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Abstract

Automated process discovery is a process mining operation that takes as input an event log of a business

process and generates a diagrammatic representation of the process. In this setting, a common diagrammatic

representation generated by commercial tools is the directly-follows graph (DFG). In some real-life scenarios,

the DFG of an event log contains hundreds of edges, hindering its understandability. To overcome this

shortcoming, process mining tools generally offer the possibility of filtering the edges in the DFG. We

study the problem of efficiently filtering the DFG extracted from an event log while retaining the most

frequent relations. We formalize this problem as an optimization problem, specifically, the problem of

finding a sound spanning subgraph of a DFG with a minimal number of edges and a maximal sum of

edge frequencies. We show that this problem is an instance of an NP-hard problem and outline several

polynomial-time heuristics to compute approximate solutions. Finally, we report on an evaluation of the

efficiency and optimality of the proposed heuristics using 13 real-life event logs.

Keywords: Process mining, Automated process discovery, Directly-follows graph, Edge filtering

1. Introduction1

Process mining (PM) is a family of techniques to discover, monitor, and improve processes based2

on information extracted from event logs recording the sequences of activities executed in a business3

process [27]. One of the main operations in the field of PM is automated process discovery. The goal of4

automated process discovery is to generate a diagrammatic representation of the process recorded in an5

event log. This diagrammatic representation should be as understandable as possible, since it is used by6

managers and analysts for exploratory analysis. At the same time, it should capture as much of the behavior7

observed in the event log as possible.8

Existing automated process discovery techniques produce various diagrammatic representations as9

outputs, including process models in the Business Process Model Notation (BPMN), Petri nets, Process trees,10
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(a) Full DFG.

(b) Filtered DFG computed by Apromore (v7.19).

Figure 1: Full DFG and filtered DFG of a patient treatment process in a Dutch hospital [19].

and Directly-Follows Graphs (DFG). The latter (DFGs) are commonly used in commercial PM tools [18]. A11

DFG is a directed graph wherein each vertex denotes an activity of the process, and each edge denotes the12

fact that the target activity occurs immediately after the source activity in at least one trace of the process13

(a directly-follows relation). In addition to being widely used in commercial PM tools as a diagrammatic14

representation in its own right, DFGs are also used as an intermediate artifact by several algorithms for15

discovering BPMN models or Petri nets [4, 17].16

In real-life processes, the DFG of an event log may contain hundreds or thousands of edges, which17

hinders their understandability. For example, Figure 1a shows the DFG of a process recording the trajectories18

of patients treated for Sepsis disease in a Dutch hospital [19]. To tame this complexity, PM tools generally19
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offer the possibility to simplify the full DFG by filtering out the most infrequent directly-follows relations,20

thus keeping only the most frequent ones. For example, Figure 1b shows the filtered version of the previous21

DFG produced by a PM tool, namely Apromore.122

There are two desirable properties that should be preserved when filtering a DFG. One is that the23

filtered DFG must contain all the vertices in the original (full) DFG. In other words, a filtered DFG must24

be a spanning subgraph of the full DFG. The importance of this property has been highlighted by van der25

Aalst [26] who notes that when vertices are removed during DFG filtering, some edges in the filtered DFG26

no longer have the semantics of a directly-follows relation, as some intermediate vertices are not shown.27

This may lead users to draw incorrect conclusions about the process.228

The second property is that every vertex in the filtered DFG must be on a path from the vertex repre-29

senting the start event to the vertex representing the end event of the process. This property is called DFG30

soundness [18] and is required in order to generate BPMN models (or workflow nets) from the DFG [4].31

Intuitively, this property is needed because otherwise, the DFG represents a process in which some of the32

activities (vertices) are unreachable from the start event, or cannot reach the end event of the process.33

In this setting, this paper studies the following overarching research question: Given the full DFG of an34

event log, how to efficiently compute a spanning and sound filtered DFG with a minimal number of edges, while35

retaining the most frequent directly-follows relations of the original DFG? This question establishes a set of criteria36

to be met by the filtering approaches. The DFG filtering operation must:37

C1. Produce a sound filtered DFG.38

C2. Produce a spanning filtered DFG.39

C3. Seek to minimize the number of edges of the filtered DFG, while meeting criteria C1 and C2.40

C4. Seek to maximize the sum of edges frequencies in the filtered DFG, while meeting criterion C3.41

Note that by addressing this question, we also address the problem of computing (sound and spanning)42

DFGs with arbitrary levels of filtering. Indeed, if we can find a filtered DFG with a minimal number of43

edges, we can obtain larger (less filtered) DFGs by simply adding back those edges that were left out from44

the minimal DFG, starting from the most frequent to the least frequent edges.45

Given the above research question, the contributions of this paper are:46

1https://apromore.org/
2Note that the techniques proposed in this paper can be applied to event logs where some activities have been removed during a

pre-processing step. In this case, the techniques will build a filtered DFG that contains all the retained activities. A directly-follows

relation should then be interpreted with the meaning that activity B “directly-follows” activity A modulo any removed activities. This

approach may be useful if the removed activities are considered irrelevant by the user.
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1. We formalize the problem of DFG filtering as an optimization problem, namely that of computing47

a sound (C1) and spanning (C2) subgraph of a DFG with a minimal number of edges (C3) and a48

maximal sum of edge frequencies (C4).49

2. We show that this problem is an instance of an NP-hard problem.50

3. Accordingly, we propose a set of polynomial-time heuristic approximations to solve it.51

4. We evaluate the proposed heuristics in terms of their efficiency (execution time) and their optimality,52

i.e. their ability to minimize the number of edges and maximize the sum of edge frequencies.53

The remainder of the article is structured as follows. Section 2 gives an overview of existing DFG54

filtering techniques. Section 3 introduces basic notions of graph theory and process mining. Section 455

formalizes the problem of computing filtered DFGs, while Section 5 presents heuristic approximations of56

this problem. Finally, Section 6 describes the empirical evaluation, and Section 7 draws conclusions and57

sketches future work directions.58

2. Related work59

The problem of DFG filtering has been previously studied by Leemans et al. [18], who outline an60

approach for DFG filtering in three steps. First, the most infrequent directly-follows relations in the full61

DFG are identified. Second, all traces that contain at least one occurrence of any of these infrequent relations62

are removed from the event log. Finally, the resulting filtered event log is used to compute a filtered DFG.63

By construction, the filtered DFG is sound. However, it is not a spanning DFG (not fulfilling C2). For64

example, if a given activity A has a directly-follows relation with say 20 activities B1 . . .B20, and every one65

of these relations is infrequent, then all traces where A appears will be removed from the log, and hence A66

will not appear in the filtered DFG.67

Conforti et al. [8] propose another approach in four steps. First, the most infrequent edges of the full68

DFG are identified and removed from the DFG. This filtered DFG is not sound —some vertices might not69

be reachable from the start vertex or cannot reach the end vertex of the DFG. In a second step, vertices that70

are not reachable from the start or that cannot reach the end are removed in order to make the filtered DFG71

sound.3 Next, each trace in the event log is replayed against the filtered DFG. Because some traces cannot72

be perfectly replayed in the filtered DFG, some of the events in a given trace might be removed during73

the replay. In other words, every trace in the original log is retained in the filtered log, but some events74

are removed. Finally, the resulting filtered log can be used to generate a filtered DFG. This filtered DFG is75

3The user may add a constraint stating that some of the vertices in the DFG are required and should not be removed from the

filtered DFG.
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sound by construction, but it is not spanning (not fulfilling C2). Indeed, some vertices are removed when76

the unsound filtered DFG is repaired. In addition, as a result of the replay-filtering step, events that cannot77

be replayed are removed and, hence, some activities —specifically those that participate only in infrequent78

relations— will not appear in the filtered log and in the corresponding filtered DFG.79

As explained in [26], removing activities during DFG filtering changes the semantics of the DFG insofar80

as some edges in the filtered DFG no longer represent directly-follows relations. Furthermore, filtering out81

traces in the event log in order to generate a filtered DFG alters the frequency of the directly-follows relations82

—in other words, the frequencies of the directly-follows relations in the filtered DFG are not necessarily the83

same as in the original DFG. In this paper, we study the problem of computing filtered DFGs that are both84

sound and spanning, and such that the frequencies of the edges in the filtered DFG coincide with those in85

the original DFG. In other words, we seek to filter edges in the DFG without filtering any vertex.86

The problem of DFG edge filtering has also been addressed in the context of automated process discovery87

algorithms. For instance, the Heuristics Miner [37] starts by computing the DFG and applies heuristics88

to assign a confidence measure to each edge of the DFG. This confidence measure captures the degree of89

certainty that there is a true (sequential) dependency between two activities, as opposed to an interleaved90

concurrency relation 4. Next, for each vertex, the algorithm retains the incoming and outgoing edges with91

the highest weight. Depending on some user-defined thresholds, some additional edges associated with92

so-called short cycles may be retained as well. The goal of this filtering technique is to filter out directly-93

follows relations that correspond to (interleaved) concurrency. It does not seek to minimize the number of94

edges of the filtered DFG (i.e. does not fulfill C3) or to filter out infrequent relations from the DFG as we do95

in this paper (does not fulfill C4). Furthermore, this technique may lead to unsound DFGs (does not fulfill96

C1).97

The Inductive Miner also incorporates a DFG filtering technique based on edge frequency [17]. This98

technique starts by computing an eventually follows graph —the transitive closure of the directly-follows99

relation [24]— and normalizing each edge frequency by dividing it by the frequency of the strongest100

outgoing edge of its source vertex. Edges with a normalized frequency under a defined threshold are101

then removed. This filtering approach may lead to filtered DFGs that are unsound (does not fulfill C1).102

As a post-processing step, this unsound DFG may be turned into a sound DFG by removing unreachable103

vertices, but then, the resulting filtered DFG is not a spanning DFG (does not fulfill C2).104

In a similar vein, the Split Miner [4] includes a DFG filtering technique based on a variation of Dijkstra’s105

shortest path algorithm. Augusto et al. filter a DFG by retaining for each vertex v the incoming edge106

that is part of the path source → v with maximum capacity and the outgoing edge being part of the path107

4In the heuristics miner, a concurrency relation is asserted between two activities A and B, if these two activities are executed in

any order, i.e. sometimes A follows B and other times B follows A. We note that other notions of concurrency have been proposed in

the field of process mining. An in-depth treatment of concurrency notions in process mining is provided in [2].
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Table 1: DFG filtering techniques and their fulfillment of the set of criteria introduced in Section 1. ‘3’ and ‘7’ denote that the filtering

technique does or does not ensure to fulfill the criterion, respectively. In the case of criterion 4, ‘±’ denotes the filtering techniques

that partially fulfill the criterion —they do not focus on maximizing the sum of edges frequency, but they remove the edges regarding

their frequency.

Filtering approach
Desired search criteria

C1 C2 C3 C4

Leemans et al. [18] 3 7 ± ±

Conforti et al. [8] 3 7 ± ±

Weijters et al. Heuristics Miner [37] 7 3 ± 7

Leemans et al. Inductive Miner [17] 7 3 ± ±

Augusto et al. Split Miner [4] 3 3 ± ±

v→ sink with maximum capacity. In this context, the capacity of a path is the frequency of the least frequent108

edge in this path. This technique computes sound and spanning DFGs, but it does not directly attempt to109

minimize the number of edges in the filtered DFG (does not fulfill C3), nor to maximize the sum of the edge110

frequencies (does not fulfill C4), as we will further discuss in the following sections.111

Table 1 shows the desired criteria for the DFG filtering problem introduced in Section 1, and which of112

the discussed techniques fulfill each of them. The only DFG filtering approach that produces a sound (C1)113

and spanning (C2) filtered DFG is the Split Miner DFG filtering. None of the approaches directly seeks to114

minimize the number of edges (C3) or to maximize the frequency of the retained edges (C4). Regarding115

criterion C3, existing techniques offer a threshold to control the number or the percentage of edges to be116

removed, but they cannot be used to maximally filter the DFG. In the case of criterion C4, some techniques117

(indirectly) consider the frequency of the edges during removal, but they do not always remove edges in118

such a way as to retain the most frequent ones, while the Heuristics Miner DFG filtering removes edges119

without taking into account their frequency.120

3. Preliminaries121

In this section, we introduce some basic notions of process mining and graph theory related to the122

problem that is being addressed. We consider a business process that involves a set of activities A. We123

denote each of these activities with α. An event ε denotes one execution of an activity. We write O(ε) to124

denote the activity associated with an event ε. Usually, an event carries additional information besides an125

activity label, such as one or more timestamp(s), the resource who performed the activity, etc. However,126

in this paper, we focus on constructing DFGs where each vertex represents an activity and, hence, we do127

not consider such additional attributes. A trace τ = 〈 ε1, ..., εn 〉 is a list (sequence) of events, such that128
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Trace Trace

A (×1) B A (×1)

C B A (×1) D E B (×1)

D E F B (×1) D E F I J (×5)

D E F I B (×1) C E F I J (×4)

C D E F I J (×4) C G D E F I J (×2)

C G H G H E F I J (×3) C G H G D E F I J (×2)

(a) Event log example.
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(b) Full DFG of the event log in Figure 2a.

Figure 2: Example of an event log and its corresponding full DFG.

event εi was executed before ε j for every 1 ≤ i < j ≤ n. A trace represents one execution of the process.129

We use O(τ, i) to retrieve from trace τ the activity α executed in the event εi. An event log is defined as a130

collection (multi-set) of traces L = {{τ1, ..., τm}} recording m executions of a process. Finally, we use the term131

trace variant to refer to each unique activity sequence 〈 α1, ..., αn 〉 of a log L, where the frequency of a trace132

variant is the number of traces τ ∈ L having the same activity sequence. Figure 2a shows an example of an133

event log composed of 26 traces grouped in 12 trace variants —each trace variant frequency is depicted in134

parentheses.135

From an event log, we can construct a DFG capturing the consecutive (directly-follows) relations between136

the activities observed in the log.137

Definition 1 (Directly-Follows Relation). Given two activities α1, α2 ∈ A, and an event log L, there is a138

directly-follows relation from α1 to α2 in L, denoted by α1 >L α2, iff ∃εi, ε j ∈ τ | j = i+1∧O(εi) = α1∧O(ε j) = α2.139

The frequency, or weight, of a directly-follows relation is the number of times it is present in the event log,140

and it is denoted by |α1 >L α2|.141

The DFG of an event log is a directed graph where each vertex represents an activity observed in the142

event log, and each edge represents a directly-follows relation. To make the start and the end of the process143

explicit, it is customary to include an explicit start vertex and an explicit end vertex in the DFG of an event144

log. Figure 2b depicts an example of the full DFG corresponding to the event log in Figure 2a. As an145

example, edge (G,D) —with a weight of four— represents the directly-follows relation G D that appears in146

the trace variants 〈 C, G, D, E, F, I, J 〉—grouping two traces— and 〈 C, G, H, G, D, E, F, I, J 〉—grouping147

another two traces.148

Definition 2 (Full Directly-Follows Graph (DFG) of an event log). Given an event log L recording the149

executions of a set of activities A, its (full) directly-follows graph is a (directed) graph DFG = (V,E),150

where V = A
⋃
{source, sink} is the set of vertices corresponding to each activity α ∈ A plus a start activity151
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—source— and an end activity —sink—, and E = {(u, v) ∈ V × V | (|u >L v| > 0) ∨ (u = source ∧ v =152

O(τ, 1) ∧ τ ∈ L) ∨ (v = sink ∧ u = O(τ,n) ∧ τ ∈ L)} is the set of directed weighted edges, each edge153

representing a directly-follows relation observed in the event log. The weight of an edge is given by a154

function ω : E → N, where ω((u, v)) = |u >L v| iff u, v ∈ A, otherwise ω((start, v)) = |T| | τ ∈ T ∧ O(τ, 1) = v155

or ω((v, end)) = |T| | τ ∈ T ∧ O(τ,n) = v. Furthermore, we define the total weight of a DFG as the sum of its156

edges weight Ω(DFG) =
∑

e∈E ω(e).157

Herein, whenever we use the term DFG of an event log, we refer to the full DFG of an event log as defined158

above. In this paper, we also consider subgraphs of the DFG of an event log, which we call filtered DFGs159

(F-DFGs for short).160

Definition 3 (Filtered Directly-Follows Graph (F-DFG of an event log)). Given an event log L and its (full)161

directly-follows graph DFG = (V,E), a filtered DFG of L is a graph F-DFG = (V′,E′) such that V′ ⊆ V ∧E′ ⊆ E.162

Following Def. 3, an F-DFG can be unsound and not spanning. Nevertheless, as stated in Section 1, we163

are interested in obtaining sound filtered DFGs. To formally define the soundness property, we use the164

following notations. Given a vertex v ∈ V, •v = {(v1, v2) ∈ E | v = v2} denotes the set of incoming edges of v165

while v• = {(v1, v2) ∈ E | v = v1} denotes the set of outgoing edges. We note that •source = ∅ and sink• = ∅.166

A (directed) path from one vertex u to another vertex v, denoted by u→ v, is a sequence of edges 〈 (v1, v2),167

(v2, v3), ..., (vk−1, vk) 〉where u = v1 and v = vk.168

Given the above, Leemans et al. [18] define DFG soundness as follows.169

Definition 4 (Sound DFG). A DFG = (V,E) is sound iff ∀v ∈ V there is a path source → sink such that v is170

one of the vertices in that path.171

As discussed in Leemans et al., the DFG of an event log is sound by construction. On the other hand, a172

filtered DFG may be unsound, as the paths from a given vertex to the end vertex may be broken once some173

edges are removed.174

A second property we seek to ensure is that a filtered DFG should be spanning. We say that a (filtered)175

DFG is spanning if it contains all the activities observed in the event log (A). Trivially, the DFG of an event176

log is spanning, but a filtered DFG may or may not have this property.177

In this paper, we are specifically interested in extracting minimal-sized spanning filtered DFGs. To this178

end, we will make use of the concept of spanning arborescence, which is the smallest spanning sub-graph179

that can be extracted from a given directed graph G.180

Definition 5 (Spanning Arborescence). Given a directed graph G = (V,E), an arborescence (a.k.a. a branching)181

of G is a tuple B = (V′,E′) where V′ ⊆ V and E′ ⊆ E, such that for two distinct edges (u, v), (u′, v′) ∈ E′,182

v , v′ and B contains no cycle, i.e. it contains no path 〈 (v1, v2), (v2, v3), ..., (vk−1, vk) 〉 such that v1 = vk. An183

arborescence is spanning iff V′ = V.184
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Figure 3: Example of a spanning arborescence of the DFG in Figure 2b with root in ‘|>’.

For example, Figure 3 depicts an example of a spanning arborescence of the DFG in Figure 2b, with root185

in the start vertex ‘|>’.186

4. Problem formulation187

As stated in Section 1, the goal of this paper is, given a DFG = (V,E) with |E| = n, to efficiently compute a188

sound and spanning F-DFG = (V,E′) with minimum number of edges, and maximum total weight, denoted189

by MWMF-DFG.190

Definition 6 (Maximum Weight Maximally Filtered Directly-Follows Graph (MWMF-DFG)). Given an191

event log L, and its directly-follows graph DFG = (V,E), a maximum weight maximally filtered directly-192

follows graph is a sound filtered directly-follows graph MWMF-DFG = (V,E′) | E′ ⊂ E such that ∀F-DFG =193

(V,E′′) | E′′ ⊂ E [|E′| < |E′′| ∨ (|E′| = |E′′| ∧ Ω(MWMF-DFG) ≥ Ω(F-DFG))], i.e. the number of edges of194

MWMF-DFG is minimum, and its total weight is maximum among all other F-DFG of the same size.195

The rationale for seeking a filtered DFG of minimal size is that, once we have such a DFG, we can196

construct filtered DFGs of any larger size (up to the size of the full DFG of the event log) by simply adding197

some of the edges that were filtered out. The rationale for maximizing the sum of the edge weights is to198

ensure that, overall, we retain the most frequent relations during the filtering.199

Figure 4 depicts an example of two MWMF-DFGs of the DFG in Figure 2b. Note that a DFG may have200

multiple MWMF-DFGs. Both graphs contain 13 edges and have a total weight of 147. We can see that201

none of the edges can be removed without violating the soundness, and that there is no other sound and202

spanning F-DFG having fewer edges, or a higher total weight —for the same number of edges. Once an203

MWMF-DFG with |E′| = k | k < n has been obtained, a set of sound and spanning F-DFG = (V,E′′) with204

|E′′| = m | k < m < n, maximizing the total weight, can be easily computed by adding the edges from E \ E′205

in weight descending order.206
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Figure 4: Example of two MWMF-DFG of the DFG in Figure 2b, formed by 13 edges and with a total weight of 147.

In order to analyze the complexity of the problem of finding an MWMF-DFG, we consider the un-207

weighted version of this problem, namely that of finding a sound and spanning maximally filtered DFG208

(SSMF-DFG), where an SSMF-DFG is the F-DFG of a given DFG that is sound and spanning and has the209

minimum possible number of edges. Clearly, the complexity of computing an MWMF-DFG is the same210

or higher than that of computing an SSMF-DFG, since solving the former problem immediately gives us a211

solution to the latter one.212

The SSMF-DFG problem is an instance of the Minimum Spanning Strong Sub(di)graph (MSSS) problem,213

which has been proved to be NP-hard5 [5, 16]. Given a strongly connected6 graph G = (V,E), the MSSS214

problem consists of finding the strongly connected spanning subgraph MSSS = (V,E′) | E′ ⊆ E, such as the215

number of edges |E′| is minimum.216

To map the SSMF-DFG problem into an instance of the MSSS problem, we make a DFG = (V,E) strongly217

connected by adding the edge (sink, source) to E —we call it the augmented graph of DFG. The MSSS = (V,E′)218

of this augmented graph has a path between every two vertices u, v ∈ V. Thus, it has a path from every219

vertex v ∈ V to source. As •source = (sink, source), all these paths must contain sink and, thus, for all v ∈ V,220

there must be a path v → sink. In the same way, there must exist a path source → v for all v ∈ V. Thus, by221

removing (sink, source), we obtain a maximally filtered DFG.222

This proves that, if we solve the SSMF-DFG problem, we would have solved the MSSS problem for a223

subclass of graphs —those having an edge (u, v) such that |u • | = 1 and | • v| = 1.224

5 The MSSS problem has been shown to be polynomial for certain restricted families of graphs: graphs with cycles of size no

more than three edges, extended semicomplete graphs, and quasi-transitive graphs [5]. Nevertheless, none of these results apply to

the problem presented in this paper, as the only restrictions in the graph are those implied in Definition 2. Furthermore, it has been

proved that for any graph with a cycle of more than 17 edges, the problem is MAX SNP − hard, implying that there cannot exist a

polynomial-time approximation scheme for this problem, unless P = NP [16].
6A graph G = (V,E) is strongly connected if there is a path u→ v for every two vertices u, v ∈ V.
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5. Approach225

In this section, we propose several polynomial-time heuristics to approximate the MWMF-DFG problem226

(cf. Section 4). As the proposed techniques seek to generate an MWMF-DFG but do not necessarily find it,227

we will refer to the outputs of these techniques as MWMF-DFG approximations, or simply F-DFGs.228

5.1. Greedy approach229

A naive approach to approximate the computation of an MWMF-DFG, is to remove edges from the full230

DFG, one after another, in ascending weight order, i.e. from least frequent to most frequent. To ensure231

that the removal of an edge does not lead to an unsound F-DFG, we propose to perform two breadth-first232

searches after each removal: one forward from source to sink, and another backward from sink to source. If233

all the vertices are reached in both searches, the result is sound and the filtering can continue with the next234

edge. Otherwise, the edge has to be put back before considering the removal of the next edge. Note that235

not all edges have to be considered for removal.236

Performing two breadth-first searches for every edge is inefficient, and thus we should avoid it if237

possible. We note that the removal of an edge (u, v) ∈ E such that |u • | = 1 ∨ | • v| = 1 —i.e. (u, v) is the238

only outgoing edge of u, or the only incoming edge of v— will necessarily lead to u or v not having any239

incoming or outgoing edge, thus violating the soundness property. Accordingly, we will not consider such240

edges for removal.241

The above observations lead to a straightforward Greedy algorithm for DFG filtering.7242

243

Greedy:244

let G = (V,E) be a sound DFG245

let ω be a weight function over E246

put in E f all the edges in E247

while E f has unvisited edges:248

remove unvisited (u, v) ∈ E f with min ω((u, v))249

mark (u, v) as visited250

if (|u • | > 1 and | • v| > 1):251

remove (u, v) from E f252

if ((V,E f ) is not sound):253

add (u, v) back to E f254

return (V,E f )255
256

7This greedy approach is used in some commercial tools, including APROMORE.
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Figure 5: MWMF-DFG approximation formed by 13 edges and with a total weight of 145, computed by Greedy for the DFG in

Figure 2b.

This technique computes sound and spanning F-DFGs. The spanning property is ensured because the257

algorithm does not remove any vertex. Soundness is ensured by checking that this property is maintained258

after each edge removal.259

Nevertheless, this removal of edges may affect future removals and block the removal of other edges,260

which may lead to a non-optimal result in both dimensions (size and total weight). Figure 5 shows the261

F-DFG obtained by applying Greedy to the DFG in Figure 2b. The removal of (H,E) from the full DFG262

forces (G,D) and (H,G) to be kept in the F-DFG to ensure soundness, and makes (|>,D) redundant. In this263

context, an edge (u, v) from a DFG is redundant when there is an alternative path u→ v not including (u, v)264

in it. Conversely, Figure 4 shows that keeping (H,E) in the F-DFG and removing (G,D) allows us to obtain265

a higher total weight with the same number of edges.266

Given that two breadth-first searches are being executed for each edge, the time complexity of the267

Greedy approach is O(E(V + E)), being E the number of edges and V the number of vertices in the DFG.268

Assuming the number of edges is greater than the number of vertices —otherwise, no filtering is needed—269

we can express the time complexity of Greedy as O(E2).270

5.2. Two Way Edmonds approach271

An MWMF-DFG is a spanning F-DFG with minimum number of edges and maximum total weight,272

where for all vertices v ∈ V, there must be a path source → v and another path v → sink. A spanning273

arborescence of a DFG is a tree rooted at a vertex r, where for all v ∈ V there is a path r → v. Chu274

and Liu [7] and Edmonds [11] have independently presented an approach to efficiently compute, given a275

graph, a spanning arborescence such as the sum of its edges weight is maximum (or minimum) — a.k.a.,276

an optimum branching.277

We propose a technique, henceforth referred to as Two Ways Edmonds (TWE), that consists of merging278

the maximum weight spanning arborescence with root in source (B→), and the reversed maximum weight279

12



spanning arborescence with root in sink (B←). 8
280

281

Two Ways Edmonds:282

let G = (V,E) be a sound DFG283

let ω be a weight function over E284

let E−1 be the reverse operation which changes the direction of each edge in E285

B→ = (V,E→) # spanning arborescence of G with root in source286

B← = (V,E←) # spanning arborescence of G′ = (V,E−1) with root in sink287

E′ = E→
⋃

(E←)−1
288

return (V,E′)289
290

This technique computes sound and spanning F-DFGs. The spanning property is ensured because each291

of the two arborescences (the forward B→ and the backward B←) are spanning, and thus their union contains292

all the vertices in the full DFG. Soundness is also ensured by construction. By combining B→ and B← we293

ensure that for all v ∈ V \ {source, sink} there is a path source → v —contained in B→— and a path v → sink294

—contained in B←.295

Figure 6c depicts the F-DFG obtained by applying TWE to the DFG in Figure 2b. First, TWE computes296

the maximum weight spanning arborescence with root in source (B→, depicted in Figure 6a) by applying the297

Chu-Liu-Edmonds algorithm to the complete DFG. Then, TWE reverses the edges of the complete DFG,298

applies the Chu-Liu-Edmonds algorithm, and turns back the edges again to obtain the reversed maximum299

weight spanning arborescence with root in sink (B←, depicted in Figure 6b). As we can see, the result of300

this combination can contain redundant edges that can be removed to improve the filtering —e.g. (B, []).301

Accordingly, we propose an alternative technique consisting of applying Greedy to the F-DFG computed302

by Two Ways Edmonds (TWE+G) to remove these redundant edges, whose result can be seen in Figure 6d.303

The time complexity of TWE is given by the time complexity of Chu-Liu-Edmonds algorithm, which is304

O(EV), being E the number of edges and V the number of vertices in the DFG. Nevertheless, more efficient305

algorithms have been proposed with time complexities ofO(Elog(V)) by Tarjan [25] (after a correction made306

by Camerini et al. [6]), and of O(E + Vlog(V)) by Gabow et al. [13]. Regarding TWE+G, each arborescence307

has V − 1 edges, and thus, the Greedy addition runs over an F-DFG with a maximum of 2V − 2 edges. This308

reduces both the number of breadth-first searches, and the possibility to remove an edge that causes to end309

in a local optimum. Hence, the time complexity of TWE+G is O(EV + V2).310

8 A similar approach has been proposed in [12] as a 2-approximation to the MSSS problem, where the arborescence and reversed

arborescence having the same root are merged to obtain a spanning strongly connected subgraph.
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(a) Forward maximum weight spanning arborescence formed

by 11 edges and with a total weight of 141.
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(b) Backward maximum weight spanning arborescence

formed by 11 edges and with a total weight of 139.
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(c) MWMF-DFG approximation formed by 14 edges and with

a total weight of 150, computed by Two Ways Edmonds.
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(d) MWMF-DFG approximation formed by 13 edges and with

a total weight of 147, computed by Two Ways Edmonds +

Greedy.

Figure 6: Maximum weight spanning arborescences and MWMF-DFG approximations computed by TWE and TWE+G for the DFG

in Figure 2b.

5.3. SplitMiner filtering approach311

Augusto et al. proposed in [4] a process discovery algorithm named Split Miner. One of the first steps312

of this algorithm is to filter a DFG seeking to minimize the number of edges while maximizing the total313

weight of the graph. This approach retains, for each vertex v, the incoming edge that is part of the path314

source→ v with maximum capacity and the outgoing edge being part of the path v→ sink with maximum315

capacity. In this context, the capacity of a path is the frequency of the least frequent edge in this path.316

Henceforth, we will refer to this technique as Split Miner filtering (SMf).317

Note that Augusto et al.’s proposal aims to discover a BPMN process model, and thus, they apply318

different pruning strategies before the filtering phase. The starting point of their filtering technique is not319

the complete DFG, but a pruned DFG where the short cycles —i.e. cycles formed by two edges such as320

(a, b) and (b, a)— are pruned by removing the edge with less weight, or both edges if a concurrency relation321

between the vertices in the cycle is detected. In our approach, we do not need to remove such short cycles,322

hence we do not apply the short-cycle pruning step of the Split Miner algorithm, but only the filtering step.323
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We present below a declarative description of the SMf algorithm. The original one is a variant of Dijkstra’s324

shortest path algorithm and is presented in [4].325

326

Split Miner filtering:327

let G = (V,E) be a sound DFG328

let ω be a weight function over E329

let E′ be an empy edge set330

for v in V:331

add to E′ the (u, v) ∈ E having max capacity332

add to E′ the (v,u) ∈ E having max capacity333

return (V,E′)334
335

This algorithm computes sound and spanning F-DFGs. The spanning property is ensured because the336

algorithm does not remove any vertex in the filtering. Soundness is ensured because every vertex v has an337

incoming edge that is part of a path from source to v as well as an outgoing edge that is part of a path from338

v to sink.339

We note that this algorithm may remove the edge with higher weight because the decision is based on340

the capacity of the paths, not on the edges weight. As an example, to choose which of the incoming edges341

of E to retain, Figure 7 shows all the paths |>→ E and their capacities. In this case, during the filtering, the342

retained incoming edge of E is (D,E), not because it is the edge with the highest weight, but because it is part343
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Figure 7: Paths |>→ E and their capacities —i.e. for each path, the least of its edges weight.
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(a) MWMF-DFG approximation formed by 16 edges and with

a total weight of 159, computed by Split Miner filtering.
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(b) MWMF-DFG approximation formed by 14 edges and with

a total weight of 147, computed by Split Miner filtering +

Greedy.

Figure 8: MWMF-DFG approximations computed by SMf and SMf+G for the DFG in Figure 2b.

of the path with maximum capacity (Figure 7a). The same process is executed to retain one incoming and344

one outgoing edge per vertex. Figure 8a shows the F-DFG obtained by applying the Split Miner filtering345

to the DFG in Figure 2b. We can see that the edge (B,A) has been discarded in favor of (|>,A) because the346

capacities of all paths |>→ A are 1, and the latter was chosen first.347

Similar to the TWE approach, the SMf result may contain redundant edges —e.g. (C,E)—, and thus, we348

also propose an alternative technique consisting of applying Greedy to the F-DFG computed by Split Miner349

filtering (SMf+G) in order to further minimize the number of edges. The output of SMf+G is depicted in350

Figure 8b, where we can see that the removal of the edge (B.A) by SMf makes the edges (|>,A) and (B, [])351

necessary to maintain the soundness, causing SMf+G to not reach an optimal solution.352

To perform the capacity calculation of each element, Augusto et al. propose a variant of Dijkstra’s353

shortest path algorithm, which re-inserts a vertex to the search list when its capacity has been updated.354

This approach has a time complexity of O(E + f V), where E is the number of edges, V is the number of355

vertices in the DFG, and f is the maximum number of incoming edges to a vertex in the graph. Similar356

to TWE+G, the F-DFG obtained by SMf has a maximum of 2V − 2 edges. Hence, the time complexity of357

SMf+G is O(E + V2).358

6. Evaluation359

This section reports on an experimental evaluation of the proposed techniques in terms of their com-360

putational efficiency and in terms of their ability to maximally filter the full DFG of an event log while361

retaining the most frequent behavior recorded in the original log. The section first discusses the datasets362

used in the evaluation followed by the evaluation setup and the findings.363
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6.1. Datasets364

In the interest of enhancing the ecological validity of the empirical evaluation, we took as a starting365

point a collection of real-life events logs available in the 4TU Centre for Research Data9. As of 30 November366

2020, this collection contains 48 (real-life) event logs. We selected a subset of them using the following367

criteria:368

• We discarded datasets in the collection that do not capture the execution of a business process as369

defined in [10], i.e. a collection of activities performed by multiple actors in view of providing an370

outcome that is of value to a customer. Given this definition, we discarded event logs recording371

the execution of software tests or software models (JUnit 4.12 log, Apache Commons Crypto, Statechart372

workbench), a group of clickstream logs (BPIC 2016), an autonomous vehicle log (Nasa CEV), and a373

log of a lighting controller.374

• We discarded event logs with trivial behavior, specifically a log with one single trace variant (Credit375

Requirement) and a log consisting of only three activities (BPIC 2013).376

• Some of the event logs are part of a group. For example, there is a group of five logs that were used in377

the BPIC 2015 challenge. All these logs represent the same process executed at different organizations378

(in this case, five municipalities). In such situations, we only retained one representative log per group.379

Specifically, we only retained the first of the five BPIC 2015 event logs. From the Unrineweginfectie380

group, recording urinary tract infection (UTI) cases, we only retained Logboek 3 since it is the one with381

the largest number of trace variants. Similarly from the BPIC 2020 group, we retained the one with the382

largest number of trace variants (Travel permit data). Finally, from the BPIC 2014 group, we retained383

Activity log for incidents since the other two tables in this dataset do not have a timestamp column.384

• We discarded event logs that correspond to pre-processed variants of other event logs included in the385

collection. Specifically, we discarded the CoSeLoG group of logs as this group contains pre-processed386

versions of logs in the BPIC 2015 group. We also discarded a dataset containing pre-processed versions387

of other event logs in the collection, which were used in an automated process discovery benchmark.388

Based on the above inclusion criteria, we ended up with 13 event logs. Table 2 shows the characteristics389

of the logs and of their full DFGs. The size of the logs varies from dozens to tens of thousands of trace390

variants and from hundreds to millions of events. The full DFGs range in size from 12 to 626 vertices and391

from 25 to 4821 edges. Note that there are two datasets with a notably higher number of vertices and edges392

(Hospital Log and BPIC 2015), but they have a ratio of edges to vertices (i.e. density) comparable to other393

logs. When it comes to density, the two most distinctive datasets are UTI Cases with 2 edges per vertex394

(lowest density) and BPIC 2014 with 19 edges per vertex (highest density).395

9 https://data.4tu.nl/search?q=:keyword:%20%22real%20life%20event%20logs%22
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Table 2: Characteristics of the datasets used in the experimentation: for each event log the number of traces (# traces), number of trace

variants (# trace variants), number of events # events, and minimum (Min.) and maximum (Max.) trace length; and for the full DFG of

each event log the number of vertices (# vertices), number of edges (# edges), and the ratio of the number of vertices to the number of

edges (|E|/|V|).

Event log Full DFG

# traces
# trace

# events
Trace length

# vertices # edges |E|/|V|
Dataset variants Min. Max.

Hospital Log [28] 1,143 981 150,291 1 1,814 626 4,295 6.86

BPIC 2012 [29] 13,087 4,366 262,200 3 175 26 137 5.27

BPIC 2014 [30] 46,616 22,632 466,737 1 178 41 798 19.46

BPIC 2015 [31] 1,199 1,170 52,217 2 101 400 4,821 12.05

BPIC 2017 [32] 31,509 15,930 1,202,267 10 180 28 191 6.82

BPIC 2018 [35] 43,809 28,457 2,514,266 24 2,973 43 619 14.40

BPIC 2019 [33] 251,734 11,973 1,595,923 1 990 44 538 12.23

CCC 2019 [22] 20 20 697 26 59 31 150 4.84

BPIC 2020 [34] 7,065 1,478 86,581 3 90 53 568 10.72

Sepsis Cases [19] 1,050 846 15,214 3 185 18 135 7.50

Road Traffic [9] 150,370 231 561,470 2 20 13 78 6.00

UTI Cases [14] 1,650 50 6,973 2 35 12 25 2.08

Hospital Billing [20] 100,000 1,020 451,359 1 217 20 158 7.90

6.2. Experimental setup396

We evaluated the five approaches presented in Section 5: Greedy (G), Two Ways Edmonds (TWE), Two397

Ways Edmonds combined with Greedy (TWE+G), Split Miner filtering (SMf), and Split Miner filtering398

combined with Greedy (SMf+G). The SMf technique is implemented in Java. This implementation takes as399

input a parameter η corresponding to the desired level of filtering. We set η = 1.0 so the resulting F-DFG is400

the most filtered one that this technique can produce. All the other techniques were implemented in Kotlin401

and they have no configuration parameters. The implementations of all five techniques are available at402

https://github.com/david-chapela/dfg-edge-filtering.403

We recall that the problem addressed in this paper is that of efficiently computing a sound and spanning404

subgraph of a full DFG with a minimal number of edges and a maximal sum of edge frequencies, as405

formulated in Section 4. Accordingly, we evaluate the goodness of the presented algorithms in terms of406

the number of edges of the filtered DFGs they produce as well as the total weight of the filtered DFGs. We407

note that it is unfair to compare F-DFGs of different sizes in terms of their total weight, as an F-DFG with408

more edges will presumably have a higher total weight. To address this concern, before comparing the409

MWMF-DFG approximations produced by different algorithms for a given log, we normalize the sizes of410

these MWMF-DFG approximations so that they all have the same size. Let N be the size of the largest of the411
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MWMF-DFG approximations produced by different algorithms for a given log. To normalize, we take each412

MWMF-DFG approximation that has a size less than N, and we add back, one by one, the filtered edges in413

weight descending order until the size of the extended MWMF-DFG is equal to N. The total weight of the414

resulting extended MWMF-DFG is called the normalized total weight. We use this latter measure, instead of415

the total weight of the MWMF-DFG approximations.416

Naturally, we also seek to obtain a filtered DFG that retains, to the maximal possible extent, the behavior417

recorded in the event log from which the full DFG is extracted. We also seek to obtain a precise filtered DFG,418

i.e. a filtered DFG that captures the smallest possible amount of extra behavior (i.e. behavior not observed in419

the event log). Accordingly, we also report on the fitness and precision of the filtered DFGs w.r.t. the original420

event logs. To measure fitness, we translate each maximally filtered DFG into an equivalent Petri net (by421

treating the filtered DFG as an automaton) and we then apply the alignment-based fitness measure defined422

in [1].10 To measure precision, we use a recently proposed approach for measuring precision of Petri nets423

against event logs [15]. This precision measure evaluates the amount of behavior captured by the model but424

not observed in the event log. The method for calculating this measure takes as input a parameter called425

“number of skips” which corresponds to the maximum allowed number of non-conforming movements426

(skips) that may exist between a trace produced by the model and a “matching” trace in the log. If the427

number of skips required to match a given trace of the model with any one trace in the log is greater than this428

number, the technique considers that this model trace cannot be matched (i.e. this behavior does not occur429

in the log). We measured the precision with a number of skips of 3 and 5. We did not measure with higher430

values because increasing the number of skips impacts the computation time and causes more datasets to431

time-out, which makes the precision metric less useful for comparison purposes. Unfortunately, even when432

restricting the number of skips to a small number (3 or 5), the implementation of the precision measure433

in [15] does not scale up to the size of the largest event logs in this empirical evaluation. To cope with this434

limitation, we set a time-out of 4 hours when measuring precision. No precision values are reported in the435

case of a time-out.436

Finally, we measured the efficiency of each approach by means of their execution time (runtime) from437

the moment the event log is read from secondary storage to the moment the maximally filtered DFG has438

been constructed in memory. All the experiments were conducted on Intel(R) Core(TM) i5-8250U with 8GB439

of RAM running JVM 11.440

6.3. Results441

In this section, we present the results obtained in the performed evaluation of the proposed techniques.442

10This approach to measure fitness of filtered DFGs was proposed in [18].
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Number of edges443

Table 3 shows the number of edges of the MWMF-DFG approximation computed by each algorithm.444

SMf presents the worst results. It yields the smallest F-DFG only in the dataset with the lowest edge to445

vertex ratio —UTI Cases— where all techniques converge to the same result. TWE outperforms SMf in446

eight datasets, but both of them perform worse than the other algorithms. The best results are obtained by447

G, TWE+G, and SMf+G which produce filtered DFGs with very comparable number of edges. We note that448

SMf+G never yields better results than TWE+G, and is outperformed by it in three datasets. Conversely,449

TWE+G outperforms G in three datasets —BPIC 2014, BPIC 2015 and CCC 2019—, G outperforms TWE+G450

in one dataset —Hospital Log—, and both obtain the same results in the remaining nine datasets.451

In order to statistically analyze if there is a difference between the techniques insofar as the number452

of edges is concerned, we performed a Friedman ranking test followed by a Holm post-hoc test using453

STAC [23]. The Friedman ranking test calculates a rank for the approaches based on their performance,454

where the lower the rank, the better. On the other hand, the Holm post-hoc method computes the sig-455

nificance of the difference between every two techniques. Table 4 shows the results of the statistical tests.456

We applied the Holm post-hoc test using the first ranked approach —TWE+G— as a control method, thus457

calculating the p-value for each comparison of TWE+G with each of the other approaches. We can see that458

TWE+G has been ranked as the best technique, with significance values proving that TWE+G is superior459

to TWE and SMf. Regarding TWE+G, SMf+G, and G, there is not enough evidence to conclude that their460

performance is different.461

Table 3: Number of edges of the MWMF-DFG approximations computed by each of the proposed techniques, for the datasets

presented in Table 2. The gray cells mark, for each dataset, the best result(s) out of the five filtering techniques.

# edges

Dataset G TWE TWE+G SMf SMf+G

Hospital Log 918 1121 924 1155 928

BPIC 2012 33 36 33 38 33

BPIC 2014 65 74 63 74 65

BPIC 2015 496 633 489 675 495

BPIC 2017 37 40 37 41 37

BPIC 2018 57 70 57 72 57

BPIC 2019 58 73 58 73 58

CCC 2019 33 35 32 39 32

BPIC 2020 76 85 76 85 76

Sepsis Cases 22 24 22 25 22

Road Traffic 14 17 14 17 14

UTI Cases 17 17 17 17 17

Hospital Billing 26 30 26 31 26
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Table 4: Non-parametric tests for the performance of the five techniques regarding the number of edges.

Algorithm Friedman Ranking Holm Adj. p-value

TWE+G 1.885

SMf+G 2.154 1.000

G 2.192 1.000

TWE 4.077 2.8E-3

SMf 4.692 6.0E-5

Total weight462

Table 5 provides the normalized total weights of the MWMF-DFG approximations produced by G,463

TWE+G, and SMf+G. We do not include TWE and SMf in this table because we showed above that their464

performance regarding the number of edges is clearly below that of the other techniques. We observe that465

SMf+G does not outperform the other two techniques in any dataset, although it achieves the best result466

in eight datasets, ex aequo with other techniques. G outperforms the other two techniques in one dataset467

and achieves the best results (ex aequo with other techniques) in other nine datasets. Finally, TWE+G468

outperforms the other two techniques in three datasets and achieves the best results (ex aequo with other469

techniques) in other seven datasets.470

Fitness471

Table 5 depicts the fitness of the MWMF-DFG approximations computed by each of the techniques. The472

relative performance of the techniques in terms of fitness is similar to their relative performance in terms of473

normalized total weight in all datasets except three (BPIC 2018, BPIC 2020, and Sepsis cases). In the BPIC474

2018, the three techniques yield the same fitness value, although TWE+G obtained a worse normalized475

total weight. This can be explained by the small difference in the normalized total weight. The same occurs476

in the Sepsis cases dataset, where SMf+G yields slightly lower normalized total weight but similar fitness.477

Regarding the BPIC 2020, although the three techniques yield the same normalized total weight, TWE+G478

yields higher fitness.479

We note that the fitness values shown in Table 5 are relatively low. This result is not surprising given that480

the DFGs of the filtered logs contain only a small fraction of the edges in the original log. For example, the481

normalized filtered DFGs of the Hospital Log only have 21% (918/4,295) of the edges of the full DFG. Even482

more strikingly, the normalized filtered DFGs of the BPIC 2015 log have only 10% (496/4,821) of the edges483

of the full DFG. While maximally filtered DFGs clearly enhance the understandability of the visualizations484

produced by process mining tools, this understandability comes at the cost of accuracy. Whenever possible,485

users of DFGs should consider adjusting the level of edge filtering in order to strike a balance between486

understandability and accuracy.487
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Table 5: Total weight, Alignment-based fitness, and precision of the MWMF-DFG approximation computed by G, TWE+G, and

SMf+G, normalized by adding back some of the filtered edges in weight-descending order until the three filtered DFGs have the same

size (denoted by # edges). The gray cells mark, for each dataset, the best result(s) out of the five filtering techniques.

Normalized total weight Alignment-based fitness Precision (3 skips)

Dataset # edges G TWE+G SMf+G G TWE+G SMf+G G TWE+G SMf+G

Hospital Log 928 69,528 52,891 31,039 0.22 0.15 0.03 - - -

BPIC 2012 33 107,036 107,036 107,036 0.55 0.55 0.55 0.81 0.81 0.81

BPIC 2014 65 154,708 215,645 172,383 0.48 0.54 0.49 - - -

BPIC 2015 496 16,389 20,317 17,429 0.18 0.30 0.26 - - -

BPIC 2017 37 615,759 594,525 615,759 0.29 0.28 0.29 - - -

BPIC 2018 57 620,672 620,629 620,672 0.32 0.32 0.32 - - -

BPIC 2019 58 545,986 545,986 545,986 0.47 0.47 0.47 - - -

CCC 2019 33 454 456 450 0.75 0.76 0.75 0.69 0.68 0.66

BPIC 2020 76 55,597 55,597 55,597 0.45 0.48 0.45 0.76 0.76 0.76

Sepsis Cases 22 8,013 8,013 7,852 0.64 0.64 0.64 0.72 0.72 0.70

Road Traffic 14 528,471 528,471 528,471 0.61 0.61 0.61 0.96 0.96 0.96

UTI Cases 17 7,776 7,776 7,776 0.91 0.91 0.91 1.00 1.00 1.00

Hospital Billing 26 347,248 347,248 347,248 0.68 0.68 0.68 0.94 0.94 0.94

We also note that the SMf+G approach leads to low fitness in the case of the Hospital Log, while the488

pure greedy (G) and the TWE+G approach achieve comparatively better fitness. This can be explained489

by the fact that this event log contains a large number of edges with a frequency of one in the full DFG,490

while some of the edges have a high frequency. Most of the nodes in this log have one incoming and one491

outgoing edge with high frequency, and then a number of other edges with a frequency of one or other492

low frequencies. This structure lends itself to the strategy followed by the greedy approach, which in such493

cases will naturally tend to retain the main pathways in the DFG. Conversely, the SMf approach tries to494

keep edges that are part of a path from a vertex to the sink (or from the source to a vertex) with the largest495

capacity. As a result, SMf may drop some paths that contain edges with relatively high frequency when496

these same paths also contain edges with very low frequency.497

Precision498

Table 5 depicts the precision (with the number of skips set to three) of the MWMF-DFG approximations499

computed by each of the techniques. A dash in this column indicates that the precision measurement500

timed-out after 4 hours. We observe that the results of the three algorithms are very close to each other501

in five out of the seven datasets. Regarding the other two, SMf+G obtains slightly lower precision values.502

Nevertheless, the values in these cases are comparable. We have also measured the precision setting the503

number of skips to five. When the number of skips is five, the values of precision are generally higher in504

absolute numbers (than with three skips), but in relative terms the results are similar.505
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We performed a statistical test to determine if we can assert a statistically significant difference between506

the techniques in terms of normalized total weight and fitness. In both cases, total weight and alignment-507

based fitness, the Friedman ranking placed TWE+G first, followed by G and SMf+G. However, the post-hoc508

significance results do not allow us to conclude that this difference is statistically significant. Regarding the509

precision, there are too few data points to do a statistical test.510

Runtimes511

Table 6 shows the average runtime of the evaluated techniques for each of the datasets —measured as512

the average of ten executions. TWE and TWE+G present the lowest runtimes in all cases except the two513

datasets having more than 400 activities —Hospital Log and BPIC 2015. Regarding these two datasets, G514

presents the worst runtimes exceeding 50 seconds in both cases, while SMf obtains the best runtimes with515

values under 100 milliseconds, followed by SMf+G with values under 2 seconds, and by TWE+G with516

runtimes of 4 and 5 seconds.517

Table 7 shows the results of the Friedman ranking and Holm post-hoc tests regarding Table 6 runtime518

values. We have used the first ranked approach —TWE— as a control method for the Holm post-hoc tests.519

As we can see, the most efficient technique is TWE, followed by TWE+G. Regarding the post-hoc tests,520

there is a significant difference to conclude that TWE outperforms G, SMf, and SMf+G, but not to determine521

it outperforms TWE+G.522

Table 6: Runtimes of the proposed techniques measured as the average of ten executions. The gray cells mark, for each dataset, the

best result(s) out of the five filtering techniques.

Runtime (ms)

Dataset G TWE TWE+G SMf SMf+G

Hospital Log 54,721 2,692 5,148 97 1,379

BPIC 2012 20 7 13 64 66

BPIC 2014 145 57 67 119 127

BPIC 2015 50,077 2,241 4,054 77 587

BPIC 2017 39 12 19 157 160

BPIC 2018 127 49 77 454 462

BPIC 2019 110 34 50 99 111

CCC 2019 30 10 12 11 14

BPIC 2020 127 27 35 30 38

Sepsis Cases 16 6 16 26 27

Road Traffic 6 2 5 11 12

UTI Cases 2 1 2 10 11

Hospital Billing 20 4 7 18 20
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Table 7: Non-parametric tests for the performance of the five techniques regarding the runtimes.

Algorithm Friedman Ranking Holm Adj. p-value

TWE 1.308

TWE+G 2.538 0.204

G 3.000 2.9E-4

SMf 3.885 0.045

SMf+G 4.269 2E-5

Threats to validity523

The reported evaluation has a number of threats to validity. First, a potential threat to internal validity524

in regard to the evaluation of runtime execution times is the fact that we conducted experiments using a525

single computing environment. The results might differ on other computing environments. To mitigate this526

threat to validity, we executed each experiment tend times and reported the average. We did not observe527

major variations between different executions. To ensure the reproducibility of the results, we have relied528

on publicly available logs and we have publicly released the implementations of the proposed techniques.529

Another threat to potential validity is the fact that we relied on only one measure of fitness. However,530

this measure is widely used in the field of automated process discovery [3]. Related to the above, we531

compared the total weights using a normalization approach. There may be other approaches to perform532

such a comparison.533

A potential threat to external validity is given by the use of a limited number of event logs (13 logs). To534

mitigate this risk, we selected these log using carefully justified criteria, in such a way that the selected logs535

are representative of a broader pool of real-life logs. Furthermore, the event logs cover different industry536

domains (banking, IT services, healthcare, etc.) and they have a wide range of characteristics with respect537

to size and complexity.538

7. Conclusion and future work539

In this paper, we have formalized the problem of DFG simplification as an optimization problem where540

we seek to obtain a filtered DFG with the least possible number of edges while maximizing the frequency541

of the retained edges —i.e. the total weight. We have shown that this problem is an instance of anNP-hard542

problem from the graph theory field. Accordingly, we have presented a set of polynomial-time heuristics to543

approximate the problem, and we have conducted an evaluation to compare the optimality and the runtime544

performance of these heuristics.545

Based on the results, we found that none of the heuristics outperforms the others across all datasets.546

In 9 out of the 13 datasets, three of the heuristics (G, TWE+G, and SMf+G) yield the lowest number of547

edges. The TWE+G approach produces the lowest number of edges in other three datasets —in one of548
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which it does so ex aqueo with SMf+G—, while Greedy outperforms the other approaches in the remaining549

dataset. Regarding the total weight, similar observations can be made. TWE+G obtains the best results550

in most of the datasets, outperforming G in three of them, but being outperformed by it in other three.551

SMf+G never outperforms the other techniques, but it yields the same results in seven datasets. Similar552

observations can be made when comparing the relative performance of the proposed techniques in terms553

of fitness. Regarding precision, all techniques present very comparable results, with slightly lower values554

of SMf+G in two of the datasets. We have performed a set of non-parametric statistical tests to compare the555

techniques regarding the filtering performance, concluding that there is not enough evidence to say there is556

a difference between TWE+G, G, and SMf+G. On the other hand, these three techniques outperform TWE557

and SMf in a statistically significantly manner.558

Regarding the execution time, the most efficient technique is TWE, closely followed by TWE+G. TWE+G559

outperforms G in execution time in all the cases, and it underperforms SMf+G only in the two datasets560

that contain with more than 400 activities. This behavior was predictable given the worst-time complexity561

analysis of the algorithms (cf. Section 5). Indeed, TWE is more dependent on the number of vertices than562

SMf —with time complexities of O(EV) and O(E + f V), respectively.563

In summary, barring situations where the number of activities in the process is high, TWE+G offers the564

best trade-off between filtering performance and execution time. In the case of processes with hundreds565

of activities, SMf+G is a preferable option, as it sacrifices filtering performance but yields lower execution566

times.567

One of the purposes of DFG filtering is to produce DFGs that are easier to comprehend. In this paper,568

we measured the simplicity of a DFG in terms of the number of edges. While the number of edges has been569

shown to be correlated with understandability in the context of process modeling [21], a lower number570

of edges does not always imply higher understandability. An avenue for future work is to conduct user571

studies to determine how different DFG filtering techniques compare to each other in a practical setting.572

Several algorithms for automated discovery of process models (BPMN models or Petri nets) take a DFG as573

a starting point, e.g. Split Miner [4], Inductive Miner [17], Fodina [36]. A possible direction for future work574

is to study how the DFG filtering approaches proposed in this paper can be integrated into these automatic575

process discovery algorithms and what trade-off —e.g. in terms of accuracy or simplicity measures— they576

provide relative to the existing DFG filtering methods integrated into these algorithms.577
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