40K iterations. Then, we keep its weights frozen only
training the spatio-temporal double head and the attention modules. For this
spatio-temporal training, the initial learning rate is also set to 1.25 × 10−3 for
15K iterations, reducing it at 12K iterations. Input images are resized keeping
the shortest dimension bellow 540px for UAVDT and 720px for VisDrone.

Short-term support frames and long-term key frames are selected following
different strategies in the training and testing stages. In the short-term case,
instead of selecting 2N + 1 consecutive frames {ft−N , ..., ft−1, ft, ft+1, ..., ft+N}
for training, we randomly select two support frames in (t − N, ..., t + N) for
each reference frame. In testing, every video frame is processed sequentially
making possible to reuse previous backbone calculations. However, in training
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(a) UAVDT

Method AP@.5 AP@.75 AP@.5−.95

FGFA [23] 57.6 25.6 28.9
RDN [4] 60.4 32.0 32.5
MEGA [2] 59.4 30.7 31.7

Ours 61.0 37.1 34.9

(b) Visdrone.

Method AP@.5 AP@.75 AP@.5−.95

FGFA [23] 30.7 11.8 14.1
RDN [4] 31.5 11.7 14.4
MEGA [2] 31.8 11.7 14.5

Ours 32.1 12.9 15.4

Table 1: Comparison with state-of-the-art spatio-temporal frameworks.

we randomly select a fixed sized subsample of frames to reduce the effect of
very large videos. Therefore, this optimization cannot be applied, increasing the
training time when working with large N . In the long-term case, we follow a
similar strategy in the training stage, randomly selecting two key frames from
the complete video rather than evenly spaced key frames from previous frames.
In our experiments we set N = 5.

We also report the performance of state-of-the-art video object detection
frameworks in the same datasets. We use the implementations provided in [2].
To ensure a fair comparison, we keep the same parameters —apart from input
image resolution— unchanged for both datasets.

4.3 Results

In this section we compare our framework with the state-of-the-art spatio-
temporal object detectors in the selected datasets. The spatio-temporal methods
included in the comparison are FGFA [23], RDN [4] and MEGA [2]. We report
the Average Precision at different IoU levels for every dataset.

Although our method uses frames in advance in the short-term, long-term
key frames are selected from previous frames. Therefore, our implementation
can give the detection set with just a few frames of delay. That is the case for
all the spatio-temporal approaches in the comparison except for MEGA [2]. In
this case, key frames are randomly selected from the complete video. Thus, this
method might not be suitable for certain applications in which using so many
frames in advance is not possible.

Tab. 1 shows the results in the UAVDT and VisDrone datasets. Our method
outperforms all the other methods in the UAVDT dataset (Tab. 1a) at every
IoU level. It also shows that our approach not only gets better results but the
difference is bigger as we set a more demanding IoU. Thus, the difference with
the best spatio-temporal object detector is of 0.6% in AP@.5 while in AP@.75 it
is of 5.1%. In the VisDrone dataset (Tab. 1b) our framework also improves the
other methods in all the metrics. As in the previous case, the difference is more
significant in AP@.75 and AP@.5−.95 with 1.2% and 0.9% over MEGA, the best
spatio-temporal framework in this dataset.
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5 Conclusions

We have proposed a new framework for spatio-temporal object detection that
effectively exploits both short- and long-term information in videos recorded
from UAVs on board cameras. First, proposals are linked in the nearby frames
allowing to aggregate short-term spatio-temporal information. Then, enhanced
box features are further enriched by an attention stage that takes into account
object trajectories to exploit geometry features.

Our framework outperforms state-of-the-art spatio-temporal object detectors
in two publicly available datasets focused on videos recorded from UAVs. This
proves the suitability of our method for this challenging real application.
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